乡

Tennessee Gas Pipeline
Company, L.L.C.
a Kinder Morgan company

APPLICATION FOR A U.S. ARMY CORPS OF ENGINEERS PERMIT FOR THE NORTHEAST ENERGY DIRECT PROJECT

SECTION 3
NEW ENGLAND DISTRICT
MASSACHUSETTS, NEW HAMPSHIRE, CONNECTICUT

Submitted to:
U.S. Army Corps of Engineers

New England District
Regulatory Division
696 Virginia Road
Concord, Massachusetts 01742

Applicant:
Tennessee Gas Pipeline Company, L.L.C.
1001 Louisiana Street
Houston, TX 77002
U.S. Army Corps of Engineers Permit

Company, L.L.C.
Northeast Energy Direct Project
Section 3, Attachment 1
Name, Location, Purpose and Description (Blocks 13, 18)

Section 3 - Attachment 1

Name, Location, Purpose and Description
(Blocks 13, 18)

This page intentionally left blank

SUPPLEMENTAL INFORMATION TO ENG FORM 4345

ATTACHMENT 1 - NAME OF WATERBODY, NATURE OF ACTIVITY, AND PROJECT PURPOSE (BLOCKS 13 and 18)

1.1 NAME OF WATERBODY (BLOCK 13)

For the purposes of this application, only those Project facilities and impacts within Massachusetts, New Hampshire, and Connecticut will be discussed in this Section of the Application. United States Geological Survey ("USGS") mapping for the Project facilities in Massachusetts, New Hampshire, and Connecticut are included in Section 3, Appendix 1, 6, and 11 respectively. All Project facilities are depicted on the Project Aerial Alignment Sheets contained in Section 4, Appendix 1 of this Application.

Right-of-way ("ROW") widths vary along the proposed Project corridor. Construction ROW widths vary from 75 to 120 feet in Massachusetts and 75 to 120 feet in New Hampshire. Construction ROW widths in Connecticut are 90 feet for the entire proposed alignment. Operational ROW width is 50 feet for the entire proposed alignment through Massachusetts, New Hampshire, and Connecticut.

The proposed Project mainline pipeline facilities in Massachusetts consist of approximately 64 miles of 30-inch-diameter pipeline, beginning at the New York/Massachusetts border and extending to the Massachusetts/New Hampshire border in Franklin County in western Massachusetts. This mileage also includes the portion of mainline from the New Hampshire/Massachusetts border to Dracut in Middlesex County in eastern Massachusetts (as part of the Wright to Dracut Pipeline Segment). Portions of the Wright to Dracut Pipeline Segment will be located in New York, Massachusetts, and New Hampshire. Approximately 63 miles of this new proposed mainline pipeline (beginning at the New York/Massachusetts border) will be generally co-located with an existing utility corridor to the extent practicable, feasible, and in compliance with existing law. The remainder of the proposed mainline pipeline facilities in Massachusetts will be new pipeline ROW. The entirety of the proposed mainline pipeline facilities in Massachusetts (64 miles of 30 -inch-diameter pipeline) will be designed for a MAOP and a MOP of 1,460 psig.

Additionally, Tennessee is proposing five separate new laterals in Massachusetts as part of the Project:

- The 30 -inch diameter Maritimes Delivery Line will be 0.75 miles in length with a MAOP and a MOP of 1,460 psig and will extend from the Market Path Tail Station to an interconnect with the Maritimes and Northeast Pipeline System.
- The 24 -inch diameter Lynnfield Lateral will be 14.28 miles in length with a MAOP and a MOP of 1,460 psig. Approximately 8.95 miles of the 14.28 miles will be co-located with an existing utility corridor.

U.S. Army Corps of Engineers Permit Northeast Energy Direct Project Section 3, Attachment 1 Name of Waterbody, Nature of Activity, and Project Purpose

(Blocks 13 and 18)

- The 24-inch diameter Peabody Lateral will be 5.32 miles in length with a MAOP of $1,460 \mathrm{psig}$ and a MOP of 730 psig and will extend from the new Lynnfield Lateral proposed as part of the Project. Construction of this lateral will include a 0.4 mile take-up and relay of Tennessee's existing 8 -inch-diameter Beverly-Salem Colonial Delivery Lateral pipeline.
- The 20 -inch diameter Haverhill Lateral (Massachusetts Portion) will be approximately 9.27 miles in length that will extend from Massachusetts through New Hampshire with a MAOP of 800 psig and a MOP of 750 psig. Construction of this lateral will include a partial take-up and relay of Tennessee's existing 10 -inch diameter Haverhill Lateral pipeline. The entire 7.23 miles in Massachusetts will be a take-up and relay of the existing Haverhill Lateral within Tennessee's existing ROW.
- The 12 -inch-diameter Fitchburg Lateral Extension (Massachusetts Portion) will be 13.97 miles in length with a MAOP and a MOP of 1,460 psig. This lateral will be an extension of Tennessee's existing Fitchburg Lateral which will connect to the Wright to Dracut Pipeline Segment in New Hampshire. Approximately 8.89 miles (of which 3.71 miles will be co-located with an existing utility corridor) of the 13.97 miles will be located in Massachusetts.

The proposed Project mainline facilities in New Hampshire consist of approximately 70 miles of 30 -inch diameter pipeline, beginning at the Massachusetts/New Hampshire border and extending east to the Massachusetts/New Hampshire border north of Dracut, Massachusetts (as part of the Wright to Dracut Pipeline segment). Portions of the Wright to Dracut Segment will be located in New York, Massachusetts, and New Hampshire. Approximately 57 miles of this new proposed mainline pipeline (beginning at the Massachusetts/New Hampshire border) will be generally co-located with an existing utility corridor to the extent practicable, feasible, and in compliance with the existing law and include:

- The addition of a new natural gas-powered compressor station located in the Town of New Ipswich, Hillsborough County. The proposed compressor station will include two Titan 130 turbines, ISOrated for a total of $41,000 \mathrm{hp}$;
- Two new meter stations, including one located in Merrimack (West Nashua), New Hampshire, and one located in Windham (NH), which is an extension of an existing facility; and
- Ten valve stations, seven located in Segments I and J; three located on segments Q and P.

The proposed Project pipeline facilities in New Hampshire also include the remaining lengths of the Fitchburg Lateral Extension and the Haverhill Lateral Extension (described in the discussion of the Massachusetts pipeline facilities). Approximately 2.04 miles of the 9.27 -mile Haverhill Lateral and 5.08 miles of the 13.97 -mile Fitchburg Lateral Extension will be located in New Hampshire. The remaining portions of these laterals will be located within Massachusetts. The Haverhill Lateral will have a MAOP of 1,460 psig and an MOP of 750 psig. The Fitchburg Lateral Extension will have an MAOP and MOP of $1,460 \mathrm{psig}$.

The proposed Project pipeline facility in Connecticut includes the 300 Line Connecticut Loop. The 300 Line Connecticut Loop consists of approximately 14.80 miles of new 24 -inch-diameter pipeline generally located within or directly adjacent to Tennessee's existing 300 Line's ROW. This proposed loop segment will be designed for a MAOP of 800 and a MOP of 719 psig.

U.S. Army Corps of Engineers Permit
Northeast Energy Direct Project
Section 3, Attachment 1
Name of Waterbody, Nature of Activity, and Project Purpose
(Blocks 13 and 18)

To the extent that it is practicable, feasible, and in compliance with existing law, Tennessee proposes to locate proposed pipeline facilities (either pipeline looping segments or co-located pipeline facilities) generally within or adjacent to its existing right-of-way ("ROW") associated with its existing 300 Line in Pennsylvania and Connecticut; its existing 200 Line in New York and Massachusetts; and existing utility (pipeline and powerline) corridors in Pennsylvania, New York, Massachusetts, and New Hampshire.

Pipeline loops are those pipeline segments which are laid parallel to another pipeline and used as a way to increase capacity along what is possible on one line. These lines are connected to move larger volumes of gas through a single pipeline segment.

Co-located pipelines are those that are laid parallel to another existing pipeline or linear utility. The current route of Tennessee's proposed NED Project, in large part, is located parallel and adjacent to, and in many cases, overlaps existing utility easements (either pipeline or powerlines). This paralleling/overlapping of easements is commonly referred to as co-location. Refinement to the routing of the NED Project, including locations of permanent easement and temporary construction workspaces, has occurred as the NED Project was developed during the pre-filing process, and will continue as necessary through the certificate process, incorporating information gained from field surveys, and landowner and stakeholder input, including input from power companies that have existing easements in areas where Tennessee is proposing to co-locate the Project pipelines.

The waterbodies listed in Tables 1.1-1, 1.1-2, and 1.1-3 are associated with the proposed pipeline and facilities in Massachusetts, New Hampshire, and Connecticut respectively. The series number and name (if applicable) correspond to waterbody crossings noted on Project Alignment Sheets provided in Section 4 Appendix 1 and Site Specific Wetland and Waterbody Drawings provided in Section 3, Appendix 2 (Massachusetts), Appendix 7 (New Hampshire), and Appendix 12 (Connecticut). Information regarding the wetlands occurring along the Project is presented in Tables 2.3-7, 2.3-8, and 2.3-9 in Section 3, Attachment 2. This application only includes Site Specific wetland and watercourse permit drawings for those wetlands that were delineated in the field. Site Specific wetland and waterbody permit drawings are not provided for interpolated wetlands from aerial imagery.

This page intentionally left blank

Table 1.1-1

Facility Name	County	Town	Segment ${ }^{1}$	NearestMilepost ${ }^{2}$	Waterbody ID ${ }^{3}$	WaterbodyName 4	Latitude	Longitude	Quadrangle	Type ${ }^{5}$	FERC Class ${ }^{6}$	Water Quality Designation / Fishery Classification ${ }^{7}$	$\begin{gathered} \text { Timing } \\ \text { Restriction } \end{gathered}$	Crossing Method ${ }^{9,10}$	Comments	Crossing Length ${ }^{11}$	
																(feet)	$\begin{array}{\|c} \hline \text { (square } \\ \text { feet) } \end{array}$
Pipeline Facilities																	
Wright to Dracut Pipeline Segment	Berkshire	Hancock	G	0.21	SPI-369	UNT to Kinderhook Creek	$42^{\circ} 32^{\prime} 32.002^{\prime \prime} \mathrm{N}$	$73^{\circ} 20^{\prime} 12.119^{\prime \prime} \mathrm{W}$	Hancock	I	MI	B/CFR	July 1 to Sept 30	II	Karst Area	6	465
Wright to Dracut Pipeline Segment	Berkshire	Hancock	G	0.50	SPI-370	Kinderhook Creek	$42^{\circ} 32^{\prime} 24.094^{\prime \prime} \mathrm{N}$	73 $19^{\prime} 54.874^{\prime \prime} \mathrm{W}$	Hancock	P	MA	B/HQ/CFR	$\begin{aligned} & \hline \text { July } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	II	Karst Area	109	4,870
Wright to Dracut Pipeline Segment	Berkshire	Hancock	G	0.69	$\begin{aligned} & \text { HA-N- } \\ & \text { So00 } \end{aligned}$	UNT to Kinderhook Creek	$42^{\circ} 32^{\prime} 19.499{ }^{\prime \prime} \mathrm{N}$	$73^{\circ} 19^{\prime} 43.038^{\prime \prime} \mathrm{W}$	Hancock	I	I	B/CFR	July 1 to Sept 30	II		36	2,620
Wright to Dracut Pipeline Segment	Berkshire	Hancock	G	0.76	$\begin{aligned} & \text { HA-N- } \\ & \text { S000 } \end{aligned}$	$\begin{gathered} \text { UNT to } \\ \text { Kinderhook } \\ \text { Creek } \\ \hline \end{gathered}$	$42^{\circ} 32^{\prime} 19.264^{\prime \prime} \mathrm{N}$	$73^{\circ} 19^{\prime} 38.283{ }^{\prime \prime} \mathrm{W}$	Hancock	I	I	B/CFR	July 1 to Sept 30	II		10	853
Wright to Dracut Pipeline Segment	Berkshire	Hancock	G	1.80	SPI-371	UNT to Kinderhook Creek	$42^{\circ} 32^{\prime} 9.523^{\prime \prime} \mathrm{N}$	$73^{\circ} 18^{\prime} 25.843^{\prime \prime} \mathrm{W}$	Hancock	I	I	B/HQ/CFR	July 1 to Sept 30	II		16	1,120
Wright to Dracut Pipeline Segment	Berkshire	Hancock	G	1.90	SPI-372	$\begin{gathered} \text { UNT to } \\ \text { Kinderhook } \\ \text { Creek } \\ \hline \end{gathered}$	$42^{\circ} 32^{\prime} 8.182^{\prime \prime} \mathrm{N}$	73 ${ }^{\circ} 18^{\prime} 19.307{ }^{\prime \prime} \mathrm{W}$	Hancock	P	MA	B/HQ/CFR	July 1 to Sept 30	II		148	5,820
Wright to Dracut Pipeline Segment	Berkshire	Hancock	G	2.10	SPI-373	UNT to Kinderhook Creek	$42^{\circ} 32^{\prime} 5.309 " \mathrm{~N}$	$73^{\circ} 18^{\prime} 5.296 " \mathrm{~W}$	Hancock	I	I	B/HQ/CFR	July 1 to Sept 30	II		61	7,942
Wright to Dracut Pipeline Segment	Berkshire	Hancock	G	2.19	SPI-373	$\begin{gathered} \text { UNT to } \\ \text { Kinderhook } \\ \text { Creek } \\ \hline \end{gathered}$	$42^{\circ} 32^{\prime} 4.079^{\prime \prime} \mathrm{N}$	$73^{\circ} 17^{\prime} 59.303^{\prime \prime} \mathrm{W}$	Hancock	I	I	B/CFR	July 1 to Sept 30	II		97	6,139
Wright to Dracut Pipeline Segment	Berkshire	Hancock	G	2.24	SPI-373	$\begin{gathered} \hline \text { UNT to } \\ \text { Kinderhook } \\ \text { Creek } \end{gathered}$	$42^{\circ} 32^{\prime} 3.420^{\prime \prime} \mathrm{N}$	$73^{\circ} 17^{\prime} 56.090{ }^{\prime \prime} \mathrm{W}$	Hancock	I	I	B/CFR	July 1 to Sept 30	II		20	2,767
Wright to Dracut Pipeline Segment	Berkshire	Hancock	G	2.26	SPI-373	UNT to Kinderhook Creek	$42^{\circ} 32^{\prime} 3.077^{\prime \prime} \mathrm{N}$	$73^{\circ} 17^{\prime} 54.418^{\prime \prime} \mathrm{W}$	Hancock	I	I	B/CFR	July 1 to Sept 30	II		64	1,535
Wright to Dracut Pipeline Segment	Berkshire	Hancock	G	2.29	SPI-373	UNT to Kinderhook Creek	$42^{\circ} 32^{\prime} 2.686^{\prime \prime} \mathrm{N}$	$73^{\circ} 17^{\prime} 52.513^{\prime \prime} \mathrm{W}$	Hancock	I	MI	B/CFR	July 1 to Sept 30	II		2	495
Wright to Dracut Pipeline Segment	Berkshire	Lanesborough	G	2.90	SPI-374	UNT to Hollow Brook	$42^{\circ} 31^{\prime} 51.4600^{\prime \prime} \mathrm{N}$	$73^{\circ} 17^{\prime} 12.566^{\prime \prime} \mathrm{W}$	Hancock	I	I	B/HQ/CFR	July 1 to Sept 30	II		14	2,259
Wright to Dracut Pipeline Segment	Berkshire	Lanesborough	G	3.25	SPI-375	UNT to Hollow Brook	$42^{\circ} 31^{\prime} 43.746^{\prime \prime} \mathrm{N}$	$73^{\circ} 16^{\prime} 50.421^{\prime \prime} \mathrm{W}$	Hancock	I	I	B/CFR	July 1 to Sept 30	II	Karst Area	34	4,155
Wright to Dracut Pipeline Segment	Berkshire	Lanesborough	G	3.63	SPI-376	Hollow Brook	$42^{\circ} 31^{\prime} 40.034{ }^{\prime \prime} \mathrm{N}$	$73^{\circ} 16^{\prime} 24.874^{\prime \prime} \mathrm{W}$	Hancock	P	I	B/HQ/CFR	July 1 to Sept 30	II	Karst Area	10	750

Table 1.1-1

Facility Name	County	Town	Segment ${ }^{1}$	NearestMilepost 2	Waterbody$\mathbf{I D}^{\mathbf{3}}$	Waterbody Name ${ }^{4}$	Latitude	Longitude	Quadrangle	Type ${ }^{5}$	FERC Class ${ }^{6}$	Water Quality Designation / Fishery Classification	$\begin{gathered} \text { Timing } \\ \text { Restriction } \end{gathered}$	Crossing Method ${ }^{9,10}$	Comments	Crossing Length ${ }^{11}$	
																(feet)	$\begin{aligned} & \text { (square } \\ & \text { feet) } \end{aligned}$
Wright to Dracut Pipeline Segment	Berkshire	Lanesborough	G	4.35	SPI-378	UNT to Secum Brook	$42^{\circ} 31^{\prime} 38.874{ }^{\prime \prime} \mathrm{N}$	$73^{\circ} 15^{\prime} 34.683{ }^{\prime \prime} \mathrm{W}$	Hancock	I	I	B/HQ/CFR	July 1 to Sept 30	II	Karst Area	37	3,326
Wright to Dracut Pipeline Segment	Berkshire	Lanesborough	G	5.75	SPI-379	UNT to Town Brook	$42^{\circ} 31^{\prime} 30.014^{\prime \prime} \mathrm{N}$	$73^{\circ} 13^{\prime} 59.021^{\prime \prime} \mathrm{W}$	Cheshire	P	I	B/CFR	July 1 to Sept 30	II	Karst Area	23	1,730
Wright to Dracut Pipeline Segment	Berkshire	Lanesborough	G	5.81	SPI-380	Town Brook	42 ${ }^{\circ} 31^{\prime} 29.521{ }^{\prime \prime} \mathrm{N}$	$73^{\circ} 13^{\prime} 54.428^{\prime \prime} \mathrm{W}$	Cheshire	P	I	B/HQ/CFR	$\begin{aligned} & \hline \text { July } 1 \text { to } \\ & \text { Sept } 30 \\ & \hline \end{aligned}$	II	Karst Area	18	2,767
Wright to Dracut Pipeline Segment	Berkshire	Cheshire	G	7.56	NWI-1780	Cheshire Reservoir	42 ${ }^{\circ} 31{ }^{\prime} 11.052^{\prime \prime} \mathrm{N}$	$73^{\circ} 11^{\prime} 56.442^{\prime \prime} \mathrm{W}$	Cheshire	R	MI	B/CFR	$\begin{aligned} & \text { July } 1 \text { to } \\ & \text { Sept } 30 \\ & \hline \end{aligned}$	N/A		0	40,708
Wright to Dracut Pipeline Segment	Berkshire	Cheshire	G	7.56	SPI-382	Cheshire Reservoir	42 ${ }^{\circ} 31^{\prime} 11.772^{\prime \prime} \mathrm{N}$	73 $11^{\prime} 56.411^{\prime \prime} \mathrm{W}$	Cheshire	R	MA	B/CFR	$\begin{aligned} & \text { July } 1 \text { to } \\ & \text { Sept } 30 \\ & \hline \end{aligned}$	II	Karst Area	767	115,987
Wright to Dracut Pipeline Segment	Berkshire	Cheshire	G	8.80	SPI-383	UNT to Cheshire Reservoir	$42^{\circ} 31{ }^{\prime} 4.036{ }^{\prime \prime} \mathrm{N}$	$73^{\circ} 10^{\prime} 30.710^{\prime \prime} \mathrm{W}$	Cheshire	I	MI	B	July 1 to Sept 30	II		9	2,040
Wright to Dracut Pipeline Segment	Berkshire	Dalton	G	9.99	SPI-384	UNT to Anthony Brook	$42^{\circ} 30^{\prime} 44.733^{\prime \prime} \mathrm{N}$	$73^{\circ} 9^{\prime} 11.214^{\prime \prime} \mathrm{W}$	Cheshire	I	I	B/CFR	July 1 to Sept 30	II		22	3,243
Wright to Dracut Pipeline Segment	Berkshire	Dalton	G	11.01	SPI-385	UNT to Wahconah Falls Brook	$42^{\circ} 30 ' 6.007{ }^{\prime \prime} \mathrm{N}$	$73^{\circ} 8^{\prime} 21.954 " \mathrm{~W}$	Cheshire	I	MI	A/HQ/CFR	July 1 to Sept 30	II		5	1,116
Wright to Dracut Pipeline Segment	Berkshire	Dalton	G	11.20	SPI-386	UNT to Wahconah Falls Brook	$42^{\circ} 29^{\prime} 58.724{ }^{\prime \prime} \mathrm{N}$	$73^{\circ} 8^{\prime} 12.693{ }^{\prime \prime}$ W	Pittsfield East	I	I	A/CFR	July 1 to Sept 30	II		14	1,543
Wright to Dracut Pipeline Segment	Berkshire	Dalton	G	11.33	SPI-387	UNT to Wahconah Falls Brook	$42^{\circ} 29^{\prime} 53.828^{\prime \prime} \mathrm{N}$	$73^{\circ} 8^{\prime} 6.4688^{\prime \prime} \mathrm{W}$	Pittsfield East	I	I	A/CFR	July 1 to Sept 30	II		12	1,627
Wright to Dracut Pipeline Segment	Berkshire	Dalton	G	11.76	SPI-388	UNT to Wahconah Falls Brook	$42^{\circ} 29^{\prime} 37.798{ }^{\prime \prime} \mathrm{N}$	$73^{\circ} 7{ }^{\prime} 46.101{ }^{\prime \prime} \mathrm{W}$	Pittsfield East	I	MI	B/CFR	July 1 to Sept 30	N/A		0	459
Wright to Dracut Pipeline Segment	Berkshire	Dalton	G	11.77	SPI-388	UNT to Wahconah Falls Brook	$42^{\circ} 29^{\prime} 37.133{ }^{\prime \prime} \mathrm{N}$	$73^{\circ} 7{ }^{\prime} 45.884^{\prime \prime} \mathrm{W}$	Pittsfield East	I	MI	B/CFR	July 1 to Sept 30	N/A		0	260
Wright to Dracut Pipeline Segment	Berkshire	Dalton	G	11.84	SPI-389	UNT to Wahconah Falls Brook	$42^{\circ} 29^{\prime} 34.679{ }^{\prime \prime} \mathrm{N}$	$73^{\circ} 7142.123^{\prime \prime} \mathrm{W}$	Pittsfield East	I	I	B/CFR	July 1 to Sept 30	II		12	1,245
Wright to Dracut Pipeline Segment	Berkshire	Dalton	G	12.30	SPI-390	Wahconah Falls Brook	$42^{\circ} 29^{\prime} 16.940{ }^{\prime \prime} \mathrm{N}$	$73^{\circ} 719.575{ }^{\prime \prime} \mathrm{W}$	Peru	I	I	B/CFR	$\begin{aligned} & \hline \text { July } 1 \text { to } \\ & \text { Sept } 30 \\ & \hline \end{aligned}$	II		14	1,406
Wright to Dracut Pipeline Segment	Berkshire	Dalton	G	12.32	SPI-390	Wahconah Falls Brook	$42^{\circ} 29^{\prime} 16.455^{\prime \prime} \mathrm{N}$	730 $7^{\prime} 18.959{ }^{\prime \prime} \mathrm{W}$	Peru	I	MI	B/CFR	$\begin{aligned} & \text { July } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	II		7	825
Wright to Dracut Pipeline Segment	Berkshire	Dalton	G	12.35	SPI-391	Wahconah Falls Brook	42º 29' 15.169" N	$73^{\circ} 717.325 " \mathrm{~W}$	Peru	P	I	B/HQ/CFR	$\begin{aligned} & \text { July } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	II		84	8,810

Table 1.1-1

Facility Name	County	Town	Segment ${ }^{1}$	NearestMilepost 2	$\underset{\text { ID }^{3}}{\text { Waterbody }}$	$\begin{aligned} & \text { Waterbody } \\ & \text { Name }^{4} \end{aligned}$	Latitude	Longitude	Quadrangle	Type ${ }^{5}$	FERC Class ${ }^{6}$	Water Quality Designation / Fishery Classification ${ }^{7}$	TimingRestriction	Crossing Method ${ }^{9,10}$	Comments	Crossing Length ${ }^{11}$	
																(feet)	$\begin{gathered} \text { (square } \\ \text { feet) } \end{gathered}$
Wright to Dracut Pipeline Segment	Berkshire	Dalton	G	12.46	SPI-392	UNT to Wahconah Falls Brook	$42^{\circ} 29^{\prime} 10.979{ }^{\prime \prime} \mathrm{N}$	$73^{\circ} 712.641^{\prime \prime} \mathrm{W}$	Peru	I	MI	B/CFR	July 1 to Sept 30	N/A		0	625
Wright to Dracut Pipeline Segment	Berkshire	Hinsdale	G	13.35	SPI-393	UNT to Cleveland Brook	$42^{\circ} 28^{\prime} 30.223{ }^{\prime \prime} \mathrm{N}$	$73^{\circ} 6^{\prime} 49.427$ " W	Peru	I	I	B/CFR	July 1 to Sept 30	II		16	1,275
Wright to Dracut Pipeline Segment	Berkshire	Hinsdale	G	13.55	HN-M- S001	UNT to Cleveland Brook	$42^{\circ} 28^{\prime} 24.492^{\prime \prime} \mathrm{N}$	$73^{\circ} 6^{\prime} 37.149{ }^{\prime \prime} \mathrm{W}$	Peru	P	I	B/CFR	July 1 to Sept 30	II		10	948
Wright to Dracut Pipeline Segment	Berkshire	Hinsdale	G	13.60	$\begin{gathered} \text { HN-M- } \\ \text { S002 } \end{gathered}$	UNT to Cleveland Brook	$42^{\circ} 28^{\prime} 23.487{ }^{\prime \prime} \mathrm{N}$	$73^{\circ} 6^{\prime} 33.786{ }^{\prime \prime} \mathrm{W}$	Peru	P	MI	B/CFR	July 1 to Sept 30	N/A		0	1,304
Wright to Dracut Pipeline Segment	Berkshire	Hinsdale	G	14.67	$\begin{gathered} \text { HN-M- } \\ \text { S003 } \end{gathered}$	UNT to Cady Brook	$42^{\circ} 28^{\prime} 10.099{ }^{\prime \prime} \mathrm{N}$	$73^{\circ} 5^{\prime} 27.422^{\prime \prime} \mathrm{W}$	Peru	E	MI	A/CFR	July 1 to Sept 30	N/A		0	174
Wright to Dracut Pipeline Segment	Berkshire	Hinsdale	G	14.99	$\begin{gathered} \hline \text { HN-M- } \\ \text { S004 } \end{gathered}$	Cady Brook	$42^{\circ} 28^{\prime} 13.386{ }^{\prime \prime} \mathrm{N}$	730 5' 5.470" W	Peru	P	I	A/HQ/CFR	$\begin{aligned} & \hline \text { July } 1 \text { to } \\ & \text { Sept } 30 \\ & \hline \end{aligned}$	II		23	1,639
Wright to Dracut Pipeline Segment	Berkshire	Hinsdale	G	14.99	$\begin{aligned} & \text { HN-M- } \\ & \text { S004A } \end{aligned}$	Cady Brook	$42^{\circ} 28^{\prime} 13.458^{\prime \prime} \mathrm{N}$	73 ${ }^{\text {5 }}$ ' 5.173" W	Peru	I	I	A/CFR	$\begin{aligned} & \hline \text { July } 1 \text { to } \\ & \text { Sept } 30 \\ & \hline \end{aligned}$	II		26	755
Wright to Dracut Pipeline Segment	Berkshire	Hinsdale	G	15.44	$\begin{aligned} & \text { HN-N- } \\ & \text { So01 } \end{aligned}$	UNT to Cady Brook	$42^{\circ} 28^{\prime} 20.708^{\prime \prime} \mathrm{N}$	$73^{\circ} 4^{\prime} 35.281{ }^{\prime \prime} \mathrm{W}$	Peru	P	I	A/CFR	July 1 to Sept 30	II		26	1,730
Wright to Dracut Pipeline Segment	Berkshire	Hinsdale	G	15.58	$\begin{gathered} \text { HN-N- } \\ \text { S002 } \end{gathered}$	UNT to Cady Brook	$42^{\circ} 28^{\prime} 23.069{ }^{\prime \prime} \mathrm{N}$	$73^{\circ} 4^{\prime} 25.542^{\prime \prime} \mathrm{W}$	Peru	I	I	B/CFR	July 1 to Sept 30	II		12	2,617
Wright to Dracut Pipeline Segment	Berkshire	Windsor	G	16.95	SPI-399	UNT to Westfield Brook	$42^{\circ} 28^{\prime} 45.200{ }^{\prime \prime} \mathrm{N}$	$73^{\circ} 2^{\prime} 54.215{ }^{\prime \prime} \mathrm{W}$	Peru	I	I	B/CFR	July 1 to Sept 30	II		32	2,340
Wright to Dracut Pipeline Segment	Berkshire	Windsor	G	17.75	WR-MS005	UNT to Westfield Brook	$42^{\circ} 28^{\prime} 56.065{ }^{\prime \prime} \mathrm{N}$	$73^{\circ} 1^{\prime} 59.902{ }^{\prime \prime} \mathrm{W}$	Peru	P	MI	B/CFR	July 1 to Sept 30	N/A		0	192
Wright to Dracut Pipeline Segment	Berkshire	Windsor	G	17.75	SPI-400	UNT to Westfield Brook	$42^{\circ} 28^{\prime} 58.213^{\prime \prime} \mathrm{N}$	$73^{\circ} 2^{\prime} 0.367^{\prime \prime} \mathrm{W}$	Peru	I	I	B/CFR	July 1 to Sept 30	II		16	1,170
Wright to Dracut Pipeline Segment	Berkshire	Windsor	G	18.25	SPI-402	UNT to Westfield Brook	$42^{\circ} 29^{\prime} 6.176{ }^{\prime \prime} \mathrm{N}$	$73^{\circ} 1{ }^{\prime} 27.395{ }^{\prime \prime} \mathrm{W}$	Peru	I	I	B/CFR	July 1 to Sept 30	II		14	1,570
Wright to Dracut Pipeline Segment	Berkshire	Windsor	G	18.42	SPI-404	Westfield Brook	$42^{\circ} 29^{\prime} 12.517^{\prime \prime} \mathrm{N}$	730 $1^{\prime} 20.966{ }^{\prime \prime} \mathrm{W}$	Peru	P	I	B/HQ/CFR	$\begin{aligned} & \text { July } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	II		27	3,150
Wright to Dracut Pipeline Segment	Berkshire	Windsor	G	18.75	WR-MS011	UNT to Westfield Brook	$42^{\circ} 29^{\prime} 29.656{ }^{\prime \prime} \mathrm{N}$	$73^{\circ} 1{ }^{\text {1 }} 18.402^{\prime \prime} \mathrm{W}$	Peru	P	I	B/CFR	July 1 to Sept 30	II		16	1,125

Table 1.1-1

Facility Name	County	Town	Segment ${ }^{1}$	NearestMilepost 2	Waterbody ID ${ }^{3}$	Waterbody Name ${ }^{4}$	Latitude	Longitude	Quadrangle	Type ${ }^{5}$	$\underset{\text { Class }}{ }{ }^{\text {F }}$	Water Quality Designation / Fishery Classification ${ }^{7}$	Timing Restriction ${ }^{8}$	Crossing Method ${ }^{9,10}$	Comments	Crossing Length ${ }^{11}$	
																(feet)	$\begin{gathered} \text { (square } \\ \text { feet) } \end{gathered}$
Wright to Dracut Pipeline Segment	Berkshire	Windsor	G	18.88	$\begin{gathered} \text { WR-M- } \\ \text { S009 } \end{gathered}$	UNT to Westfield Brook	$42^{\circ} 29^{\prime} 36.459{ }^{\prime \prime} \mathrm{N}$	$73^{\circ} 1{ }^{\prime} 17.384{ }^{\prime \prime} \mathrm{W}$	Peru	P	I	B/HQ/CFR	July 1 to Sept 30	II		19	1,791
Wright to Dracut Pipeline Segment	Berkshire	Windsor	G	18.88	SPI-408	UNT to Westfield Brook	$42^{\circ} 29^{\prime} 36.720^{\prime \prime} \mathrm{N}$	$73^{\circ} 1{ }^{\prime} 17.653{ }^{\prime \prime} \mathrm{W}$	Peru	I	MI	B/HQ/CFR	July 1 to Sept 30	N/A		0	7
Wright to Dracut Pipeline Segment	Berkshire	Windsor	G	19.10	$\begin{gathered} \text { WR-M- } \\ \text { S016 } \end{gathered}$	UNT to Westfield Brook	$42^{\circ} 29^{\prime} 43.411{ }^{\prime \prime} \mathrm{N}$	$73^{\circ} 1^{\prime} 8.182 " \mathrm{~W}$	Peru	P	I	B/CFR	July 1 to Sept 30	II		15	1,325
Wright to Dracut Pipeline Segment	Berkshire	Windsor	G	19.15	$\begin{aligned} & \text { WR-M- } \\ & \text { S018 } \end{aligned}$	UNT to Westfield Brook	$42^{\circ} 29^{\prime} 44.318^{\prime \prime} \mathrm{N}$	$73^{\circ} 1^{\prime} 4.710^{\prime \prime} \mathrm{W}$	Peru	I	I	B/CFR	July 1 to Sept 30	II		29	1,740
Wright to Dracut Pipeline Segment	Berkshire	Windsor	G	19.18	$\begin{gathered} \text { WR-M-S- } \\ 19 \end{gathered}$	UNT to Westfield Brook	$42^{\circ} 29^{\prime} 44.836 " \mathrm{~N}$	$73^{\circ} 1^{\prime} 2.520 " \mathrm{~W}$	Peru	Unkn own	I	B/CFR	July 1 to Sept 30	II		22	2,038
Wright to Dracut Pipeline Segment	Berkshire	Windsor	G	19.20	$\begin{aligned} & \text { WR-M- } \\ & \text { S017B } \end{aligned}$	UNT to Westfield Brook	$42^{\circ} 29^{\prime} 45.108{ }^{\prime \prime} \mathrm{N}$	$73^{\circ} 1^{\prime} 1.039 " \mathrm{~W}$	Peru	P	I	B/CFR	July 1 to Sept 30	II		14	1,950
Wright to Dracut Pipeline Segment	Berkshire	Windsor	G	19.21	$\begin{aligned} & \text { WR-M- } \\ & \text { S017C } \end{aligned}$	UNT to Westfield Brook	$42^{\circ} 29^{\prime} 45.765{ }^{\prime \prime} \mathrm{N}$	$73^{\circ} 1^{\prime} 1.068{ }^{\prime \prime} \mathrm{W}$	Peru	I	MI	B/CFR	July 1 to Sept 30	N/A		0	3
Wright to Dracut Pipeline Segment	Berkshire	Windsor	G	19.22	$\begin{aligned} & \text { WR-M- } \\ & \text { S017 } \end{aligned}$	UNT to Westfield Brook	$42^{\circ} 29^{\prime} 45.2633^{\prime \prime} \mathrm{N}$	$73^{\circ} 1^{\prime} 0.194{ }^{\prime \prime} \mathrm{W}$	Peru	P	I	B/CFR	July 1 to Sept 30	II		12	880
Wright to Dracut Pipeline Segment	Berkshire	Windsor	G	19.65	SPI-411	UNT to Westfield Brook	$42^{\circ} 29^{\prime} 53.031{ }^{\prime \prime} \mathrm{N}$	$73^{\circ} 0{ }^{\prime} 33.152{ }^{\prime \prime} \mathrm{W}$	Peru	I	I	B/HQ/CFR	July 1 to Sept 30	II		50	5,470
Wright to Dracut Pipeline Segment	Berkshire	Windsor	G	20.63	$\begin{gathered} \text { WR-M- } \\ \text { S015 } \end{gathered}$	UNT to Westfield River	$42^{\circ} 30^{\prime} 9.116^{\prime \prime} \mathrm{N}$	$72^{\circ} 59^{\prime} 27.857^{\prime \prime} \mathrm{W}$	Plainfield	I	MI	B/CFR	July 1 to Sept 30	N/A		0	1,425
Wright to Dracut Pipeline Segment	Berkshire	Windsor	G	20.79	SPI-413	Westfield River	$42^{\circ} 30^{\prime} 12.322^{\prime \prime} \mathrm{N}$	72 ${ }^{\circ} 59^{\prime} 17.574^{\prime \prime} \mathrm{W}$	Plainfield	P	I	B/HQ/CFR	$\begin{aligned} & \text { July } 1 \text { to } \\ & \text { Sept } 30 \\ & \hline \end{aligned}$	II		82	5,987
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	21.58	SPI-414	UNT to Westfield River	$42^{\circ} 30^{\prime} 26.099{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 58^{\prime} 24.831^{\prime \prime} \mathrm{W}$	Plainfield	I	MI	B/CFR	July 1 to Sept 30	II		7	1,050
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	21.60	SPI-415	UNT to Westfield River	$42^{\circ} 30^{\prime} 26.492^{\prime \prime} \mathrm{N}$	$72^{\circ} 58^{\prime} 23.328^{\prime \prime} \mathrm{W}$	Plainfield	P	I	B/HQ/CFR	July 1 to Sept 30	II		11	1,355
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	21.64	SPI-415	UNT to Westfield River	$42^{\circ} 30^{\prime} 27.058^{\prime \prime} \mathrm{N}$	$72^{\circ} 58^{\prime} 21.159{ }^{\prime \prime} \mathrm{W}$	Plainfield	P	I	B/HQ/CFR	July 1 to Sept 30	II		25	1,405
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	22.46	SPI-422	Bartlett Brook	$42^{\circ} 30^{\prime} 41.413{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 57^{\prime}$ 26.106" W	Plainfield	I	I	B/CFR	$\begin{aligned} & \hline \text { July } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	II		14	1,696

Table 1.1-1

Facility Name	County	Town	Segment ${ }^{1}$	Nearest Milepost ${ }^{2}$	$\begin{aligned} & \text { Waterbody } \\ & \text { ID }^{3} \end{aligned}$	WaterbodyName 4	Latitude	Longitude	Quadrangle	Type ${ }^{5}$	FERC	Water Quality Designation / Fishery Classification ${ }^{7}$	Timing Restriction ${ }^{8}$	Crossing Method ${ }^{9,10}$	Comments	Crossing Length ${ }^{11}$	
																(feet)	$\begin{gathered} \text { (square } \\ \text { feet) } \end{gathered}$
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	22.79	SPI-423	UNT to Bartlett Brook	$42^{\circ} 30^{\prime} 47.0000^{\prime \prime}$	$72^{\circ} 57{ }^{\prime} 4.657{ }^{\prime \prime} \mathrm{W}$	Plainfield	I	I	B/HQ/CFR	July 1 to Sept 30	II		16	1,556
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	22.82	SPI-424	UNT to Barlett Brook	$42^{\circ} 30^{\prime} 47.561{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 57^{\prime} 2.500^{\prime \prime} \mathrm{W}$	Plainfield	I	I	B/CFR	July 1 to Sept 30	II		17	1,653
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	24.06	SPI-427	Mill Brook	42³ 31' 8.994" N	720 55' 40.154" W	Plainfield	P	I	B/HQ/CFR	$\begin{aligned} & \hline \text { July } 1 \text { to } \\ & \text { Sept } 30 \\ & \hline \end{aligned}$	II		94	7,100
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	24.32	SPI-428	UNT to Mill Brook	$42^{\circ} 31^{\prime} 13.515{ }^{\prime \prime} \mathrm{N}$	72 ${ }^{\circ} 55^{\prime} 22.775{ }^{\prime \prime} \mathrm{W}$	Plainfield	I	I	B/CFR	$\begin{aligned} & \text { July } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	II		10	1,690
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	25.26	PL-E-S003	UNT to Meadow Brook	$42^{\circ} 31^{\prime} 26.322^{\prime \prime} \mathrm{N}$	$72^{\circ} 54^{\prime} 29.907^{\prime \prime} \mathrm{W}$	Plainfield	I	MI	B/CFR	July 1 to Sept 30	II		8	468
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	25.49	PL-E-S002	UNT to Meadow Brook	$42^{\circ} 31^{\prime} 27.337{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 54^{\prime} 14.063{ }^{\prime \prime} \mathrm{W}$	Plainfield	P	I	B/CFR	July 1 to Sept 30	II		20	1,835
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	25.58	$\begin{aligned} & \text { PL-E- } \\ & \text { S001A } \end{aligned}$	UNT to Meadow Brook	$42^{\circ} 31{ }^{\prime} 28.121^{\prime \prime} \mathrm{N}$	$72^{\circ} 54{ }^{\prime} 8.361{ }^{\prime \prime} \mathrm{W}$	Plainfield	I	I	B/CFR	July 1 to Sept 30	II		12	1,320
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	25.97	SPI-430	North Branch Swift River	$42^{\circ} 31{ }^{\prime} 31.849{ }^{\prime \prime} \mathrm{N}$	72 ${ }^{\circ} 53^{\prime} 41.237{ }^{\prime \prime} \mathrm{W}$	Plainfield	I	I	B/CFR	July 1 to Sept 30	II		10	1,100
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	26.24	SPI-431	UNT to North Branch Swift River	$42^{\circ} 31^{\prime} 34.483{ }^{\prime \prime} \mathrm{N}$	72 ${ }^{\circ} 53^{\prime} 22.067{ }^{\prime \prime} \mathrm{W}$	Plainfield	P	MI	B/CFR	July 1 to Sept 30	II		8	685
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	26.81	PL-M-S003	UNT to North Branch Swift River	$42^{\circ} 31^{\prime} 39.485{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 52^{\prime} 42.764^{\prime \prime} \mathrm{W}$	Plainfield	I	MI	B/CFR	July 1 to Sept 30	N/A		0	353
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	26.93	PL-M-S004	$\begin{gathered} \text { UNT to } \\ \text { North } \\ \text { Branch } \\ \text { Swift River } \end{gathered}$	$42^{\circ} 31{ }^{\prime} 41.595{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 52^{\prime} 34.768^{\prime \prime} \mathrm{W}$	Plainfield	I	MI	B/CFR	July 1 to Sept 30	N/A		0	1,769
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	27.09	$\begin{gathered} \text { AS-M- } \\ \text { S001 } \end{gathered}$	Billings Brook	$42^{\circ} 31^{\prime} 42.590^{\prime \prime} \mathrm{N}$	72 $52^{\prime} 23.024$ " W	Ashfield	P	I	B/HQ/CFR	$\begin{aligned} & \hline \text { July } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	II		51	3,295
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	27.20	$\begin{gathered} \text { AS-M- } \\ \text { S002 } \\ \hline \end{gathered}$	Swift River	$42^{\circ} 31{ }^{\prime} 43.122^{\prime \prime} \mathrm{N}$	72 $52^{\prime} 15.485{ }^{\prime \prime} \mathrm{W}$	Ashfield	P	MI	B/HQ/CFR	$\begin{aligned} & \text { July } 1 \text { to } \\ & \text { Sept } 30 \\ & \hline \end{aligned}$	N/A		0	1,075
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	27.20	SPI-435	Swift River	$42^{\circ} 31{ }^{\prime} 43.632^{\prime \prime} \mathrm{N}$	72 ${ }^{\circ} 52^{\prime} 15.427{ }^{\prime \prime} \mathrm{W}$	Ashfield	P	I	B/HQ/CFR	$\begin{gathered} \hline \text { July } 1 \text { to } \\ \text { Sept } 30 \\ \hline \end{gathered}$	II		17	755
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	27.43	SPI-436	$\begin{gathered} \hline \text { UNT to } \\ \text { Swift River } \end{gathered}$	$42^{\circ} 31{ }^{\prime} 43.799^{\prime \prime} \mathrm{N}$	720 51' 59.563" W	Ashfield	I	MI	B/CFR	$\begin{aligned} & \text { July } 1 \text { to } \\ & \text { Sept } 30 \\ & \hline \end{aligned}$	N/A		0	121
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	27.48	$\begin{gathered} \text { AS-M- } \\ \text { S003 } \end{gathered}$	UNT to Swift River	$42^{\circ} 31{ }^{\prime} 46.262^{\prime \prime} \mathrm{N}$	72 ${ }^{\circ} 51^{\prime} 56.250{ }^{\prime \prime} \mathrm{W}$	Ashfield	P	MI	B/CFR	July 1 to Sept 30	II		9	1,920

Table 1.1-1

			Segr	Nearest	Waterbody	Waterbody	Latitude	Longitude	Quadrangle	Type ${ }^{5}$	FERC	Water Quality Designation /	Timing	Crossing	Comments		$\begin{aligned} & \text { sssing } \\ & \text { igth }^{11} \end{aligned}$
Facility Name	County	Town	Segment	Milepost ${ }^{2}$			Latitude	Longitade	Quadrangle	Type		Fishery Classification ${ }^{7}$	Restriction ${ }^{8}$	Method ${ }^{\text {9, }}{ }^{\text {a }}$	Comments	(feet)	(square feet)
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	27.97	$\begin{gathered} \text { AS-M- } \\ \text { S004 } \\ \hline \end{gathered}$	Ford Brook	$42^{\circ} 31^{\prime} 50.9200^{\prime \prime}$	72 ${ }^{\circ} 51{ }^{\prime} 22.282$ ' W	Ashfield	NF	MA	B/HQ/CFR	$\begin{aligned} & \hline \text { July } 1 \text { to } \\ & \text { Sept } 30 \\ & \hline \end{aligned}$	II		419	31,713
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	28.99	$\begin{gathered} \text { AS-M- } \\ \text { S006 } \end{gathered}$	UNT to Swift River	$42^{\circ} 32^{\prime} 0.565{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 50{ }^{\prime} 11.893$ " W	Ashfield	I	MI	B/HQ/CFR	$\begin{aligned} & \text { July } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	II		5	375
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	29.06	SPI-437	UNT to Swift River	$42^{\circ} 32^{\prime} 0.784^{\prime \prime} \mathrm{N}$	$72^{\circ} 50^{\prime} 6.631{ }^{\prime \prime} \mathrm{W}$	Ashfield	I	MI	B/HQ/CFR	$\begin{aligned} & \text { July } 1 \text { to } \\ & \text { Sept } 30 \\ & \hline \end{aligned}$	N/A		0	108
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	29.06	$\begin{aligned} & \hline \text { AS-M- } \\ & \text { S007 } \end{aligned}$	UNT to Swift River	$42^{\circ} 32^{\prime} 1.275{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 50^{\prime} 6.717^{\prime \prime} \mathrm{W}$	Ashfield	P	MI	B/HQ/CFR	July 1 to Sept 30	II		5	285
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	29.17	$\begin{gathered} \text { AS-M- } \\ \text { S008 } \end{gathered}$	UNT to Swift River	$42^{\circ} 32^{\prime} 2.337^{\prime \prime} \mathrm{N}$	72 ${ }^{\circ} 49^{\prime} 58.967$ " W	Ashfield	I	MI	B/CFR	July 1 to Sept 30	II		9	468
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	29.50	$\begin{aligned} & \text { AS-M- } \\ & \text { S009A } \end{aligned}$	Smith Brook	$42^{\circ} 32^{\prime} 5.462{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 49^{\prime} 36.217^{\prime \prime} \mathrm{W}$	Ashfield	P	I	A/CFR	$\begin{aligned} & \hline \text { July } 1 \text { to } \\ & \text { Sept } 30 \\ & \hline \end{aligned}$	II		75	4,005
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	29.51	AS-MS009B	UNT to Smith Brook	$42^{\circ} 32^{\prime} 5.597{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 49^{\prime} 35.239^{\prime \prime} \mathrm{W}$	Ashfield	P	MI	A/CFR	July 1 to Sept 30	II		4	1,237
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	29.85	$\begin{gathered} \hline \text { AS-M- } \\ \text { S010 } \end{gathered}$	UNT to South River	42 ${ }^{\circ} 32^{\prime} 8.777{ }^{\prime \prime} \mathrm{N}$	72 ${ }^{\circ} 49^{\prime} 12.145^{\prime \prime} \mathrm{W}$	Ashfield	I	I	B/CFR	$\begin{aligned} & \text { July } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	II	Karst Area	21	2,855
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	30.03	SPI-438	South River	$42^{\circ} 32^{\prime} 10.187{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 48^{\prime} 59.339 " \mathrm{~W}$	Ashfield	I	MI	B/CFR	$\begin{aligned} & \hline \text { July } 1 \text { to } \\ & \text { Sept } 30 \\ & \hline \end{aligned}$	II	Karst Area	7	865
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	31.71	$\begin{gathered} \hline \text { AS-M- } \\ \text { S011 } \end{gathered}$	UNT to Bear River	42 ${ }^{\circ} 32^{\prime} 20.426 " \mathrm{~N}$	$72^{\circ} 47^{\prime} 1.706^{\prime \prime} \mathrm{W}$	Ashfield	P	MI	B/CFR	$\begin{aligned} & \hline \text { July } 1 \text { to } \\ & \text { Sept } 30 \\ & \hline \end{aligned}$	II	Karst Area	7	545
Wright to Dracut Pipeline Segment	Franklin	Ashfield	H	0.63	SPI-443	Bear River	$42^{\circ} 32^{\prime} 19.372{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 45^{\prime} 12.614^{\prime \prime} \mathrm{W}$	Ashfield	P	I	B/CFR	$\begin{aligned} & \text { July } 1 \text { to } \\ & \text { Sept } 30 \\ & \hline \end{aligned}$	II	Karst Area	25	1,721
Wright to Dracut Pipeline Segment	Franklin	Ashfield	H	0.87	SPI-445	UNT to Bear River	$42^{\circ} 32^{\prime} 25.027{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 44^{\prime} 59.486{ }^{\prime \prime} \mathrm{W}$	Shelburne Falls	I	MI	B/CFR	$\begin{aligned} & \text { July } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	N/A		0	3
Wright to Dracut Pipeline Segment	Franklin	Ashfield	H	0.91	SPI-445	UNT to Bear River	$42^{\circ} 32^{\prime} 25.400^{\prime \prime} \mathrm{N}$	$72^{\circ} 44^{\prime}$ 56.919" W	$\begin{aligned} & \text { Shelburne } \\ & \text { Falls } \end{aligned}$	I	MI	B/CFR	$\begin{aligned} & \text { July } 1 \text { to } \\ & \text { Sept } 30 \\ & \hline \end{aligned}$	N/A		0	203
Wright to Dracut Pipeline Segment	Franklin	Ashfield	H	0.96	SPI-446	UNT to Bear River	$42^{\circ} 32^{\prime} 25.517{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 44^{\prime} 53.367^{\prime \prime} \mathrm{W}$	$\begin{aligned} & \text { Shelburne } \\ & \text { Falls } \end{aligned}$	I	MI	B/CFR	$\begin{aligned} & \text { July } 1 \text { to } \\ & \text { Sept } 30 \\ & \hline \end{aligned}$	N/A		0	163
Wright to Dracut Pipeline Segment	Franklin	Conway	H	1.85	SPI-449	$\begin{aligned} & \text { UNT to } \\ & \text { Bear River } \end{aligned}$	42 ${ }^{\circ} 32^{\prime} 27.902^{\prime \prime} \mathrm{N}$	$72^{\circ} 43^{\prime} 50.486^{\prime \prime} \mathrm{W}$	$\begin{aligned} & \text { Shelburne } \\ & \text { Falls } \end{aligned}$	I	MI	B/CFR	$\begin{aligned} & \text { July } 1 \text { to } \\ & \text { Sept } 30 \\ & \hline \end{aligned}$	N/A	Karst Area	0	49
Wright to Dracut Pipeline Segment	Franklin	Conway	H	1.90	SPI-449	UNT to Bear River	$42^{\circ} 32^{\prime} 27.939{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 43^{\prime} 48.632^{\prime \prime} \mathrm{W}$	Shelburne Falls	I	MI	B/CFR	$\begin{aligned} & \text { July } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	N/A	Karst Area	0	65
Wright to Dracut Pipeline Segment	Franklin	Conway	H	1.97	SPI-450	UNT to Bear River	$42^{\circ} 32^{\prime} 27.960^{\prime \prime} \mathrm{N}$	$72^{\circ} 43^{\prime} 43.341^{\prime \prime} \mathrm{W}$	$\begin{aligned} & \text { Shelburne } \\ & \text { Falls } \end{aligned}$	I	MI	B/CFR	$\begin{aligned} & \text { July } 1 \text { to } \\ & \text { Sept } 30 \\ & \hline \end{aligned}$	N/A	Karst Area	0	229
Wright to Dracut Pipeline Segment	Franklin	Conway	H	1.98	SPI-451	UNT to Bear River	$42^{\circ} 32^{\prime} 28.066^{\prime \prime} \mathrm{N}$	$72^{\circ} 43^{\prime} 42.997^{\prime \prime} \mathrm{W}$	Shelburne Falls	I	MI	B/CFR	$\begin{aligned} & \text { July } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	N/A	Karst Area	0	120
Wright to Dracut Pipeline Segment	Franklin	Conway	H	2.05	SPI-452	Bear River	42 ${ }^{\circ} 32^{\prime} 27.344^{\prime \prime} \mathrm{N}$	72 ${ }^{\circ} 43^{\prime} 37.665{ }^{\prime \prime} \mathrm{W}$	Shelburne Falls	P	I	B/HQ/CFR	$\begin{aligned} & \hline \text { July } 1 \text { to } \\ & \text { Sept } 30 \\ & \hline \end{aligned}$	II	Karst Area	31	11,143
Wright to Dracut Pipeline Segment	Franklin	Conway	H	2.21	NHD-674	Pea Brook	$42^{\circ} 32^{\prime} 30.875{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 43^{\prime} 28.448^{\prime \prime} \mathrm{W}$	Shelburne Falls	P	I	B/CFR	July 1 to Sept 30	II	Karst Area	25	2,575
Wright to Dracut Pipeline Segment	Franklin	Conway	H	2.35	SPI-454	UNT to Pea Brook	$42^{\circ} 32^{\prime} 28.822^{\prime \prime} \mathrm{N}$	$72^{\circ} 43^{\prime} 17.960{ }^{\prime \prime} \mathrm{W}$	$\begin{aligned} & \text { Shelburne } \\ & \text { Falls } \end{aligned}$	I	MI	B/CFR	$\begin{aligned} & \hline \text { July } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	N/A	Karst Area	0	266

Table 1.1-1

Facility Name	County	Town	Segment ${ }^{1}$	Nearest Milepost ${ }^{2}$	Waterbody ID 3	WaterbodyName 4	Latitude	Longitude	Quadrangle	Type ${ }^{5}$	FERCClass	Water Quality Designation / Fishery Classification ${ }^{7}$	Timing Restriction ${ }^{8}$	$\begin{gathered} \text { Crossing } \\ \text { Method }^{9,10} \end{gathered}$	Comments	Crossing Length ${ }^{1}$	
																(feet)	(square feet)
Wright to Dracut Pipeline Segment	Franklin	Conway	H	2.46	SPI-455	UNT to Pea Brook	$42^{\circ} 32^{\prime} 29.266^{\prime \prime} \mathrm{N}$	72 ${ }^{\circ} 43^{\prime} 10.469{ }^{\prime \prime} \mathrm{W}$	$\begin{aligned} & \text { Shelburne } \\ & \text { Falls } \end{aligned}$	I	MI	B/CFR	$\begin{aligned} & \hline \text { July } 1 \text { to } \\ & \text { Sept } 30 \\ & \hline \end{aligned}$	N/A	Karst Area	0	161
Wright to Dracut Pipeline Segment	Franklin	Conway	H	2.48	SPI-457	UNT to Bear River	$42^{\circ} 32^{\prime} 29.646^{\prime \prime} \mathrm{N}$	$72^{\circ} 43^{\prime} 9.272{ }^{\prime \prime} \mathrm{W}$	Shelburne Falls	I	MI	B/CFR	$\begin{aligned} & \text { July } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	N/A	Karst Area	0	164
Wright to Dracut Pipeline Segment	Franklin	Conway	H	2.48	SPI-456	UNT to Bear River	$42^{\circ} 32^{\prime} 29.878{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 43^{\prime} 9.182{ }^{\prime \prime} \mathrm{W}$	$\begin{aligned} & \text { Shelburne } \\ & \text { Falls } \end{aligned}$	I	MI	B/CFR	$\begin{aligned} & \text { July } 1 \text { to } \\ & \text { Sept } 30 \\ & \hline \end{aligned}$	N/A	Karst Area	0	26
Wright to Dracut Pipeline Segment	Franklin	Conway	H	3.26	SPI-458	UNT to South River	$42^{\circ} 32^{\prime} 44.027^{\prime \prime} \mathrm{N}$	$72^{\circ} 42^{\prime} 17.439{ }^{\prime \prime} \mathrm{W}$	$\begin{aligned} & \text { Shelburne } \\ & \text { Falls } \end{aligned}$	I	I	B/CFR	$\begin{aligned} & \hline \text { July } 1 \text { to } \\ & \text { Sept } 30 \\ & \hline \end{aligned}$	II	Karst Area	10	620
Wright to Dracut Pipeline Segment	Franklin	Conway	H	3.93	SPI-459	UNT to South River	$42^{\circ} 32^{\prime} 57.5944^{\prime \prime}$	$72^{\circ} 41^{\prime} 33.715^{\prime \prime} \mathrm{W}$	Shelburne Falls	I	MI	B/CFR	$\begin{aligned} & \text { July } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	II	Karst Area	8	549
Wright to Dracut Pipeline Segment	Franklin	Conway	H	4.22	$\begin{aligned} & \text { CN-M- } \\ & \text { So005 } \end{aligned}$	UNT to Deerfield River	$42^{\circ} 33^{\prime} 0.122^{\prime \prime} \mathrm{N}$	$72^{\circ} 41^{\prime} 14.863{ }^{\prime \prime} \mathrm{W}$	Shelburne Falls	P	I	B/CFR	July 1 to Sept 30	II	Karst Area	11	1,089
Wright to Dracut Pipeline Segment	Franklin	Conway	H	4.24	SPI-460	UNT to Deerfield River	$42^{\circ} 33^{\prime} 1.694{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 41^{\prime} 14.617^{\prime \prime} \mathrm{W}$	Shelburne Falls	I	MI	B/CFR	July 1 to Sept 30	N/A	Karst Area	0	163
Wright to Dracut Pipeline Segment	Franklin	Conway	H	4.24	SPI-461	UNT to Deerfield River	$42^{\circ} 33^{\prime} 1.860{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 41^{\prime} 14.331{ }^{\prime \prime} \mathrm{W}$	Shelburne Falls	I	MI	B/CFR	July 1 to Sept 30	N/A	Karst Area	0	46
Wright to Dracut Pipeline Segment	Franklin	Conway	H	4.24	SPI-460	UNT to Deerfield River	$42^{\circ} 33^{\prime} 1.566{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 41^{\prime} 13.892^{\prime \prime} \mathrm{W}$	Shelburne Falls	I	MI	B/CFR	July 1 to Sept 30	N/A	Karst Area	0	107
Wright to Dracut Pipeline Segment	Franklin	Conway	H	4.40	SPI-464	UNT to Deerfield River	$42^{\circ} 33^{\prime} 4.728^{\prime \prime} \mathrm{N}$	$72^{\circ} 41^{\prime} 3.880{ }^{\prime \prime} \mathrm{W}$	Shelburne Falls	I	MI	B/CFR	July 1 to Sept 30	N/A	Karst Area	0	77
Wright to Dracut Pipeline Segment	Franklin	Conway	H	4.40	$\begin{gathered} \text { CN-M- } \\ \text { S004 } \end{gathered}$	UNT to Deerfield River	$42^{\circ} 33^{\prime} 3.710^{\prime \prime} \mathrm{N}$	$72^{\circ} 41^{\prime} 3.297^{\prime \prime} \mathrm{W}$	Shelburne Falls	P	MI	B/CFR	July 1 to Sept 30	II	Karst Area	5	532
Wright to Dracut Pipeline Segment	Franklin	Conway	H	4.55	$\begin{aligned} & \text { CN-M- } \\ & \text { S004 } \end{aligned}$	UNT to Deerfield River	$42^{\circ} 33^{\prime} 5.072^{\prime \prime} \mathrm{N}$	$72^{\circ} 40^{\prime} 52.885^{\prime \prime} \mathrm{W}$	Shelburne Falls	P	MI	B/CFR	July 1 to Sept 30	N/A	Karst Area	0	383
Wright to Dracut Pipeline Segment	Franklin	Conway	H	4.62	$\begin{aligned} & \text { CN-M- } \\ & \text { S003 } \end{aligned}$	UNT to Deerfield River	$42^{\circ} 33^{\prime} 8.242^{\prime \prime} \mathrm{N}$	$72^{\circ} 40^{\prime} 48.619^{\prime \prime} \mathrm{W}$	Shelburne Falls	I	MI	B/CFR	July 1 to Sept 30	IV	Karst Area	9	298
Wright to Dracut Pipeline Segment	Franklin	Shelburne	H	4.84	SPI-466	Deerfield River	$42^{\circ} 33^{\prime} 12.460^{\prime \prime} \mathrm{N}$	$72^{\circ} 40^{\prime} 34.709{ }^{\prime \prime} \mathrm{W}$	$\begin{aligned} & \text { Shelburne } \\ & \text { Falls } \end{aligned}$	P	MA	B/HQ/CFR	$\begin{aligned} & \text { July } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	IV	Karst Area	115	5,750
Wright to Dracut Pipeline Segment	Franklin	Shelburne	H	5.24	SPI-467	UNT to Deerfield River	$42^{\circ} 33^{\prime} 20.487{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 40^{\prime} 8.238^{\prime \prime} \mathrm{W}$	Shelburne Falls	I	I	B/CFR	July 1 to Sept 30	IV		24	1,215
Wright to Dracut Pipeline Segment	Franklin	Shelburne	H	5.41	SPI-468	UNT to Deerfield River	$42^{\circ} 33^{\prime} 23.6944^{\prime \prime}$	$72^{\circ} 39^{\prime} 57.660{ }^{\prime \prime} \mathrm{W}$	Shelburne Falls	I	I	B/CFR	July 1 to Sept 30	IV		67	3,603

Table 1.1-1

Facility Name	County	Town	Segment ${ }^{1}$	NearestMilepost ${ }^{2}$	Waterbody ID ${ }^{3}$	WaterbodyName 4	Latitude	Longitude	Quadrangle	Type ${ }^{5}$	FERC Class ${ }^{6}$	Water Quality Designation / Fishery Classification	Timing Restriction ${ }^{8}$	Crossing Method ${ }^{9,10}$	Comments	Crossing Length ${ }^{11}$	
																(feet)	$\begin{array}{\|c} \hline \text { (square } \\ \text { feet) } \end{array}$
Wright to Dracut Pipeline Segment	Franklin	Shelburne	H	5.67	SPI-469	UNT to Shingle Brook	$42^{\circ} 33^{\prime} 29.107^{\prime \prime} \mathrm{N}$	$72^{\circ} 39^{\prime} 40.671^{\prime \prime} \mathrm{W}$	Shelburne Falls	I	I	B/CFR	July 1 to Sept 30	II	Karst Area	65	4,470
Wright to Dracut Pipeline Segment	Franklin	Shelburne	H	5.85	SPI-471	UNT to Shingle Brook	$42^{\circ} 33^{\prime} 33.174^{\prime \prime} \mathrm{N}$	72 ${ }^{\circ} 39^{\prime} 29.227^{\prime \prime} \mathrm{W}$	Shelburne Falls	I	I	B/CFR	July 1 to Sept 30	II	Karst Area	27	3,850
Wright to Dracut Pipeline Segment	Franklin	Shelburne	H	5.89	SPI-472	Shingle Brook	$42^{\circ} 33^{\prime} 34.208{ }^{\prime \prime} \mathrm{N}$	72 ${ }^{\circ} 39^{\prime} 26.316^{\prime \prime} \mathrm{W}$	$\begin{aligned} & \text { Shelburne } \\ & \text { Falls } \end{aligned}$	I	I	B/CFR	$\begin{aligned} & \hline \text { July } 1 \text { to } \\ & \text { Sept } 30 \\ & \hline \end{aligned}$	II	Karst Area	59	5,245
Wright to Dracut Pipeline Segment	Franklin	Deerfield	H	6.20	SPI-473	UNT to Shingle Brook	$42^{\circ} 33^{\prime} 41.203 " \mathrm{~N}$	$72^{\circ} 39^{\prime} 6.642^{\prime \prime} \mathrm{W}$	Shelburne Falls	I	I	B/CFR	July 1 to Sept 30	II	Karst Area	49	5,717
Wright to Dracut Pipeline Segment	Franklin	Deerfield	H	6.97	SPI-474	UNT to Deerfield River	$42^{\circ} 34^{\prime} 0.127^{\prime \prime} \mathrm{N}$	$72^{\circ} 38^{\prime} 19.075{ }^{\prime \prime} \mathrm{W}$	Shelburne Falls	I	MI	B/CFR	July 1 to Sept 30	N/A		0	485
Wright to Dracut Pipeline Segment	Franklin	Deerfield	H	6.99	SPI-474	UNT to Deerfield River	$42^{\circ} 33^{\prime} 59.459{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 38^{\prime} 17.000{ }^{\prime \prime} \mathrm{W}$	Shelburne Falls	I	MI	B/CFR	July 1 to Sept 30	N/A		0	366
Wright to Dracut Pipeline Segment	Franklin	Deerfield	H	8.03	SPI-476	UNT to Deerfield River	$42^{\circ} 33^{\prime} 55.183{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 37^{\prime} 8.138{ }^{\prime \prime} \mathrm{W}$	Greenfield	P	I	B/CFR	July 1 to Sept 30	IV		20	878
Wright to Dracut Pipeline Segment	Franklin	Deerfield	H	8.33	SPI-477	Deerfield River	$42^{\circ} 33{ }^{\prime} 47.870$ " N	$72^{\circ} 36^{\prime} 49.322^{\prime \prime} \mathrm{W}$	Greenfield	P	MA	B/HQ/CFR	July 1 to Sept 30	IV		159	7,798
Wright to Dracut Pipeline Segment	Franklin	Deerfield	H	8.37	SPI-477	Deerfield River	$42^{\circ} 33^{\prime} 46.929 " \mathrm{~N}$	$72^{\circ} 36^{\prime} 46.901{ }^{\prime \prime} \mathrm{W}$	Greenfield	P	MA	B/HQ/CFR	July 1 to Sept 30	IV		137	7,009
Wright to Dracut Pipeline Segment	Franklin	Deerfield	H	9.23	SPI-479	UNT to Deerfield River	$42^{\circ} 33^{\prime} 27.841^{\prime \prime} \mathrm{N}$	$72^{\circ} 35^{\prime} 53.150{ }^{\prime \prime} \mathrm{W}$	Greenfield	I	I	B/CFR	July 1 to Sept 30	II		14	889
Wright to Dracut Pipeline Segment	Franklin	Deerfield	H	9.52	SPI-480	UNT to Deerfield River	$42^{\circ} 33^{\prime} 28.1800^{\prime \prime}$	$72^{\circ} 35^{\prime} 33.422^{\prime \prime} \mathrm{W}$	Greenfield	I	MI	B/CFR	July 1 to Sept 30	II		8	1,085
Wright to Dracut Pipeline Segment	Franklin	Deerfield	H	9.92	SPI-481	UNT to Deerfield River	$42^{\circ} 33^{\prime} 34.921{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 35^{\prime} 6.920$ " W	Greenfield	I	MI	B/CFR	July 1 to Sept 30	II		8	496
Wright to Dracut Pipeline Segment	Franklin	Deerfield	H	10.25	SPI-482	UNT to Deerfield River	$42^{\circ} 33^{\prime} 37.633^{\prime \prime} \mathrm{N}$	$72^{\circ} 34^{\prime} 44.029^{\prime \prime} \mathrm{W}$	Greenfield	I	MI	B/CFR	July 1 to Sept 30	II		5	576
Wright to Dracut Pipeline Segment	Franklin	Deerfield	H	10.64	SPI-483	UNT to Connecticut River	$42^{\circ} 33^{\prime} 37.103^{\prime \prime} \mathrm{N}$	$72^{\circ} 34^{\prime} 16.505^{\prime \prime} \mathrm{W}$	Greenfield	I	MI	B	July 1 to Sept 30	II		6	608
Wright to Dracut Pipeline Segment	Franklin	Deerfield	H	10.66	SPI-483	UNT to Connecticut River	$42^{\circ} 33^{\prime} 37.040^{\prime \prime} \mathrm{N}$	$72^{\circ} 34^{\prime} 15.533^{\prime \prime} \mathrm{W}$	Greenfield	I	MI	B	July 1 to Sept 30	II		7	442

Table 1.1-1

Waterbodies Associated With the Project in Massachusetts

				Nearest	Waterbody	Waterbody					FERC	Water Quality Designation /	Timing	Crossing			${ }_{\substack{\text { sssing }}}$
Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		Name ${ }^{4}$	Latitude	Longitude	Quadrangle	Type ${ }^{\text {s }}$	Class ${ }^{6}$	Fishery Classification ${ }^{7}$	Restriction ${ }^{8}$	Method ${ }^{\text {9, }} 10$	Comments	(feet)	(square
Wright to Dracut Pipeline Segment	Franklin	Deerfield	H	11.28	SPI-484	UNT to Connecticut River	$42^{\circ} 33^{\prime} 45.479{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 33^{\prime} 33.764^{\prime \prime} \mathrm{W}$	Greenfield	I	MI	B	July 1 to Sept 30	IV		4	251
Wright to Dracut Pipeline Segment	Franklin	Deerfield	H	11.40	SPI-485	Connecticut River	$42^{\circ} 33^{\prime} 47.812{ }^{\prime \prime} \mathrm{N}$	72 ${ }^{\circ} 33^{\prime} 25.987^{\prime \prime} \mathrm{W}$	Greenfield	P	MA	B	$\begin{aligned} & \hline \text { July } 1 \text { to } \\ & \text { Sept } 30 \\ & \hline \end{aligned}$	IV		231	11,650
Wright to Dracut Pipeline Segment	Franklin	Montague	H	11.44	SPI-485	Connecticut River	42 ${ }^{\circ} 33^{\prime} 48.6699^{\prime \prime}$	72 ${ }^{\circ} 33^{\prime}$ 23.129" W	Greenfield	P	MA	B	July 1 to Sept 30	IV		349	18,550
Wright to Dracut Pipeline Segment	Franklin	Montague	H	11.58	SPI-486	UNT to Connecticut River	$42^{\circ} 33^{\prime} 51.2499^{\prime N}$	$72^{\circ} 33^{\prime} 14.527^{\prime \prime} \mathrm{W}$	Greenfield	I	MI	B	July 1 to Sept 30	IV		6	335
Wright to Dracut Pipeline Segment	Franklin	Montague	H	11.65	SPI-487	UNT to Connecticut River	$42^{\circ} 33^{\prime} 52.760^{\prime \prime} \mathrm{N}$	$72^{\circ} 33^{\prime} 9.488^{\prime \prime} \mathrm{W}$	Greenfield	I	MI	B	July 1 to Sept 30	IV		3	220
Wright to Dracut Pipeline Segment	Franklin	Montague	H	12.86	SPI-488	UNT to Connecticut River	$42^{\circ} 34^{\prime} 19.966^{\prime \prime} \mathrm{N}$	$72^{\circ} 31{ }^{\prime} 54.304{ }^{\prime \prime} \mathrm{W}$	Greenfield	I	MI	B	July 1 to Sept 30	II		4	451
Wright to Dracut Pipeline Segment	Franklin	Montague	H	13.01	SPI-489	UNT to Connecticut River	$42^{\circ} 34^{\prime} 24.287{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 31{ }^{\prime} 44.691{ }^{\prime \prime} \mathrm{W}$	Greenfield	I	MI	B	July 1 to Sept 30	II		4	413
Wright to Dracut Pipeline Segment	Franklin	Montague	H	15.35	SPI-491	UNT to Millers River	$42^{\circ} 34^{\prime} 17.492{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 29^{\prime} 30.514^{\prime \prime} \mathrm{W}$	Millers Falls	I	MI	B	July 1 to Sept 30	II		9	765
Wright to Dracut Pipeline Segment	Franklin	Montague	H	15.39	SPI-492	UNT to Millers River	$42^{\circ} 34^{\prime} 17.365^{\prime \prime} \mathrm{N}$	72 ${ }^{\circ} 29^{\prime}$ 26.918" W	Millers Falls	I	MI	B	July 1 to Sept 30	N/A		0	32
Wright to Dracut Pipeline Segment	Franklin	Montague	H	15.40	SPI-493	UNT to Millers River	$42^{\circ} 34^{\prime} 17.792^{\prime \prime} \mathrm{N}$	72 ${ }^{\circ} 29^{\prime}$ 26.344" W	Millers Falls	I	MI	B	July 1 to Sept 30	N/A		0	35
Wright to Dracut Pipeline Segment	Franklin	Montague	H	15.64	SPI-494	UNT to Millers River	$42^{\circ} 34^{\prime} 26.883 " \mathrm{~N}$	72 ${ }^{\circ} 29^{\prime} 14.311^{\prime \prime} \mathrm{W}$	Millers Falls	I	MI	B	July 1 to Sept 30	N/A		0	193
Wright to Dracut Pipeline Segment	Franklin	Montague	H	15.73	SPI-495	UNT to Millers River	$42^{\circ} 34^{\prime} 31.409{ }^{\prime \prime} \mathrm{N}$	72 ${ }^{\circ} 29^{\prime} 11.808{ }^{\prime \prime} \mathrm{W}$	Millers Falls	I	I	B	July 1 to Sept 30	IV		13	485
Wright to Dracut Pipeline Segment	Franklin	Montague	H	15.74	$\begin{aligned} & \text { MO-M- } \\ & \text { S002 } \end{aligned}$	UNT to Millers River	$42^{\circ} 34^{\prime} 31.7499^{\prime \prime}$	72 ${ }^{\circ} 29^{\prime} 11.691{ }^{\prime \prime} \mathrm{W}$	Millers Falls	I	MI	B	July 1 to Sept 30	N/A		0	422
Wright to Dracut Pipeline Segment	Franklin	Montague	H	15.76	$\begin{aligned} & \text { MO-M- } \\ & \text { S002A } \end{aligned}$	UNT to Millers River	$42^{\circ} 34^{\prime} 32.347{ }^{\prime \prime} \mathrm{N}$	72 ${ }^{\circ} 29^{\prime} 10.546^{\prime \prime} \mathrm{W}$	Millers Falls	E	MI	B	July 1 to Sept 30	IV		6	270
Wright to Dracut Pipeline Segment	Franklin	Montague	H	16.08	$\begin{aligned} & \text { ER-M- } \\ & \text { S001 } \end{aligned}$	Millers River	$42^{\circ} 34^{\prime} 44.521 " \mathrm{~N}$	$72^{\circ} 28^{\prime} 54.179^{\prime \prime} \mathrm{W}$	Millers Falls	P	I	B	$\begin{aligned} & \hline \text { July } 1 \text { to } \\ & \text { Sept } 30 \\ & \hline \end{aligned}$	IV		84	4,250
Wright to Dracut Pipeline Segment	Franklin	Erving	H	16.10	ER-M- S001	Millers River	$42^{\circ} 34^{\prime} 45.108^{\prime \prime} \mathrm{N}$	$72^{\circ} 28^{\prime} 53.390{ }^{\prime \prime} \mathrm{W}$	Millers Falls	P	I	B	July 1 to Sept 30	IV		80	3,967

Table 1.1-1

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$	ID ${ }^{3}$	Name ${ }^{4}$	Latitude	Longitude	Quadrangle	Type ${ }^{5}$	Class ${ }^{6}$	Fishery Classification ${ }^{7}$	Restriction ${ }^{8}$	Method ${ }^{\text {9, } 10}$	Comments	(feet)	$\begin{gathered} \text { (square } \\ \text { feet) } \end{gathered}$
Wright to Dracut Pipeline Segment	Franklin	Erving	H	16.44	$\begin{aligned} & \text { ER-M- } \\ & \text { S002 } \end{aligned}$	UNT to Millers River	$42^{\circ} 34^{\prime} 57.640^{\prime \prime} \mathrm{N}$	$72^{\circ} 28^{\prime} 36.539^{\prime \prime} \mathrm{W}$	Millers Falls	I	I	B	July 1 to Sept 30	II		10	487
Wright to Dracut Pipeline Segment	Franklin	Erving	H	16.44	$\begin{aligned} & \text { ER-M- } \\ & \text { S002 } \end{aligned}$	UNT to Millers River	$42^{\circ} 34^{\prime} 57.857{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 28^{\prime} 36.248^{\prime \prime} \mathrm{W}$	Millers Falls	I	I	B	July 1 to Sept 30	II		13	1,814
Wright to Dracut Pipeline Segment	Franklin	Northfield	H	19.52	SPI-498	UNT to Fourmile Brook	$42^{\circ} 37^{\prime} 7.658{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 27^{\prime} 49.245{ }^{\prime \prime} \mathrm{W}$	Millers Falls	I	MI	B/CFR	July 1 to Sept 30	N/A		0	140
Wright to Dracut Pipeline Segment	Franklin	Erving	H	19.74	SPI-500	UNT to Fourmile Brook	$42^{\circ} 37^{\prime} 10.996{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 27^{\prime} 34.6511^{\prime \prime} \mathrm{W}$	Millers Falls	I	MI	B/CFR	July 1 to Sept 30	N/A		0	28
Wright to Dracut Pipeline Segment	Franklin	Erving	H	20.08	SPI-501	UNT to Fourmile Brook	42 ${ }^{\circ} 37{ }^{\prime} 19.152^{\prime \prime} \mathrm{N}$	72 ${ }^{\circ} 27^{\prime} 13.407{ }^{\prime \prime} \mathrm{W}$	Millers Falls	I	MI	B/CFR	July 1 to Sept 30	N/A		0	200
Wright to Dracut Pipeline Segment	Franklin	Northfield	H	20.30	SPI-502	UNT to Fourmile Brook	42 ${ }^{\circ} 37^{\prime} 25.629^{\prime \prime} \mathrm{N}$	$72^{\circ} 27^{\prime} 1.368^{\prime \prime} \mathrm{W}$	Millers Falls	I	MI	B/CFR	July 1 to Sept 30	N/A		0	480
Wright to Dracut Pipeline Segment	Franklin	Northfield	H	20.31	SPI-502	UNT to Fourmile Brook	$42^{\circ} 37^{\prime} 26.240^{\prime \prime} \mathrm{N}$	$72^{\circ} 27^{\prime} 0.712^{\prime \prime} \mathrm{W}$	Millers Falls	I	MI	B/CFR	July 1 to Sept 30	N/A		0	687
Wright to Dracut Pipeline Segment	Franklin	Northfield	H	20.62	SPI-503	UNT to Fourmile Brook	$42^{\circ} 37^{\prime} 35.601{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 26^{\prime} 42.527^{\prime \prime} \mathrm{W}$	Northfield	I	I	B/CFR	July 1 to Sept 30	II		15	669
Wright to Dracut Pipeline Segment	Franklin	Northfield	H	21.33	SPI-504	Fourmile Brook	$42^{\circ} 37^{\prime} 59.539^{\prime \prime} \mathrm{N}$	$72^{\circ} 26^{\prime} 7.789$ " W	Northfield	I	I	B/CFR	$\begin{aligned} & \hline \text { July } 1 \text { to } \\ & \text { Sept } 30 \\ & \hline \end{aligned}$	II		23	2,674
Wright to Dracut Pipeline Segment	Franklin	Northfield	H	21.48	SPI-505	UNT to Fourmile Brook	$42^{\circ} 38^{\prime} 6.865{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 26^{\prime} 7.830 " \mathrm{~W}$	Northfield	I	MI	B/CFR	July 1 to Sept 30	N/A		0	288
Wright to Dracut Pipeline Segment	Franklin	Northfield	H	22.28	SPI-507	UNT to Fourmile Brook	$42^{\circ} 38^{\prime} 48.542^{\prime \prime} \mathrm{N}$	$72^{\circ} 26^{\prime} 0.517^{\prime \prime} \mathrm{W}$	Northfield	P	I	B	July 1 to Sept 30	II		24	2,468
Wright to Dracut Pipeline Segment	Franklin	Northfield	H	22.39	SPI-508	UNT to Fourmile Brook	$42^{\circ} 38^{\prime} 54.128^{\prime \prime} \mathrm{N}$	72 ${ }^{\circ} 25^{\prime}$ 59.457" W	Northfield	I	I	B	July 1 to Sept 30	II		26	1,716
Wright to Dracut Pipeline Segment	Franklin	Northfield	H	22.58	SPI-509	UNT to Fourmile Brook	$42^{\circ} 39^{\prime} 1.659{ }^{\prime \prime} \mathrm{N}$	72 ${ }^{\circ} 25^{\prime} 53.783{ }^{\prime \prime} \mathrm{W}$	Northfield	I	I	B	$\begin{aligned} & \text { July } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	II		14	2,407
Wright to Dracut Pipeline Segment	Franklin	Northfield	H	23.77	NO-L-S002	UNT to Millers Brook	42 ${ }^{\circ} 39^{\prime} 54.091 " \mathrm{~N}$	$72^{\circ} 25^{\prime} 8.869 " \mathrm{~W}$	Northfield	I	I	B	July 1 to Sept 30	II		11	650
Wright to Dracut Pipeline Segment	Franklin	Northfield	H	23.87	$\begin{aligned} & \text { NO-G- } \\ & \text { S002 } \end{aligned}$	UNT to Millers Brook	42 ${ }^{\circ} 39^{\prime} 58.499^{\prime \prime} \mathrm{N}$	$72^{\circ} 25^{\prime} 5.264 " \mathrm{~W}$	Northfield	I	MI	B	July 1 to Sept 30	N/A		0	162

Table 1.1-1

Facility Name	County	Town	Segment	Milepost ${ }^{2}$		Name ${ }^{4}$	Latitude	Longitude	Quadrangle	Type		Fishery Classification ${ }^{7}$	Restriction ${ }^{8}$	Method ${ }^{\text {, } 10}$	Comments	(feet)	$\begin{aligned} & \text { (square } \\ & \text { feet) } \end{aligned}$
Wright to Dracut Pipeline Segment	Franklin	Northfield	H	25.02	SPI-510	UNT to Millers Brook	$42^{\circ} 40^{\prime} 48.521 " \mathrm{~N}$	$72^{\circ} 24^{\prime} 23.365{ }^{\prime \prime} \mathrm{W}$	Northfield	I	MI	B/CFR	July 1 to Sept 30	N/A		0	462
Wright to Dracut Pipeline Segment	Franklin	Northfield	H	26.00	SPI-511	UNT to Mill Brook	$42^{\circ} 41^{\prime} 35.982^{\prime \prime} \mathrm{N}$	72² $24^{\prime} 10.969{ }^{\prime \prime} \mathrm{W}$	Northfield	P	MI	B/CFR	$\begin{aligned} & \hline \text { July } 1 \text { to } \\ & \text { Sept } 30 \\ & \hline \end{aligned}$	II		9	1,622
Wright to Dracut Pipeline Segment	Franklin	Warwick	H	28.27	NHD-679	Lovers Retreat Brook	$42^{\circ} 43^{\prime} 19.433^{\prime \prime} \mathrm{N}$	$72^{\circ} 23^{\prime} 51.580{ }^{\prime \prime} \mathrm{W}$	Northfield	P	I	B/CFR	July 1 to Sept 30	II		15	1,545
Wright to Dracut Pipeline Segment	Middlesex	Dracut	K	1.68	DR-E-S006	UNT to Trout Brook	$42^{\circ} 41^{\prime} 11.680^{\prime \prime} \mathrm{N}$	$71^{\circ} 15^{\prime} 56.036{ }^{\prime \prime} \mathrm{W}$	Lowell	P	MI	B	July 1 to Sept 30	N/A		0	830
Wright to Dracut Pipeline Segment	Middlesex	Dracut	K	1.69	$\begin{aligned} & \text { DR-E- } \\ & \text { S006A } \end{aligned}$	UNT to Trout Brook	$42^{\circ} 41^{\prime} 11.386{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 15^{\prime} 55.837{ }^{\prime \prime} \mathrm{W}$	Lowell	P	MI	B	July 1 to Sept 30	N/A		0	94
Lynnfield Lateral	Middlesex	Dracut	N	0.26	NHD-706	UNT to Trout Brook	$42^{\circ} 40^{\prime} 28.274^{\prime \prime} \mathrm{N}$	$71^{\circ} 15^{\prime} 14.924^{\prime \prime} \mathrm{W}$	Lowell	P	I	B	July 1 to Sept 30	II		15	1,380
Lynnfield Lateral	Middlesex	Dracut	N	0.78	SPI-670	Nickel Mine Brook	$42^{\circ} 40^{\prime} 4.668{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 15^{\prime} 0.780^{\prime \prime} \mathrm{W}$	Lowell	I	I	B	July 1 to Sept 30	II		21	1,813
Lynnfield Lateral	Middlesex	Dracut	N	0.81	SPI-670	Nickel Mine Brook	$42^{\circ} 40^{\prime} 3.595 " \mathrm{~N}$	$71^{\circ} 14^{\prime} 59.604^{\prime \prime} \mathrm{W}$	Lawrence	I	I	B	July 1 to Sept 30	II		34	2,500
Lynnfield Lateral	Middlesex	Dracut	N	0.83	SPI-670	Nickel Mine Brook	$42^{\circ} 40^{\prime} 2.615^{\prime \prime} \mathrm{N}$	$71^{\circ} 14^{\prime} 58.530^{\prime \prime} \mathrm{W}$	Lawrence	I	I	B	July 1 to Sept 30	II		45	3,485
Lynnfield Lateral	Middlesex	Dracut	N	1.28	SPI-671	Merrimack River	$42^{\circ} 39^{\prime} 44.752^{\prime \prime} \mathrm{N}$	$71^{\circ} 14^{\prime} 38.918^{\prime \prime} \mathrm{W}$	Lawrence	P	MA	B	July 1 to Sept 30	IV		295	14,900
Lynnfield Lateral	Essex	Andover	N	1.33	SPI-671	$\begin{aligned} & \text { Merrimack } \\ & \text { River } \end{aligned}$	$42^{\circ} 39^{\prime} 42.457{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 14^{\prime} 36.4888^{\prime \prime} \mathrm{W}$	Lawrence	P	MA	B	July 1 to Sept 30	IV		130	6,440
Lynnfield Lateral	Essex	Andover	N	1.83	SPI-672	$\begin{gathered} \text { UNT to } \\ \text { Merrimack } \\ \text { River } \\ \hline \end{gathered}$	$42^{\circ} 39^{\prime} 19.040^{\prime \prime} \mathrm{N}$	$71^{\circ} 14^{\prime} 22.531{ }^{\prime \prime} \mathrm{W}$	Lawrence	I	MI	B	July 1 to Sept 30	II		7	329
Lynnfield Lateral	Essex	Andover	N	1.84	SPI-672	UNT to Merrimack River	$42^{\circ} 39^{\prime} 18.639{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 14^{\prime} 22.475{ }^{\prime \prime} \mathrm{W}$	Lawrence	I	MI	B	July 1 to Sept 30	II		5	508
Lynnfield Lateral	Essex	Andover	N	2.32	SPI-673	UNT to Meadow Brook	$42^{\circ} 38^{\prime} 55.045^{\prime \prime} \mathrm{N}$	$71^{\circ} 14^{\prime} 16.600^{\prime \prime} \mathrm{W}$	Lawrence	I	I	B	July 1 to Sept 30	II		23	1,177
Lynnfield Lateral	Essex	Andover	N	2.33	SPI-673	UNT to Meadow Brook	$42^{\circ} 38^{\prime} 54.439{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 14^{\prime} 16.516^{\prime \prime} \mathrm{W}$	Lawrence	I	I	B	July 1 to Sept 30	II		25	707

Table 1.1-1

Facility Name			Segment ${ }^{1}$	Nearest	Waterbody	Waterbody	Latitude	Longitude	Quadrangle		FERC	Water Quality Designation /	Timing	Crossing	Comments		$\begin{aligned} & \text { sssing } \\ & \text { igth }^{11} \end{aligned}$
Facility Name	County	Town	Segment	Milepost ${ }^{2}$			Latiud	Longitade	Quadrange	Type		Fishery Classification ${ }^{7}$	Restriction ${ }^{8}$	Method ${ }^{\text {9, }}{ }^{\text {a }}$	Comments	(feet)	(square feet)
Lynnfield Lateral	Middlesex	Tewksbury	N	2.34	SPI-673	UNT to Meadow Brook	$42^{\circ} 38^{\prime} 54.194^{\prime \prime} \mathrm{N}$	$71^{\circ} 14^{\prime} 16.482^{\prime \prime} \mathrm{W}$	Lawrence	I	I	B	July 1 to Sept 30	II		10	1,297
Lynnfield Lateral	Middlesex	Tewksbury	N	2.34	SPI-673	UNT to Meadow Brook	$42^{\circ} 38^{\prime} 53.9311^{\prime \prime} \mathrm{N}$	$71^{\circ} 14^{\prime} 16.274^{\prime \prime} \mathrm{W}$	Lawrence	I	I	B	July 1 to Sept 30	II		16	1,087
Lynnfield Lateral	Essex	Andover	N	2.91	$\begin{aligned} & \text { AN-K- } \\ & \text { S001A } \\ & \hline \end{aligned}$	UNT to Ames Pond	$42^{\circ} 38^{\prime} 42.538^{\prime \prime} \mathrm{N}$	$71^{\circ} 13^{\prime} 41.096{ }^{\prime \prime} \mathrm{W}$	Lawrence	E	I	B	July 1 to Sept 30	II		11	552
Lynnfield Lateral	Essex	Andover	N	3.17	SPI-676	UNT to Ames Pond	$42^{\circ} 38^{\prime} 32.413^{\prime \prime} \mathrm{N}$	71 ${ }^{\circ} 13^{\prime}$ 29.975" W	Lawrence	I	I	B	$\begin{aligned} & \hline \text { July } 1 \text { to } \\ & \text { Sept } 30 \\ & \hline \end{aligned}$	II		17	1,246
Lynnfield Lateral	Essex	Andover	N	3.28	TK-K-S001	UNT to Ames Pond	$42^{\circ} 38^{\prime} 29.121^{\prime \prime} \mathrm{N}$	$71^{\circ} 13^{\prime} 23.829^{\prime \prime} \mathrm{W}$	Lawrence	E	MI	B	$\begin{aligned} & \hline \text { July } 1 \text { to } \\ & \text { Sept } 30 \\ & \hline \end{aligned}$	N/A		0	153
Lynnfield Lateral	Middlesex	Tewksbury	N	4.39	TK-K-S002	UNT to Meadow Brook	$42^{\circ} 37^{\prime} 58.617{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 12^{\prime} 21.244^{\prime \prime} \mathrm{W}$	Lawrence	P	I	B	July 1 to Sept 30	II		13	642
Lynnfield Lateral	Middlesex	Tewksbury	N	4.40	SPI-677	UNT to Meadow Brook	$42^{\circ} 37^{\prime} 58.691{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 12^{\prime} 21.105^{\prime \prime} \mathrm{W}$	Lawrence	I	MI	B	July 1 to Sept 30	N/A		0	647
Lynnfield Lateral	Middlesex	Tewksbury	N	4.80	SPI-678	UNT to Meadow Brook	$42^{\circ} 37^{\prime} 45.577{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 12^{\prime} 0.521^{\prime \prime} \mathrm{W}$	Lawrence	P	I	B	July 1 to Sept 30	II		19	2,009
Lynnfield Lateral	Middlesex	Tewksbury	N	4.84	SPI-678	UNT to Meadow Brook	$42^{\circ} 37^{\prime} 44.4855^{\prime \prime}$	$71^{\circ} 11^{\prime} 58.143^{\prime \prime} \mathrm{W}$	Lawrence	P	I	B	July 1 to Sept 30	II		21	3,749
Lynnfield Lateral	Middlesex	Tewksbury	N	4.85	SPI-679	UNT to Meadow Brook	$42^{\circ} 37^{\prime} 44.257{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 11^{\prime} 57.645^{\prime \prime} \mathrm{W}$	Lawrence	P	I	B	July 1 to Sept 30	II		85	1,868
Lynnfield Lateral	Essex	Andover	N	5.90	$\begin{aligned} & \text { AN-K- } \\ & \text { S003 } \end{aligned}$	UNT to Shawsheen River	$42^{\circ} 37^{\prime} 19.123^{\prime \prime} \mathrm{N}$	$71^{\circ} 10{ }^{\prime} 56.083 \prime \mathrm{~W}$	Wilmington	P	I	B	July 1 to Sept 30	II		11	1,845
Lynnfield Lateral	Middlesex	Tewksbury	N	6.34	TK-KS004A	UNT to Shawsheen River	$42^{\circ} 37^{\prime} 3.073 \prime \mathrm{~N}$	$71^{\circ} 10{ }^{\prime} 37.970^{\prime \prime} \mathrm{W}$	Wilmington	P	I	B	July 1 to Sept 30	II		13	1,027
Lynnfield Lateral	Middlesex	Tewksbury	N	6.35	TK-KS004A		$42^{\circ} 37^{\prime} 2.990{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 10{ }^{\prime} 37.687^{\prime \prime} \mathrm{W}$	Wilmington	P	MI	B	July 1 to Sept 30	II		9	286
Lynnfield Lateral	Middlesex	Tewksbury	N	6.35	TK-KS004A	UNT to Shawsheen River	$42^{\circ} 37^{\prime} 2.899{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 10{ }^{\prime} 37.373^{\prime \prime} \mathrm{W}$	Wilmington	P	I	B	July 1 to Sept 30	II		14	526
Lynnfield Lateral	Middlesex	Tewksbury	N	6.63	SPI-682	Shawsheen River	$42^{\circ} 36{ }^{\prime} 53.799{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 10{ }^{\prime} 27.332^{\prime \prime} \mathrm{W}$	Wilmington	P	I	B	July 1 to Sept 30	IV		26	1,737
Lynnfield Lateral	Middlesex	Tewksbury	N	6.63	TK-K-S005	Shawsheen River	$42^{\circ} 36^{\prime} 53.5944^{\prime \prime}$	$71^{\circ} 10^{\prime}$ 27.611" W	Wilmington	P	MI	B	$\begin{aligned} & \hline \text { July } 1 \text { to } \\ & \text { Sept } 30 \\ & \hline \end{aligned}$	N/A		0	19

Table 1.1-1

Waterbodies Associated With the Project in Massachusetts

Facility Name	County	Town	Segment ${ }^{1}$	NearestMilepost 2	$\underset{\mathbf{I D}^{3}}{\text { Waderedy }}$	Waterbody Name ${ }^{4}$	Latitude	Longitude	Quadrangle	Type ${ }^{5}$	FERCClass	Water Quality Designation / Fishery Classification ${ }^{7}$	Timing Restriction ${ }^{8}$	Crossing Method ${ }^{9,10}$	Comments	Crossing Length ${ }^{11}$	
																(feet)	$\begin{gathered} \text { (square } \\ \text { feet) } \end{gathered}$
Lynnfield Lateral	Essex	Andover	N	6.63	SPI-682	Shawsheen River	$42^{\circ} 36^{\prime} 53.551{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 10^{\prime} 27.259{ }^{\prime \prime} \mathrm{W}$	Wilmington	P	I	B	$\begin{aligned} & \text { July } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	IV		35	2,133
Lynnfield Lateral	Essex	Andover	N	6.80	AN-P-S001	UNT to Shawsheen River	$42^{\circ} 36^{\prime} 44.937{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 10^{\prime} 23.841^{\prime \prime} \mathrm{W}$	Wilmington	P	MI	B	July 1 to Sept 30	N/A		0	561
Lynnfield Lateral	Essex	Andover	N	7.74	$\begin{aligned} & \text { AN-K- } \\ & \text { S004 } \end{aligned}$	UNT to Shawsheen River	$42^{\circ} 36^{\prime} 0.800{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 10^{\prime} 2.258^{\prime \prime} \mathrm{W}$	Wilmington	P	I	B	July 1 to Sept 30	II		10	714
Lynnfield Lateral	Middlesex	Wilmington	N	8.02	$\begin{aligned} & \text { AN-G- } \\ & \text { S003 } \end{aligned}$	UNT to Shawsheen River	$42^{\circ} 35{ }^{\prime} 51.836{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 9{ }^{\prime} 46.805^{\prime \prime} \mathrm{W}$	Wilmington	P	MI	B	July 1 to Sept 30	N/A		0	398
Lynnfield Lateral	Middlesex	Wilmington	N	8.10	$\begin{aligned} & \text { WL-K- } \\ & \text { So01 } \end{aligned}$	UNT to Shawsheen River	$42^{\circ} 35^{\prime} 48.246{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 9{ }^{\prime} 43.689^{\prime \prime} \mathrm{W}$	Wilmington	I	MI	B	July 1 to Sept 30	N/A		0	371
Lynnfield Lateral	Middlesex	Wilmington	N	8.77	WL-P-S002	UNT to Martins Brook	$42^{\circ} 35^{\prime} 25.424^{\prime \prime} \mathrm{N}$	$71^{\circ} 9{ }^{\prime} 11.125^{\prime \prime} \mathrm{W}$	Wilmington	E	MA	B	July 1 to Sept 30	II		338	25,845
Lynnfield Lateral	Middlesex	Wilmington	N	8.86	SPI-683	UNT to Martins Brook	$42^{\circ} 35^{\prime} 23.814^{\prime \prime} \mathrm{N}$	$71^{\circ} 9^{\prime} 5.075{ }^{\prime \prime} \mathrm{W}$	Wilmington	I	I	B	July 1 to Sept 30	II		14	1,260
Lynnfield Lateral	Middlesex	Wilmington	N	9.67	SPI-684	Martins Brook	42³ $35^{\prime} 9.807{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 8^{\prime} 13.774^{\prime \prime} \mathrm{W}$	Wilmington	P	I	B	July 1 to Sept 30	II		54	3,995
Lynnfield Lateral	Middlesex	North Reading	N	10.35	SPI-685	Martins Brook	$42^{\circ} 34^{\prime} 42.305^{\prime \prime} \mathrm{N}$	$71^{\circ} 7^{\prime} 42.903{ }^{\prime \prime} \mathrm{W}$	Wilmington	P	MA	B	July 1 to Sept 30	II		138	10,582
Lynnfield Lateral	Middlesex	North Reading	N	10.87	SPI-686	UNT to Martins Brook	$42^{\circ} 34^{\prime} 27.626{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 7^{\prime} 12.724^{\prime \prime} \mathrm{W}$	Reading	I	MI	B	July 1 to Sept 30	II		7	520
Lynnfield Lateral	Middlesex	North Reading	N	11.91	SPI-687	Ipswich River	$42^{\circ} 34^{\prime} 4.012{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 6^{\prime} 10.167^{\prime \prime} \mathrm{W}$	Reading	P	I	B/HQ	$\begin{gathered} \hline \text { July } 1 \text { to } \\ \text { Sept } 30 \\ \hline \end{gathered}$	II		27	1,833
Lynnfield Lateral	Middlesex	North Reading	N	12.70	SPI-688	UNT to Bear Meadow Brook	$42^{\circ} 33^{\prime} 40.782{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 5^{\prime} 27.148^{\prime \prime} \mathrm{W}$	Reading	I	I	B	July 1 to Sept 30	II		24	1,701
Lynnfield Lateral	Middlesex	North Reading	N	12.83	SPI-688	UNT to Bear Meadow Brook	$42^{\circ} 33^{\prime} 40.005^{\prime \prime} \mathrm{N}$	$71^{\circ} 5^{\prime} 17.707^{\prime \prime} \mathrm{W}$	Reading	I	I	B/HQ	July 1 to Sept 30	II		60	3,802
Peabody Lateral	Essex	Lynnfield	O	0.87	SPI-689	UNT to Ipswich River	42 ${ }^{\circ} 33^{\prime} 43.463{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 3^{\prime} 39.781^{\prime \prime} \mathrm{W}$	Reading	P	I	B	July 1 to Sept 30	II		15	2,437
Peabody Lateral	Essex	Lynnfield	O	0.91	SPI-689	UNT to Ipswich River	$42^{\circ} 33^{\prime} 45.385{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 3^{\prime} 39.535^{\prime \prime} \mathrm{W}$	Reading	P	MI	B	July 1 to Sept 30	II		8	879

Table 1.1-1

			Segment ${ }^{1}$	Nearest	Waterbody	Waterbody						Water Quality Designation /	Timing	Crossing			ssing
Facility Name	County	Town	Segment	Milepost ${ }^{2}$			Latitude	Longitude	Quadrangle	Type	Class ${ }^{6}$	Fishery Classification ${ }^{7}$	Restriction ${ }^{8}$	Method ${ }^{\text {9,10 }}$	Comments	(feet)	$\begin{aligned} & \text { (square } \\ & \text { feet) } \end{aligned}$
Peabody Lateral	Essex	Peabody	O	3.04	SPI-699	Ipswich River	$42^{\circ} 34^{\prime} 9.630{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 1^{\prime} 31.410^{\prime \prime} \mathrm{W}$	Reading	P	MI	B	$\begin{aligned} & \hline \text { July } 1 \text { to } \\ & \text { Sept } 30 \\ & \hline \end{aligned}$	N/A		0	2,975
Peabody Lateral	Essex	Peabody	O	3.34	SPI-699	Ipswich River	$42^{\circ} 34^{\prime} 5.223 " \mathrm{~N}$	$71^{\circ} 1^{\prime} 11.147^{\prime \prime} \mathrm{W}$	Reading	P	MI	B	$\begin{aligned} & \text { July } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	N/A		0	62
Peabody Lateral	Essex	Peabody	O	3.43	SPI-697	Ipswich River	42º $34^{\prime} 3.348^{\prime \prime} \mathrm{N}$	71¹' ${ }^{\circ} 4.881{ }^{\prime \prime} \mathrm{W}$	Reading	I	MI	B	$\begin{aligned} & \text { July } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	N/A		0	545
Peabody Lateral	Essex	Peabody	O	3.97	SPI-699	Ipswich River	$42^{\circ} 33^{\prime} 50.501{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 0^{\prime} 31.355^{\prime \prime} \mathrm{W}$	Reading	P	MI	B	$\begin{aligned} & \text { July } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	N/A		0	220
Peabody Lateral	Essex	Peabody	O	4.26	SPI-700	UNT to Ipswich River	$42^{\circ} 33^{\prime} 45.464{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 0{ }^{\prime} 12.189^{\prime \prime} \mathrm{W}$	Reading	P	I	B	July 1 to Sept 30	II		63	4,811
Haverhill Lateral	Middlesex	Dracut	P	0.45	NHD-714	UNT to Trout Brook	42 ${ }^{\circ} 39^{\prime} 58.709{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 16^{\prime} 16.091^{\prime \prime} \mathrm{W}$	Lowell	P	MA	B	July 1 to Sept 30	II		150	15,150
Haverhill Lateral	Middlesex	Dracut	P	0.82	NHD-717	Trout Brook	42 ${ }^{\circ} 40^{\prime} 11.751{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 15^{\prime} 56.760{ }^{\prime \prime} \mathrm{W}$	Lowell	C	I	B	$\begin{gathered} \hline \text { July } 1 \text { to } \\ \text { Sept } 30 \end{gathered}$	II		16	1,392
Haverhill Lateral	Middlesex	Dracut	P	1.69	NHD-718	UNT to Trout Brook	$42^{\circ} 40^{\prime} 45.636{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 15^{\prime} 16.005^{\prime \prime} \mathrm{W}$	Lowell	AP	I	B	July 1 to Sept 30	II		15	1,215
Haverhill Lateral	Middlesex	Dracut	P	2.12	NHD-722	UNT to Griffin Brook	420 $41^{\prime} 2.789{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 14^{\prime} 56.874^{\prime \prime} \mathrm{W}$	Lawrence	I	MI	B	July 1 to Sept 30	II		5	425
Haverhill Lateral	Middlesex	Dracut	P	2.49	NHD-727	Griffin Brook	42 ${ }^{\circ} 41^{\prime} 19.778^{\prime \prime} \mathrm{N}$	$71^{\circ} 14^{\prime} 45.630^{\prime \prime} \mathrm{W}$	Lawrence	AP	MI	B	$\begin{aligned} & \hline \text { July } 1 \text { to } \\ & \text { Sept } 30 \\ & \hline \end{aligned}$	II		4	308
Haverhill Lateral	Essex	Methuen	P	3.47	NHD-729	Bartlett Brook	42 ${ }^{\circ} 42^{\prime} 5.579 " \mathrm{~N}$	$71^{\circ} 14^{\prime} 18.478{ }^{\prime \prime} \mathrm{W}$	Lawrence	P	MA	B	$\begin{aligned} & \text { July } 1 \text { to } \\ & \text { Sept } 30 \\ & \hline \end{aligned}$	II		320	20,160
Haverhill Lateral	Essex	Methuen	P	3.92	NHD-732	UNT to Bartlett Brook	$42^{\circ} 42^{\prime} 25.851{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 14^{\prime} 4.099^{\prime \prime} \mathrm{W}$	Lawrence	I	MI	B	July 1 to Sept 30	II		6	546
Haverhill Lateral	Essex	Methuen	P	4.42	NHD-733	UNT to Bartlett Brook	$42^{\circ} 42^{\prime} 49.195{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 13^{\prime} 51.359 " \mathrm{~W}$	Lawrence	I	MI	B	July 1 to Sept 30	II		5	415
Haverhill Lateral	Essex	Methuen	P	4.76	ME-P-S005	UNT to Bartlett Brook	$42^{\circ} 43^{\prime} 6.583 " \mathrm{~N}$	$71^{\circ} 13^{\prime} 46.867^{\prime \prime} \mathrm{W}$	Lawrence	NF	I	B	July 1 to Sept 30	II		19	988
Haverhill Lateral	Essex	Methuen	P	4.77	ME-P-S005	UNT to Bartlett Brook	$42^{\circ} 43^{\prime} 7.125^{\prime \prime} \mathrm{N}$	$71^{\circ} 13^{\prime} 46.596^{\prime \prime} \mathrm{W}$	Lawrence	NF	MI	B	July 1 to Sept 30	II		9	564
Haverhill Lateral	Essex	Methuen	P	5.58	ME-P-S007	UNT to Harris Brook	$42^{\circ} 43^{\prime} 48.157{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 13^{\prime} 34.484^{\prime \prime} \mathrm{W}$	Lawrence	I	I	B	July 1 to Sept 30	II		30	1,641
Haverhill Lateral	Essex	Methuen	P	5.60	ME-P-S007	UNT to Harris Brook	$42^{\circ} 43^{\prime} 49.225{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 13^{\prime} 34.677^{\prime \prime} \mathrm{W}$	Lawrence	I	MI	B	July 1 to Sept 30	N/A		0	215

Table 1.1-1

Facility Name	County	Town	Segment ${ }^{1}$	Nearest Milepost ${ }^{2}$	Waterbody ID 3	WaterbodyName 4	Latitude	Longitude	Quadrangle	Type ${ }^{5}$	FERC Class ${ }^{6}$	Water Quality Designation / Fishery Classification ${ }^{7}$	Timing Restriction ${ }^{8}$	$\begin{gathered} \text { Crossing } \\ \text { Method }^{9,10} \end{gathered}$	Comments	Crossing Length ${ }^{11}$	
																(feet)	(square feet)
Haverhill Lateral	Essex	Methuen	P	5.63	ME-P- S007B	UNT to Harris Brook	$42^{\circ} 43^{\prime} 50.778^{\prime \prime} \mathrm{N}$	$71^{\circ} 13^{\prime} 34.339^{\prime \prime} \mathrm{W}$	Lawrence	I	MI	B	July 1 to Sept 30	N/A		0	61
Haverhill Lateral	Essex	Methuen	P	6.18	SPI-723	Harris Brook	$42^{\circ} 44^{\prime} 18.5044^{\prime \prime}$	$71^{\circ} 13^{\prime} 25.166^{\prime \prime} \mathrm{W}$	Lawrence	P	I	B	$\begin{aligned} & \hline \text { July } 1 \text { to } \\ & \text { Sept } 30 \\ & \hline \end{aligned}$	II		19	1,537
Haverhill Lateral	Essex	Methuen	P	6.62	SPI-724	UNT to Harris Brook	$42^{\circ} 44^{\prime} 29.243^{\prime \prime} \mathrm{N}$	$71^{\circ} 13^{\prime} 0.282^{\prime \prime} \mathrm{W}$	Lawrence	I	I	B	July 1 to Sept 30	II		26	5,970
Haverhill Lateral	Essex	Methuen	P	6.87	SPI-725	UNT to Harris Brook	$42^{\circ} 44^{\prime} 33.230^{\prime \prime} \mathrm{N}$	$71^{\circ} 12^{\prime} 42.401{ }^{\prime \prime} \mathrm{W}$	Lawrence	P	MI	B	July 1 to Sept 30	N/A		0	3,248
Haverhill Lateral	Essex	Methuen	P	6.90	ME-P-S004	UNT to Harris Brook	$42^{\circ} 44^{\prime} 33.786^{\prime \prime} \mathrm{N}$	$71^{\circ} 12^{\prime} 41.461{ }^{\prime \prime} \mathrm{W}$	Lawrence	P	MI	B	July 1 to Sept 30	N/A		0	229
Haverhill Lateral	Essex	Methuen	P	6.94	ME-P-S004	UNT to Harris Brook	$42^{\circ} 44^{\prime} 35.142^{\prime \prime} \mathrm{N}$	$71^{\circ} 12^{\prime} 39.487^{\prime \prime} \mathrm{W}$	Lawrence	P	MI	B	July 1 to Sept 30	N/A		0	422
Haverhill Lateral	Essex	Methuen	P	6.96	ME-P-S004	UNT to Harris Brook	$42^{\circ} 44^{\prime} 36.009{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 12^{\prime} 38.020^{\prime \prime} \mathrm{W}$	Lawrence	P	MI	B	July 1 to Sept 30	N/A		0	166
Fitchburg Lateral Extension	Middlesex	Townsend	Q	5.77	SPI-771	UNT to Walker Brook	$42^{\circ} 41^{\prime} 52.812^{\prime \prime} \mathrm{N}$	$71^{\circ} 45^{\prime} 40.291{ }^{\prime \prime} \mathrm{W}$	Ashby	P	I	B/HQ	July 1 to Sept 30	II		41	3,181
Fitchburg Lateral Extension	Middlesex	Townsend	Q	5.94	SPI-772	Walker Brook	$42^{\circ} 41^{\prime} 47.490^{\prime \prime} \mathrm{N}$	$71^{\circ} 45^{\prime} 49.261{ }^{\prime \prime} \mathrm{W}$	Ashby	P	I	B/CFR/ORW	$\begin{aligned} & \hline \text { July } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	II		77	5,999
Fitchburg Lateral Extension	Middlesex	Townsend	Q	6.26	SPI-774	UNT to Walker Brook	$42^{\circ} 41^{\prime} 33.739{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 45^{\prime} 54.441^{\prime \prime} \mathrm{W}$	Ashby	P	MI	B/CFR	July 1 to Sept 30	N/A		0	63
Fitchburg Lateral Extension	Middlesex	Townsend	Q	6.65	SPI-775	UNT to Locke Brook	$42^{\circ} 41^{\prime} 14.670^{\prime \prime} \mathrm{N}$	$71^{\circ} 45^{\prime} 46.796^{\prime \prime} \mathrm{W}$	Ashby	I	I	B/CFR	July 1 to Sept 30	II		24	1,636
Fitchburg Lateral Extension	Middlesex	Townsend	Q	7.25	SPI-777	Locke Brook	$42^{\circ} 40^{\prime} 44.377{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 45^{\prime} 42.745^{\prime \prime} \mathrm{W}$	Ashby	P	I	B/HQ/CFR/ORW	July 1 to Sept 30	II		69	5,690
Fitchburg Lateral Extension	Middlesex	Townsend	Q	7.46	SPI-778	Willard Brook	$42^{\circ} 40^{\prime} 34.8899^{\prime \prime}$	$71^{\circ} 45^{\prime} 35.400^{\prime \prime} \mathrm{W}$	Ashby	P	I	B/HQ/CFR/ORW	July 1 to Sept 30	II		33	2,790
Fitchburg Lateral Extension	Middlesex	Townsend	Q	7.89	SPI-780	Pearl Hill Brook	$42^{\circ} 40^{\prime} 17.263{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 45^{\prime} 21.214^{\prime \prime} \mathrm{W}$	Ashby	P	I	B/HQ/CFR/ORW	$\begin{aligned} & \hline \text { July } 1 \text { to } \\ & \text { Sept } 30 \\ & \hline \end{aligned}$	II		30	2,786
Fitchburg Lateral Extension	Middlesex	Townsend	Q	8.17	SPI-781	UNT to Pearl Hill Brook	$42^{\circ} 40^{\prime} 5.633{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 45^{\prime} 9.860{ }^{\prime \prime} \mathrm{W}$	Ashby	I	I	B/CFR	July 1 to Sept 30	II		28	1,920
Fitchburg Lateral Extension	Middlesex	Townsend	Q	8.49	SPI-782	UNT to Pearl Hill Brook	$42^{\circ} 39^{\prime} 49.386^{\prime \prime} \mathrm{N}$	$71^{\circ} 45^{\prime} 6.449{ }^{\prime \prime} \mathrm{W}$	Ashby	P	I	B/HQ/CFR	July 1 to Sept 30	II		13	3,839

Table 1.1-1

											FERC	Water Quality Designation /					$\begin{aligned} & \hline \text { issing } \\ & \text { pgth }^{11} \end{aligned}$
Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$	$\mathbf{I D}^{3}$	Name ${ }^{4}$	Latitude	Longitude	Quadrangle	Type ${ }^{5}$	Class ${ }^{6}$	Fishery Classification ${ }^{7}$	Restriction ${ }^{8}$	Method ${ }^{\text {9, }} 10$	Comments	(feet)	(square feet)
Fitchburg Lateral Extension	Middlesex	Townsend	Q	8.81	SPI-783	UNT to Pearl Hill Brook	$42^{\circ} 39^{\prime} 33.083{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 45^{\prime} 2.889^{\prime \prime} \mathrm{W}$	Ashby	I	I	B/CFR	July 1 to Sept 30	II		17	1,225
Fitchburg Lateral Extension	Middlesex	Townsend	Q	9.73	SPI-784	UNT to Pearl Hill Brook	$42^{\circ} 38^{\prime} 45.250{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 44^{\prime} 59.893{ }^{\prime \prime} \mathrm{W}$	Townsend	I	I	B/CFR	July 1 to Sept 30	II		46	1,698
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	10.61	SPI-786	UNT to Malphus Brook	$42^{\circ} 37^{\prime} 59.538^{\prime \prime} \mathrm{N}$	$71^{\circ} 44^{\prime} 59.242^{\prime \prime} \mathrm{W}$	Townsend	I	I	B/CFR	July 1 to Sept 30	II		13	2,033
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	10.67	SPI-785	UNT to Malphus Brook	$42^{\circ} 37^{\prime} 56.239{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 44^{\prime} 59.550{ }^{\prime \prime} \mathrm{W}$	Townsend	I	MI	B/CFR	July 1 to Sept 30	II		8	525
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	10.98	SPI-787	UNT to Malphus Brook	$42^{\circ} 37^{\prime} 39.945{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 45^{\prime} 1.367{ }^{\prime \prime} \mathrm{W}$	Ashby	I	I	B/CFR	July 1 to Sept 30	II		16	2,026
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	11.35	SPI-788	Mulpus Brook	$42^{\circ} 37^{\prime} 21.070^{\prime \prime} \mathrm{N}$	$71^{\circ} 45^{\prime} 4.649{ }^{\prime \prime} \mathrm{W}$	Fitchburg	P	I	B/HQ/CFR	$\begin{aligned} & \text { July } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	II		38	4,107
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	11.37	SPI-788	Mulpus Brook	$42^{\circ} 37^{\prime} 19.998{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 45^{\prime} 5.393{ }^{\prime \prime} \mathrm{W}$	Fitchburg	P	I	B/HQ/CFR	July 1 to Sept 30	II		10	643
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	11.49	SPI-789	Mulpus Brook	$42^{\circ} 37^{\prime} 14.518^{\prime \prime} \mathrm{N}$	$71^{\circ} 45^{\prime} 8.272{ }^{\prime \prime} \mathrm{W}$	Fitchburg	I	I	B/HQ/CFR	July 1 to Sept 30	II		16	1,171
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	11.54	SPI-789	Mulpus Brook	$42^{\circ} 37^{\prime} 11.714^{\prime \prime} \mathrm{N}$	$71^{\circ} 45^{\prime} 8.860 " \mathrm{~W}$	Fitchburg	I	I	B/HQ/CFR	July 1 to Sept 30	II		10	736
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	12.28	SPI-791	UNT to Malphus Brook	$42^{\circ} 36^{\prime} 33.907^{\prime \prime} \mathrm{N}$	$71^{\circ} 45^{\prime} 18.585{ }^{\prime \prime} \mathrm{W}$	Fitchburg	P	MI	B/CFR	July 1 to Sept 30	II		9	1,488
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	12.40	SPI-793	UNT to Malphus Brook	$42^{\circ} 36^{\prime} 28.080{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 45^{\prime} 18.948{ }^{\prime \prime} \mathrm{W}$	Fitchburg	P	MI	B/CFR	July 1 to Sept 30	II		8	611
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	12.44	SPI-794	UNT to Malphus Brook	$42^{\circ} 36^{\prime} 25.827{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 45^{\prime} 18.605^{\prime \prime} \mathrm{W}$	Fitchburg	I	I	B/CFR	July 1 to Sept 30	II		14	976
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	13.39	LU-K-S001	UNT to Falulah Brook	$42^{\circ} 35^{\prime} 36.811{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 45^{\prime} 21.449^{\prime \prime} \mathrm{W}$	Fitchburg	I	MI	B	July 1 to Sept 30	II		3	515
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	13.52	SPI-795	UNT to Falulah Brook	$42^{\circ} 35^{\prime} 30.698{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 45^{\prime} 18.244^{\prime \prime} \mathrm{W}$	Fitchburg	I	MI	B	July 1 to Sept 30	N/A		0	452
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	13.64	$\begin{aligned} & \text { LU-A- } \\ & \text { S001A } \end{aligned}$	UNT to Falulah Brook	$42^{\circ} 35^{\prime} 25.251{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 45^{\prime} 16.394{ }^{\prime \prime} \mathrm{W}$	Fitchburg	E	I	B	July 1 to Sept 30	IV		13	3,370

Table 1.1-1

Contractor Yards ${ }^{12}$																
NED-G-0400	Berkshire	Windsor	G	12.07	NHD-672	Weston Brook	$42^{\circ} 29^{\prime} 37.260 " \mathrm{~N}$	$73^{\circ} 6^{\prime} 58.118^{\prime \prime} \mathrm{W}$	Peru	P	MI	B/CFR	$\begin{aligned} & \text { July } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	N/A	N/A	60
NED-G-0400	Berkshire	Windsor	G	12.07	NHD-908	Weston Brook	$42^{\circ} 29^{\prime} 37.260 " \mathrm{~N}$	730 6^{\prime} 58.118" W	Peru	P	MI	B/CFR	July 1 to Sept 30	N/A	N/A	57
NED-H-0108	Franklin	Montague	H	11.93	NHD-840	UNT to Sawmill River	$42^{\circ} 33{ }^{\prime} 1.759{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 32^{\prime} 11.336 " \mathrm{~W}$	Greenfield	I	MI	B/CFR	July 1 to Sept 30	N/A	N/A	105
NED-H-0107	Franklin	Northfield	H	18.64	NHD-675	UNT to Connecticut River	$42^{\circ} 36^{\prime} 25.710^{\prime \prime} \mathrm{N}$	$72^{\circ} 28^{\prime} 28.267^{\prime \prime} \mathrm{W}$	Millers Falls	P	MI	B	July 1 to Sept 30	N/A	N/A	1,377
NED-H-0201	Worcester	Athol	H	21.21	NHD-909	UNT to Millers River	$42^{\circ} 33^{\prime} 40.287^{\prime \prime} \mathrm{N}$	$72^{\circ} 15^{\prime} 0.006^{\prime \prime} \mathrm{W}$	Orange	P	MI	B/CFR	July 1 to Sept 30	N/A	N/A	1,488
NED-H-0201	Worcester	Athol	H	21.21	NHD-909	UNT to Millers River	$42^{\circ} 33^{\prime} 42.616{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 15^{\prime} 4.324^{\prime \prime} \mathrm{W}$	Athol	P	MI	B/CFR	July 1 to Sept 30	N/A	N/A	201

Table 1.1-1

Waterbodies Associated With the Project in Massachusetts

				Nearest	Waterbody	Waterbody						Water Quality Designation /	Timing	Crossing			$\begin{aligned} & \hline \text { sssing } \\ & \text { pgth }^{11} \end{aligned}$
Facility Name	County	Tow	Segment ${ }^{1}$	Milepost ${ }^{2}$		Name ${ }^{4}$	Latitude	Longitude	Quadrangle	Type		Fishery Classification ${ }^{7}$	Restriction ${ }^{8}$	Method ${ }^{\text {9,10 }}$	Comments	(feet)	(square feet)
NED-K-0100	Middlesex	Dracut	K	1.48	DRA-A- S001B	UNT to Potash Brook	$42^{\circ} 40^{\prime} 45.392 " \mathrm{~N}$	$71^{\circ} 17^{\prime} 11.073^{\prime \prime} \mathrm{W}$	Lowell	Unkn own	I	B	July 1 to Sept 30	N/A		N/A	4,503
NED-K-0100	Middlesex	Dracut	K	1.48	SPI-743	UNT to Potash Brook	$42^{\circ} 40^{\prime} 48.508{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 17^{\prime} 14.414^{\prime \prime} \mathrm{W}$	Lowell	I	MI	B	July 1 to Sept 30	N/A		N/A	5,920
NED-K-0100	Middlesex	Dracut	K	1.48	$\begin{aligned} & \text { DRA-A- } \\ & \text { S001 } \end{aligned}$	UNT to Potash Brook	$42^{\circ} 40^{\prime} 52.193 " \mathrm{~N}$	$71^{\circ} 17^{\prime} 6.727^{\prime \prime} \mathrm{W}$	Lowell	Unkn own	I	B	July 1 to Sept 30	N/A		N/A	16,189
NED-N-0400	Essex	Andover	N	6.6	NHD-712	Shawsheen River	$42^{\circ} 37^{\prime} 0.622^{\prime \prime} \mathrm{N}$	$71^{\circ} 10^{\prime} 8.713^{\prime \prime} \mathrm{W}$	Wilmington	AP	MI	B	July 1 to Sept 30	N/A		N/A	438
NED-N-0100	Middlesex	Dracut	N	0.29	NHD-724	$\begin{aligned} & \hline \text { UNT to } \\ & \text { Merrimack } \\ & \text { River } \\ & \hline \end{aligned}$	$42^{\circ} 40^{\prime} 50.337{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 14^{\prime} 23.717^{\prime \prime} \mathrm{W}$	Lawrence	AP	MI	B	July 1 to Sept 30	N/A		N/A	36
NED-N-0100	Middlesex	Dracut	N	0.29	NHD-723	$\begin{aligned} & \text { UNT to } \\ & \text { Merrimack } \\ & \text { River } \\ & \hline \end{aligned}$	$42^{\circ} 40^{\prime} 47.841{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 14^{\prime} 22.999{ }^{\prime \prime} \mathrm{W}$	Lawrence	I	MI	B	July 1 to Sept 30	N/A		N/A	978
NED-N-0100	Middlesex	Dracut	N	0.29	NHD-720	UNT to Griffin Brook	$42^{\circ} 40^{\prime} 48.618{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 14^{\prime} 45.503{ }^{\prime \prime} \mathrm{W}$	Lawrence	I	MI	B	July 1 to Sept 30	N/A		N/A	567
NED-N-0300	Middlesex	Tewksbury	N	2.53	NHD-707	UNT to Trout Brook	$42^{\circ} 38^{\prime} 0.792^{\prime \prime} \mathrm{N}$	$71^{\circ} 14^{\prime} 41.163^{\prime \prime} \mathrm{W}$	Lawrence	AP	MI	B	July 1 to Sept 30	N/A		N/A	1,323
NED-N-0300	Middlesex	Tewksbury	N	2.53	NHD-708	UNT to Trout Brook	$42^{\circ} 38^{\prime} 1.424^{\prime \prime} \mathrm{N}$	$71^{\circ} 14^{\prime} 41.646{ }^{\prime \prime} \mathrm{W}$	Lawrence	I	MI	B	July 1 to Sept 30	N/A		N/A	222
NED-N-0500	Middlesex	Wilmington	N	9.57	NHD-713	Martins Brook	$42^{\circ} 35^{\prime} 9.042^{\prime \prime} \mathrm{N}$	$71^{\circ} 8^{\prime} 1.111{ }^{\prime \prime} \mathrm{W}$	Wilmington	P	MI	B	July 1 to Sept 30	N/A		N/A	51
NED-Q-0200	Middlesex	Townsend	Q	6.18	NHD-737	Walker Brook	$42^{\circ} 41^{\prime} 36.046 " \mathrm{~N}$	$71^{\circ} 45^{\prime} 41.824^{\prime \prime} \mathrm{W}$	Ashby	P	MI	B/CFR/ORW	July 1 to Sept 30	N/A		N/A	201
Contractor Yard Subtotal																0	33,716
Access Roads ${ }^{12}$																	
NED-TAR-G-1300	Berkshire	Hinsdale	G	13.48	NHD-862	Cady Brook	$42^{\circ} 28^{\prime} 10.764^{\prime \prime} \mathrm{N}$	$73^{\circ} 5^{\prime} 5.724{ }^{\prime \prime} \mathrm{W}$	Peru	P	MI	B/CFR	July 1 to Sept 30	N/A		3	105
NED-TAR-G-1300	Berkshire	Peru	G	13.48	NHD-863	Cady Brook	$42^{\circ} 28^{\prime} 2.748^{\prime \prime} \mathrm{N}$	$73^{\circ} 4^{\prime} 6.340$ " W	Peru	P	MI	B/CFR	$\begin{aligned} & \hline \text { July } 1 \text { to } \\ & \text { Sept } 30 \\ & \hline \end{aligned}$	N/A		3	99
NED-TAR-G-1800	Hampshire	Plainfield	G	21.57	NHD-864	UNT to Westfield River	$42^{\circ} 30^{\prime} 24.161{ }^{\prime \prime} \mathrm{N}$	72 ${ }^{\circ} 58^{\prime} 23.152^{\prime \prime} \mathrm{W}$	Plainfield	I	MI	B/CFR	July 1 to Sept 30	N/A		3	90
NED-TAR-H-1000	Franklin	Deerfield	H	8.45	NHD-865	UNT to Deerfield River	$42^{\circ} 33^{\prime} 15.184^{\prime \prime} \mathrm{N}$	$72^{\circ} 36^{\prime} 22.739^{\prime \prime} \mathrm{W}$	Greenfield	AP	MI	B/CFR	July 1 to Sept 30	N/A		3	33

Table 1.1-1

				Nearest	Waterbody	Waterbody					FERC	Water Quality Designation /	Timing				$\overline{\text { ossing }^{\text {osghth }}{ }^{11}}$
Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$	ID^{3}	Name ${ }^{4}$	Latitude	Longitude	Quadrangle	Type ${ }^{\text {s }}$	Class ${ }^{6}$	Fishery Classification ${ }^{7}$	Restriction ${ }^{8}$	Method ${ }^{\text {, } 10}$	Comments	(feet)	$\begin{aligned} & \text { (square } \\ & \text { feet) } \end{aligned}$
NED-TAR-H-1000	Franklin	Deerfield	H	8.45	NHD-866	UNT to Deerfield River	$42^{\circ} 33^{\prime} 15.117^{\prime \prime} \mathrm{N}$	$72^{\circ} 36^{\prime} 22.856^{\prime \prime} \mathrm{W}$	Greenfield	I	MI	B/CFR	July 1 to Sept 30	N/A		3	57
NED-TAR-H-1000	Franklin	Deerfield	H	8.45	NHD-867	UNT to Deerfield River	42º 33' $7.794^{\prime \prime} \mathrm{N}$	$72^{\circ} 36{ }^{\prime} 1.292$ " W	Greenfield	I	MI	B/CFR	July 1 to Sept 30	N/A		3	93
NED-TAR-H-1600	Franklin	Northfield	H	16.59	NHD-869	Tailrace Tunnel	$42^{\circ} 36^{\prime} 44.195{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 28^{\prime} 13.360{ }^{\prime \prime} \mathrm{W}$	Millers Falls	P	MI	B	$\begin{aligned} & \hline \text { July } 1 \text { to } \\ & \text { Sept } 30 \\ & \hline \end{aligned}$	N/A		3	165
NED-TAR-H-2101	Franklin	Warwick	H	0.32	NHD-870	UNT to Lovers Retreat Brook	42 $43^{\prime} 1.569^{\prime \prime} \mathrm{N}$	$72^{\circ} 23^{\prime} 53.653^{\prime \prime} \mathrm{W}$	Northfield	P	MI	B/CFR	July 1 to Sept 30	N/A		3	63
NED-TAR-H-2101	Franklin	Warwick	H	0.32	NHD-871	Lovers Retreat Brook	42 ${ }^{\circ} 43^{\prime} 9.968^{\prime \prime} \mathrm{N}$	$72^{\circ} 23^{\prime} 29.131{ }^{\prime \prime} \mathrm{W}$	Northfield	P	MI	B/CFR	July 1 to Sept 30	N/A		3	159
NED-TAR-H-2101	Franklin	Warwick	H	0.32	NHD-872	Lovers Retreat Brook	$42^{\circ} 43^{\prime} 14.990{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 23^{\prime} 41.218^{\prime \prime} \mathrm{W}$	Northfield	P	MI	B/CFR	July 1 to Sept 30	N/A		3	63
NED-TAR-H-2101	Franklin	Warwick	H	0.32	NHD-873	UNT to Lovers Retreat Brook	$42^{\circ} 43^{\prime} 0.219^{\prime \prime} \mathrm{N}$	$72^{\circ} 23^{\prime} 48.364{ }^{\prime \prime} \mathrm{W}$	Northfield	I	MI	B/CFR	July 1 to Sept 30	N/A		3	90
NED-TAR-N-1200	Middlesex	North Reading	N	9.98	NHD-885	Martins Brook	$42^{\circ} 34^{\prime} 39.610^{\prime \prime} \mathrm{N}$	71${ }^{\circ} 7$ ' 43.998" W	Wilmington	P	MI	B	$\begin{aligned} & \hline \text { July } 1 \text { to } \\ & \text { Sept } 30 \\ & \hline \end{aligned}$	N/A		3	108
NED-TAR-N-0500	Middlesex	Tewksbury	N	2.51	NHD-883	UNT to Meadow Brook	$42^{\circ} 38^{\prime} 41.299{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 14^{\prime} 17.344^{\prime \prime} \mathrm{W}$	Lawrence	I	MI	B	July 1 to Sept 30	N/A		3	90
NED-TAR-N-0500	Middlesex	Tewksbury	N	2.51	NHD-884	Meadow Brook	$42^{\circ} 38^{\prime} 39.923$ N	$71^{\circ} 14^{\prime} 19.505^{\prime \prime} \mathrm{W}$	Lawrence	I	MI	B	$\begin{aligned} & \hline \text { July } 1 \text { to } \\ & \text { Sept } 30 \\ & \hline \end{aligned}$	N/A		3	96
NED-TAR-N-1100	Middlesex	Wilmington	N	9.30	NHD-713	Martins Brook	$42^{\circ} 35^{\prime} 9.245^{\prime \prime} \mathrm{N}$	$71^{\circ} 8^{\prime} 0.8644^{\prime \prime} \mathrm{W}$	Wilmington	P	MI	B	July 1 to Sept 30	N/A		3	60
NED-TAR-O-0300	Essex	Danvers	O	5.32	NHD-886	Crane Brook	42 ${ }^{\circ} 33^{\prime} 37.521{ }^{\prime \prime} \mathrm{N}$	$70^{\circ} 58^{\prime} 55.584^{\prime \prime} \mathrm{W}$	Salem	I	MI	B	$\begin{aligned} & \hline \text { July } 1 \text { to } \\ & \text { Sept } 30 \\ & \hline \end{aligned}$	N/A		3	108
NED-TAR-Q-0400	Middlesex	Townsend	Q	8.39	NHD-738	UNT to Pearl Hill Brook	$42^{\circ} 39^{\prime} 52.841{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 45^{\prime} 9.112{ }^{\prime \prime} \mathrm{W}$	Ashby	P	MI	B/HQ/CFR/ORW	July 1 to Sept 30	N/A		3	66

Table 1.1-1

Waterbodies Associated With the Project in Massachusetts

Facility Name		Town	Segment ${ }^{1}$		Waterbody	Waterbody	Latitude	Longitude	Quadrangle	Type ${ }^{5}$	FERC	Water Quality Designation /	Timing	Crossing	Comments		$\begin{aligned} & \overline{\bar{s} \text { ssing }} \\ & \text { ggth }^{11} \end{aligned}$
Facility Name	County	Town	Segment	Milepost ${ }^{2}$	ID ${ }^{3}$	Name ${ }^{4}$	Latitude	Longitude	Quadrangle	Type	Class ${ }^{6}$	Fishery Classification ${ }^{7}$	Restriction ${ }^{8}$	Method ${ }^{\text {9, }} 10$	Comments	(feet)	$\begin{gathered} \text { (square } \\ \text { feet) } \end{gathered}$

 publically available data was used where there was no parcel access and no photo interpreted aerial coverage. The publically available data is from the USGS-NHD 2015
Each segment is associated with its own set of mileposts beginning at MP 0.00 .
${ }^{3}$ Waterbody ID in the form of NHD-XXX and NHD-R-XXX are USGS-NHD waterbodies, and waterbody ID in the form SPI-XXX are photo interpreted waterbodies. All other waterbody ID's represent field surveyed data.
${ }_{5}^{4}$ Unnamed tributary; waterbody is not mapped as a tributary on available GIS data layers; tributary name was identified based on review of USGS topographical mapping.
$\mathrm{P}=$ Perennial; $\mathrm{I}=$ Intermittent; E = Ephemeral; NF = No Flow; AP = Artificial Path; $\mathrm{C}=$ Connector
${ }^{6} \mathrm{MI}=$ Minor (<10 feet); I Intermediate ($10-100$ feet); MA = Major (>100 feet).
Water quality classification was identified through a desktop review of available GIS datalayers.
 crossed using a dry crossing method.
 method is approved by the state agencies, USACE, and Commission.

 ${ }_{2} 2$ E
${ }^{12}$ Existing waterbodies will not be impacted. Any improvements to existing culverts will be permitted as necessary

Table 1.1-2
Waterbodies Associated With the Project in New Hampshire

Facility Name	County	Town	Segment ${ }^{1}$	Nearest Milepost ${ }^{2}$	Waterbody ID ${ }^{3}$	Waterbody Name ${ }^{4}$	Latitude	Longitude	Quadrangle	Type ${ }^{5}$	$\begin{gathered} \text { FERC } \\ \text { Class }^{6} \end{gathered}$	WaterQualityDesignation /FisheryClassification	Timing Restriction ${ }^{8}$	Crossing Method ${ }^{9,10}$	Comments ${ }^{11}$	Crossing Length ${ }^{12}$ (feet)	
																(feet)	(square feet)
Pipeline Facilities																	
Wright to Dracut Pipeline Segment	Cheshire	Winchester	I	2.02	NHD-681	Mirey Brook	$42^{\circ} 44^{\prime} 9.662{ }^{\prime \prime} \mathrm{N}$	72 ${ }^{\circ} 21^{\prime} 36.712^{\prime \prime} \mathrm{W}$	Mount Grace	P	I	B/CWF	June 1 to Sept 30	II	Wild Brook Trout	20	1,840
Wright to Dracut Pipeline Segment	Cheshire	Winchester	I	2.78	NHD-682	UNT to Mirey Brook	$42^{\circ} 44^{\prime} 24.881{ }^{\prime \prime} \mathrm{N}$	72² $21{ }^{\prime} 1.001{ }^{\prime \prime} \mathrm{W}$	Mount Grace	P	I	B/CWF	June 1 to Sept 30	II		20	1,950
Wright to Dracut Pipeline Segment	Cheshire	Winchester	I	3.88	WC-X-S001	UNT to Roaring Brook	$42^{\circ} 45^{\prime} 15.250{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 21^{\prime} 2.914^{\prime \prime} \mathrm{W}$	West Swanzey	I	MI	B/CWF	June 1 to Sept 30	N/A		0	48
Wright to Dracut Pipeline Segment	Cheshire	Winchester	I	3.88	WC-X-S001	Roaring Brook	$42^{\circ} 45^{\prime} 15.383{ }^{\prime \prime} \mathrm{N}$	${ }^{72}{ }^{\circ} 21^{\prime} 3.232^{\prime \prime} \mathrm{W}$	West Swanzey	I	MI	B/CWF	June 1 to Sept 30	N/A	Wild Brook Trout	0	71
Wright to Dracut Pipeline Segment	Cheshire	Winchester	I	4.23	SPI-516	Roaring Brook	$42^{\circ} 45^{\prime} 33.143^{\prime \prime} \mathrm{N}$	$72^{\circ} 20^{\prime} 38.772^{\prime \prime} \mathrm{W}$	West Swanzey	P	I	B/CWF	$\begin{gathered} \text { June } 1 \text { to } \\ \text { Sept } 30 \end{gathered}$	II	Wild Brook Trout	65	5,598
Wright to Dracut Pipeline Segment	Cheshire	Winchester	I	4.46	SPI-517	UNT to Roaring Brook	$42^{\circ} 45^{\prime} 43.606{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 20^{\prime} 35.552^{\prime \prime} \mathrm{W}$	West Swanzey	I	MI	B/CWF	$\begin{aligned} & \text { June } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	II		8	1,198
Wright to Dracut Pipeline Segment	Cheshire	Winchester	I	4.47	NHD-376	UNT to Roaring Brook	$42^{\circ} 45^{\prime} 43.694{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 20^{\prime} 35.197^{\prime \prime} \mathrm{W}$	West Swanzey	I	I	B/CWF	June 1 to Sept 30	II		15	1,050
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	4.90	NHD-683	UNT to Roaring Brook	$42^{\circ} 45^{\prime} 52.388{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 20^{\prime} 7.910{ }^{\prime \prime} \mathrm{W}$	West Swanzey	I	I	B/CWF	$\begin{gathered} \text { June } 1 \text { to } \\ \text { Sept } 30 \end{gathered}$	II		10	1,100
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	5.13	NHD-684	UNT to Roaring Brook	$42^{\circ} 46^{\prime} 2.147^{\prime \prime} \mathrm{N}$	$72^{\circ} 19^{\prime} 59.4811^{\prime \prime} \mathrm{W}$	West Swanzey	I	I	B/CWF	June 1 to Sept 30	II		10	960
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	5.64	NHD-685	UNT to Brickyard Brook	$42^{\circ} 46^{\prime} 14.786{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 19^{\prime} 27.573^{\prime \prime} \mathrm{W}$	West Swanzey	I	MI	B/CWF	$\begin{aligned} & \text { June } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	II		8	784

Table 1.1-2
Waterbodies Associated With the Project in New Hampshire

Facility Name	County	Town	Segment ${ }^{1}$	Nearest Milepost ${ }^{2}$	Waterbody ID ${ }^{3}$	WaterbodyName 4	Latitude	Longitude	Quadrangle	Type ${ }^{5}$	$\begin{aligned} & \text { FERC } \\ & \text { Class }^{6} \end{aligned}$	Water Quality Designation / Fishery Classification ${ }^{7}$	Timing Restriction ${ }^{8}$	Crossing Method ${ }^{9,10}$	Comments ${ }^{11}$	Crossing Length ${ }^{12}$ (feet)	
																(feet)	(square feet)
	Cheshire	Richmond	I	7.16	SPI-519	UNT to Forest Lake	$42^{\circ} 46^{\prime} 56.019^{\prime \prime} \mathrm{N}$	$72^{\circ} 18^{\prime} 20.975{ }^{\prime \prime} \mathrm{W}$	West Swanzey	P	I	B/CWF	June 1 to Sept 30	II		17	1,085
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	7.54	SPI-520	Tilsey Brook	$42^{\circ} 46^{\prime} 57.504^{\prime \prime} \mathrm{N}$	$72^{\circ} 17^{\prime} 54.009{ }^{\prime \prime} \mathrm{W}$	West Swanzey	P	MI	B/CWF	$\begin{aligned} & \text { June } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	N/A		0	370
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	7.75	SPI-522	UNT to Tilsey Brook	$42^{\circ} 46^{\prime} 58.856{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 17^{\prime} 38.838^{\prime \prime} \mathrm{W}$	West Swanzey	P	MI	B/CWF	$\begin{aligned} & \text { June } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	N/A		0	107
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	7.77	SPI-521	UNT to Tilsey Brook	$42^{\circ} 46^{\prime} 58.044^{\prime \prime} \mathrm{N}$	$72^{\circ} 17^{\prime} 37.955{ }^{\prime \prime} \mathrm{W}$	West Swanzey	I	I	B/CWF	$\begin{aligned} & \text { June } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	II		25	1,687
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	8.13	SPI-523	UNT to Sandy Pond	$42^{\circ} 47^{\prime} 1.109^{\prime \prime} \mathrm{N}$	$72^{\circ} 17^{\prime} 12.670^{\prime \prime} \mathrm{W}$	West Swanzey	I	I	B/CWF	$\begin{aligned} & \text { June } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	II		23	2,186
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	8.48	SPI-524	UNT to Rice Brook	$42^{\circ} 47^{\prime} 4.957^{\prime \prime} \mathrm{N}$	$72^{\circ} 16^{\prime} 48.598{ }^{\prime \prime} \mathrm{W}$	West Swanzey	I	I	B/CWF	June 1 to Sept 30	II		43	2,710
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	9.07	SPI-525	Rice Brook	$42^{\circ} 47^{\prime} 11.563{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 16^{\prime} 7.2511^{\prime \prime} \mathrm{W}$	West Swanzey	P	I	B/CWF	$\begin{aligned} & \text { June } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	II	Wild Brook Trout	36	5,037
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	9.54	SPI-526	UNT to Rice Brook	$42^{\circ} 47^{\prime} 16.830^{\prime \prime} \mathrm{N}$	$72^{\circ} 15^{\prime} 35.270^{\prime \prime} \mathrm{W}$	West Swanzey	I	MI	B/CWF	June 1 to Sept 30	N/A		0	3,966
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	9.96	SPI-527	UNT to Rice Brook	$42^{\circ} 47^{\prime} 21.312^{\prime \prime} \mathrm{N}$	$72^{\circ} 15^{\prime} 6.184^{\prime \prime} \mathrm{W}$	West Swanzey	I	I	B/CWF	June 1 to Sept 30	II		47	2,212
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	10.33	SPI-528	UNT to Rice Brook	$42^{\circ} 47^{\prime} 25.487^{\prime \prime} \mathrm{N}$	$72^{\circ} 14^{\prime} 40.513^{\prime \prime} \mathrm{W}$	Troy	P	MI	B/CWF	$\begin{gathered} \text { June } 1 \text { to } \\ \text { Sept } 30 \end{gathered}$	N/A		0	821

Table 1.1-2
Waterbodies Associated With the Project in New Hampshire

Facility Name	County	Town	Segment ${ }^{1}$	Nearest Milepost ${ }^{2}$	Waterbody ID ${ }^{3}$	Waterbody Name ${ }^{4}$	Latitude	Longitude	Quadrangle	Type ${ }^{5}$	$\begin{aligned} & \text { FERC } \\ & \text { Class }^{6} \end{aligned}$	Water Quality Designation / Fishery Classification ${ }^{7}$	Timing Restriction ${ }^{8}$	Crossing Method ${ }^{9,10}$	Comments ${ }^{11}$	Crossing Length ${ }^{12}$ (feet)	
																(feet)	$\begin{gathered} \text { (square } \\ \text { feet) } \\ \hline \end{gathered}$
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	10.33	SPI-529	UNT to Rice Brook	$42^{\circ} 47^{\prime} 25.523 " \mathrm{~N}$	$72^{\circ} 14^{\prime} 40.220^{\prime \prime} \mathrm{W}$	Troy	P	MI	B/CWF	June 1 to Sept 30	N/A		0	469
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	10.40	SPI-530	UNT to Rice Brook	$42^{\circ} 47^{\prime} 26.255{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 14^{\prime} 35.193^{\prime \prime} \mathrm{W}$	Troy	P	I	B/CWF	$\begin{aligned} & \text { June } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	II		26	2,238
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	11.16	RI-Y-S001	UNT to Tully Brook	$42^{\circ} 47^{\prime} 34.535{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 13^{\prime} 43.255^{\prime \prime} \mathrm{W}$	Troy	I	MI	B/CWF	June 1 to Sept 30	II		2	160
Wright to Dracut Pipeline Segment	Cheshire	Troy	I	11.51	RI-L-S001	UNT to Tully Brook	$42^{\circ} 47^{\prime} 38.491{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 13^{\prime} 18.422^{\prime \prime} \mathrm{W}$	Troy	P	MI	B/CWF	$\begin{aligned} & \text { June } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	II		2	410
Wright to Dracut Pipeline Segment	Cheshire	Troy	I	11.67	TR-Y-S003A	UNT to Tully Brook	$42^{\circ} 47^{\prime} 39.722^{\prime \prime} \mathrm{N}$	72¹3' $7.5988^{\prime \prime} \mathrm{W}$	Troy	I	MI	B		N/A		0	194
Wright to Dracut Pipeline Segment	Cheshire	Troy	I	11.68	TR-Y-S003	UNT to Tully Brook	$42^{\circ} 47^{\prime} 40.316^{\prime \prime} \mathrm{N}$	72¹3' 6.958" W	Troy	E	MI	B		II		3	390
Wright to Dracut Pipeline Segment	Cheshire	Troy	I	11.76	TR-Y-S002	UNT to Tully Brook	$42^{\circ} 47^{\prime} 41.242^{\prime \prime} \mathrm{N}$	72¹3' $1.143^{\prime \prime} \mathrm{W}$	Troy	I	MI	B		II		5	292
Wright to Dracut Pipeline Segment	Cheshire	Troy	I	12.06	TR-G-S002	Nester Brook	$42^{\circ} 47^{\prime} 44.540^{\prime \prime} \mathrm{N}$	$72^{\circ} 12^{\prime} 40.426^{\prime \prime} \mathrm{W}$	Troy	P	I	B/CWF	$\begin{aligned} & \text { June } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	II		11	761
Wright to Dracut Pipeline Segment	Cheshire	Troy	I	12.06	SPI-531	Nester Brook	$42^{\circ} 47^{\prime} 44.701{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 12^{\prime} 40.418^{\prime \prime} \mathrm{W}$	Troy	P	MI	B/CWF	June 1 to Sept 30	N/A		0	86
Wright to Dracut Pipeline Segment	Cheshire	Troy	I	12.06	SPI-531	Nester Brook	$42^{\circ} 47^{\prime} 44.840$ " N	$72^{\circ} 12^{\prime} 40.424^{\prime \prime} \mathrm{W}$	Troy	P	MI	B/CWF	June 1 to Sept 30	N/A		0	246

Table 1.1-2
Waterbodies Associated With the Project in New Hampshire

Facility Name	County	Town	Segment ${ }^{1}$	Nearest Milepost ${ }^{2}$	Waterbody ID ${ }^{3}$	$\begin{gathered} \text { Waterbody } \\ \text { Name }^{4} \end{gathered}$	Latitude	Longitude	Quadrangle	Type ${ }^{5}$	$\begin{aligned} & \text { FERC } \\ & \text { Class }^{6} \end{aligned}$	Water Quality Designation / Fishery Classification ${ }^{7}$	Timing Restriction ${ }^{8}$	Crossing Method ${ }^{9,10}$	Comments ${ }^{11}$	Crossing Length ${ }^{12}$ (feet)	
																(feet)	$\begin{aligned} & \hline \text { (square } \\ & \text { feet) } \end{aligned}$
Wright to Dracut Pipeline Segment	Cheshire	Troy	I	12.29	TR-L-S001A	UNT to Nester Brook	$42^{\circ} 47^{\prime} 47.067{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 12^{\prime} 24.548^{\prime \prime} \mathrm{W}$	Troy	I	MI	B/CWF	June 1 to Sept 30	II		3	152
Wright to Dracut Pipeline Segment	Cheshire	Troy	I	12.29	SPI-532	UNT to Nester Brook	$42^{\circ} 47^{\prime} 47.206{ }^{\prime \prime} \mathrm{N}$	72 $12^{\prime} 24.684{ }^{\prime \prime} \mathrm{W}$	Troy	I	MI	B/CWF	$\begin{aligned} & \text { June } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	N/A		0	148
Wright to Dracut Pipeline Segment	Cheshire	Troy	I	12.29	SPI-532	UNT to Nester Brook	$42^{\circ} 47^{\prime} 48.079$ "	$72^{\circ} 12^{\prime} 24.914^{\prime \prime} \mathrm{W}$	Troy	I	MI	B/CWF	June 1 to Sept 30	N/A		0	585
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	12.68	SPI-533	UNT to Nester Brook	$42^{\circ} 47^{\prime} 51.334{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 11^{\prime} 57.728^{\prime \prime} \mathrm{W}$	Troy	I	I	B/CWF	June 1 to Sept 30	II		32	2,572
Wright to Dracut Pipeline Segment	Cheshire	Troy	I	13.06	TR-X-S004	UNT to Nester Brook	$42^{\circ} 47^{\prime} 57.401{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 11^{\prime} 32.988{ }^{\prime \prime} \mathrm{W}$	Troy	I	I	B/CWF	$\begin{aligned} & \text { June } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	II		18	780
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	13.19	TR-X-S002	UNT to Nester Brook	$42^{\circ} 47^{\prime} 59.368{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 11^{\prime} 24.081{ }^{\prime \prime} \mathrm{W}$	Troy	P	MI	B/CWF	$\begin{aligned} & \text { June } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	II		5	503
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	13.21	TR-X-S001	UNT to Nester Brook	$42^{\circ} 47^{\prime} 59.4633^{\prime \prime} \mathrm{N}$	72 11^{\prime} 22.915" W	Troy	E	MI	B/CWF	June 1 to Sept 30	N/A		0	36
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	13.22	TR-X-S001	UNT to Nester Brook	$42^{\circ} 47^{\prime} 59.129 " \mathrm{~N}$	72 $11^{\prime} 22.398{ }^{\prime \prime} \mathrm{W}$	Troy	E	MI	B/CWF	$\begin{gathered} \text { June } 1 \text { to } \\ \text { Sept } 30 \end{gathered}$	N/A		0	8
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	13.43	TR-Y-S001	UNT to Nester Brook	$42^{\circ} 48^{\prime} 3.460 " \mathrm{~N}$	72 $11{ }^{\prime} 8.692$ " W	Troy	P	I	B/CWF	June 1 to Sept 30	II		18	1,140
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	14.34	FT-X-S001	UNT to Quarry Brook	$42^{\circ} 48^{\prime} 17.525{ }^{\prime \prime} \mathrm{N}$	72 ${ }^{\circ} 10^{\prime} 8.237{ }^{\prime \prime} \mathrm{W}$	Troy	P	MI	B/CWF	$\begin{aligned} & \text { June } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	N/A		0	799

Table 1.1-2
Waterbodies Associated With the Project in New Hampshire

Facility Name	County	Town	Segment ${ }^{1}$	Nearest Milepost ${ }^{2}$	Waterbody ID ${ }^{3}$	Waterbody Name ${ }^{4}$	Latitude	Longitude	Quadrangle	Type ${ }^{5}$	$\begin{aligned} & \text { FERC } \\ & \text { Class }^{6} \end{aligned}$	Water Quality Designation / Fishery Classification ${ }^{7}$	Timing Restriction ${ }^{8}$	$\begin{aligned} & \text { Crossing, } \\ & \text { Method }^{9,10} \end{aligned}$	Comments ${ }^{11}$	Crossing Length ${ }^{12}$ (feet)	
																(feet)	$\begin{array}{\|l\|} \hline \begin{array}{c} \text { (square } \\ \text { feet) } \end{array} \\ \hline \end{array}$
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	14.81	SPI-535	UNT to Quarry Brook	$42^{\circ} 48^{\prime} 27.183 " \mathrm{~N}$	$72^{\circ} 9^{\prime} 37.687^{\prime \prime} \mathrm{W}$	Troy	I	MI	B/CWF	June 1 to Sept 30	II		6	1,273
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	15.52	SPI-536	UNT to Bowker Pond	$42^{\circ} 48^{\prime} 14.333{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 8^{\prime} 58.718^{\prime \prime} \mathrm{W}$	Troy	P	MI	B/CWF	$\begin{gathered} \text { June } 1 \text { to } \\ \text { Sept } 30 \end{gathered}$	II		9	567
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	17.27	FT-T-S001	UNT to Scott Brook	$42^{\circ} 47^{\prime} 10.754^{\prime \prime} \mathrm{N}$	$72^{\circ} 7^{\prime} 33.434{ }^{\prime \prime} \mathrm{W}$	Troy	L	MI	B		N/A		0	416
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	17.86	SPI-537	Scott Brook	$42^{\circ} 46^{\prime} 48.917^{\prime \prime} \mathrm{N}$	$72^{\circ} 7^{\prime} 3.800{ }^{\prime \prime} \mathrm{W}$	Monadnock Mountain	P	I	B		II		21	3,623
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	18.08	SPI-540	UNT to Scott Brook	$42^{\circ} 46^{\prime} 40.689{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 6^{\prime} 52.803 \prime \mathrm{C}$	Monadnock Mountain	I	MI	B		N/A		0	591
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	19.71	SPI-541	$\begin{aligned} & \text { UNT to Sip } \\ & \text { Pond } \end{aligned}$	$42^{\circ} 45^{\prime} 46.760{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 5^{\prime} 26.562 " \mathrm{~W}$	Monadnock Mountain	I	MI	B		II		5	436
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	20.44	SPI-542	UNT to Tarbell Brook	42 ${ }^{\circ} 45^{\prime} 19.971{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 4^{\prime} 50.709{ }^{\prime \prime} \mathrm{W}$	Monadnock Mountain	I	MI	B		II		3	185
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	20.91	NHD-690	Tarbell Brook	$42^{\circ} 45^{\prime} 5.139^{\prime \prime} \mathrm{N}$	$72^{\circ} 4^{\prime} 25.368{ }^{\prime \prime} \mathrm{W}$	Monadnock Mountain	AP	MA	B		II		415	37,350
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	21.49	NHD-691	UNT to Tarbell Brook	$42^{\circ} 44^{\prime} 44.569{ }^{\prime \prime} \mathrm{N}$	72 ${ }^{\circ}{ }^{\prime} 55.769$ ' W	Winchendon	AP	I	B		II		25	2,125
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	21.58	NHD-693	UNT to Tarbell Brook	$42^{\circ} 44^{\prime} 41.328^{\prime \prime} \mathrm{N}$	$72^{\circ} 3^{\prime} 51.107{ }^{\prime \prime} \mathrm{W}$	Winchendon	AP	I	B		II		10	2,220
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	21.88	NHD-696	UNT to Tarbell Brook	$42^{\circ} 44^{\prime} 30.431{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 3^{\prime} 35.432^{\prime \prime} \mathrm{W}$	Winchendon	C	MI	B		II		3	270

Table 1.1-2
Waterbodies Associated With the Project in New Hampshire

Facility	County	Town	Segment ${ }^{1}$	Nearest	Waterbody ID ${ }^{3}$	Waterbody	Latitude	Longitude	Quadrangle	Type ${ }^{5}$	FERC	Water Quality Designation /	Timing	Crossing	Comments ${ }^{11}$		$\begin{aligned} & \text { sssing } \\ & \text { pgth }^{12} \\ & \text { eet) } \end{aligned}$
												Fishery Classification ${ }^{7}$				(feet)	$\begin{gathered} \text { (square } \\ \text { feet) } \\ \hline \end{gathered}$
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	23.49	SPI-547	UNT to Robbins Brook	$42^{\circ} 44^{\prime} 21.951{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 1^{\prime} 45.061{ }^{\prime \prime} \mathrm{W}$	Winchendon	I	I	B		II		35	9,750
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	24.02	SPI-548	UNT to Lord Brook	$42^{\circ} 44^{\prime} 20.571{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 1^{\prime} 7.677{ }^{\prime \prime} \mathrm{W}$	Winchendon	I	MI	B		II		2	249
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	24.37	SPI-549	Lord Brook	$42^{\circ} 44^{\prime} 19.649{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 0{ }^{\prime} 42.723$ ' W	Winchendon	I	MI	B		II		6	890
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	24.80	SPI-550	UNT to Lake Monomonac	$42^{\circ} 44^{\prime} 18.529 " \mathrm{~N}$	$72^{\circ} 0^{\prime} 12.507{ }^{\prime \prime} \mathrm{W}$	Winchendon	I	I	B		II		25	1,330
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	24.81	SPI-550	UNT to Lake Monomonac	$42^{\circ} 44^{\prime} 18.4900^{\prime \prime} \mathrm{N}$	$72^{\circ} 0^{\prime} 11.448{ }^{\prime \prime} \mathrm{W}$	Winchendon	I	MI	B		II		6	1,376
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	24.82	SPI-551	UNT to Lake Monomonac	$42^{\circ} 44^{\prime} 18.476{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 0{ }^{\prime} 11.073{ }^{\prime \prime} \mathrm{W}$	Winchendon	I	MI	B		II		6	686
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	26.97	SPI-552	UNT to North Branch Millers River	$42^{\circ} 45^{\prime} 18.062^{\prime \prime} \mathrm{N}$	$71^{\circ} 58^{\prime} 27.756^{\prime \prime} \mathrm{W}$	Peterborough South	I	MI	B		II		8	478
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	27.84	SPI-553	UNT to Hubbard Pond	$42^{\circ} 45^{\prime} 36.131{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 57^{\prime} 31.271{ }^{\prime \prime} \mathrm{W}$	Peterborough South	I	I	B/CWF	June 1 to Sept 30	II		13	676
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	27.86	SPI-553	UNT to Hubbard Pond	$42^{\circ} 45^{\prime} 36.613^{\prime \prime} \mathrm{N}$	$71^{\circ} 57^{\prime} 29.763{ }^{\prime \prime} \mathrm{W}$	Peterborough South	I	I	B/CWF	$\begin{aligned} & \text { June } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	II		31	1,105
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	0.52	SPI-559	UNT to Hubbard Pond	$42^{\circ} 46{ }^{\prime} 6.284 " \mathrm{~N}$	71 ${ }^{\circ} 55^{\prime} 57.780{ }^{\prime \prime} \mathrm{W}$	Peterborough South	I	MI	B/CWF	June 1 to Sept 30	N/A		0	149

Table 1.1-2
Waterbodies Associated With the Project in New Hampshire

Facility Name	County	Town	Segment ${ }^{1}$	Nearest Milepost ${ }^{2}$	Waterbody ID 3	$\begin{aligned} & \text { Waterbody } \\ & \text { Name }^{4} \end{aligned}$	Latitude	Longitude	Quadrangle	Type ${ }^{5}$	FERCClass	Water Quality Designation / Fishery Classification ${ }^{7}$	Timing Restriction ${ }^{8}$	Crossing Method 9,10	Comments ${ }^{11}$	Crossing Length ${ }^{12}$ (feet)	
																(feet)	(square feet)
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	1.03	SPI-560	UNT to Gridley River	$42^{\circ} 46^{\prime} 16.795^{\prime \prime} \mathrm{N}$	$71^{\circ} 55^{\prime} 24.032^{\prime \prime} \mathrm{W}$	Peterborough South	P	I	B/CWF	June 1 to Sept 30	II		12	1,489
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	1.68	SPI-563	UNT to Gridley River	$42^{\circ} 46^{\prime} 32.236^{\prime \prime} \mathrm{N}$	$71^{\circ} 54{ }^{\prime} 44.438{ }^{\prime \prime} \mathrm{W}$	Peterborough South	P	MI	B/CWF	June 1 to Sept 30	N/A		0	198
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	1.71	SPI-564	UNT to Gridley River	$42^{\circ} 46^{\prime} 31.602^{\prime \prime} \mathrm{N}$	$71^{\circ} 54{ }^{\prime} 42.154^{\prime \prime} \mathrm{W}$	Peterborough South	P	MI	B/CWF	June 1 to Sept 30	N/A		0	211
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	2.08	SPI-565	UNT to Gridley River	$42^{\circ} 46^{\prime} 37.175^{\prime \prime} \mathrm{N}$	$71^{\circ} 54{ }^{\prime} 17.744^{\prime \prime} \mathrm{W}$	Peterborough South	I	I	B/CWF	June 1 to Sept 30	II		10	676
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	2.42	SPI-568	UNT to Gridley River	$42^{\circ} 46^{\prime} 37.294^{\prime \prime} \mathrm{N}$	$71^{\circ} 53{ }^{\prime} 54.244^{\prime \prime} \mathrm{W}$	Peterborough South	I	I	B/CWF	$\begin{aligned} & \text { June } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	II		16	1,521
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	2.79	SPI-569	UNT to Gridley River	$42^{\circ} 46^{\prime} 39.527^{\prime \prime} \mathrm{N}$	$71^{\circ} 53{ }^{\text {2 }}$ 28.503" W	Peterborough South	I	MI	B/CWF	June 1 to Sept 30	II		4	292
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	3.24	SPI-570	UNT to Furnace Brook	$42^{\circ} 46^{\prime} 42.301{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 52^{\prime} 56.500 \prime \mathrm{~W}$	Peterborough South	I	MI	B/CWF	June 1 to Sept 30	II		8	715
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	3.36	SPI-571	UNT to Furnace Brook	$42^{\circ} 46^{\prime} 43.383 " \mathrm{~N}$	${ }^{71}{ }^{\circ} 52^{\prime} 48.019{ }^{\prime \prime} \mathrm{W}$	Peterborough South	I	MI	B/CWF	June 1 to Sept 30	N/A		0	377
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	3.47	SPI-572	UNT to Furnace Brook	$42^{\circ} 46^{\prime} 43.688^{\prime \prime} \mathrm{N}$	$71^{\circ} 52^{\prime} 40.480{ }^{\prime \prime} \mathrm{W}$	Peterborough South	I	MI	B/CWF	June 1 to Sept 30	II		8	835
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	3.62	SPI-574	UNT to Furnace Brook	$42^{\circ} 46^{\prime} 44.627^{\prime \prime} \mathrm{N}$	${ }^{71}{ }^{\circ} 52^{\prime} 29.643{ }^{\prime \prime} \mathrm{W}$	Greenville	I	MI	B/CWF	$\begin{aligned} & \text { June } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	II		8	497
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	5.16	SPI-576	UNT to Greenville Reservoir	$42^{\circ} 46^{\prime} 53.924^{\prime \prime} \mathrm{N}$	$71^{\circ} 50{ }^{\prime} 41.931{ }^{\prime \prime} \mathrm{W}$	Greenville	I	I	B/CWF	$\begin{aligned} & \text { June } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	II		14	1,021

Table 1.1-2
Waterbodies Associated With the Project in New Hampshire

Facility	County	Town	Segment ${ }^{1}$	Nearest	Waterbody ID ${ }^{3}$	Waterbody	Latitude	Longitude	Quadrangle	Type ${ }^{5}$	FERC	Water Quality Designation /	Timing	Crossing	Comments ${ }^{11}$		$\begin{aligned} & \text { sssing } \\ & \text { igth }^{12} \\ & \text { eet) } \end{aligned}$
												Fishery Classification ${ }^{7}$				(feet)	(square feet)
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	5.26	NI-V-S003	UNT to Greenville Reservoir	$42^{\circ} 46^{\prime} 54.873 " \mathrm{~N}$	$71^{\circ} 50{ }^{\prime} 34.970$ ' W	Greenville	I	MI	B/CWF	June 1 to Sept 30	N/A		0	252
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	5.28	NI-V-S003	UNT to Greenville Reservoir	$42^{\circ} 46^{\prime} 54.661{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 50{ }^{\prime} 33.392{ }^{\prime \prime} \mathrm{W}$	Greenville	I	MI	B/CWF	June 1 to Sept 30	II		2	264
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	5.75	NI-R-S002	UNT to Souhegan River	$42^{\circ} 46^{\prime} 57.756^{\prime \prime} \mathrm{N}$	$71^{\circ} 50{ }^{\prime} 1.260{ }^{\prime \prime} \mathrm{W}$	Greenville	I	MI	B/CWF	June 1 to Sept 30	II		4	557
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	6.13	NI-R-S001	UNT to Souhegan River	$42^{\circ} 46^{\prime} 54.971{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 49^{\prime} 35.958^{\prime \prime} \mathrm{W}$	Greenville	I	I	B/CWF	June 1 to Sept 30	II		15	955
Wright to Dracut Pipeline Segment	Hillsborough	Greenville	J	6.44	SPI-578	UNT to Souhegan River	$42^{\circ} 46^{\prime} 57.088^{\prime \prime} \mathrm{N}$	710 $49{ }^{\prime} 14.567{ }^{\prime \prime} \mathrm{W}$	Greenville	I	MI	B/CWF	June 1 to Sept 30	N/A		0	136
Wright to Dracut Pipeline Segment	Hillsborough	Greenville	J	6.73	SPI-581	UNT to Souhegan River	$42^{\circ} 47^{\prime} 3.920$ N	$71^{\circ} 48^{\prime} 56.596{ }^{\prime \prime} \mathrm{W}$	Greenville	I	MI	B/CWF	June 1 to Sept 30	N/A		0	495
Wright to Dracut Pipeline Segment	Hillsborough	Greenville	J	7.42	SPI-582	Souhegan River	$42^{\circ} 47^{\prime} 11.973{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 48^{\prime} 10.049{ }^{\prime \prime} \mathrm{W}$	Greenville	P	I	B/CWF	June 1 to Sept 30	II		43	4,088
Wright to Dracut Pipeline Segment	Hillsborough	Greenville	J	7.80	GN-M-S001	UNT to Souhegan River	$42^{\circ} 47^{\prime} 12.954^{\prime \prime} \mathrm{N}$	$71^{\circ} 47^{\prime} 43.610^{\prime \prime} \mathrm{W}$	Greenville	P	MI	B/CWF	June 1 to Sept 30	II		2	597
Wright to Dracut Pipeline Segment	Hillsborough	Greenville	J	7.86	SPI-584	UNT to Souhegan River	$42^{\circ} 47^{\prime} 12.552^{\prime \prime} \mathrm{N}$	$71^{\circ} 47^{\prime} 39.333{ }^{\prime \prime} \mathrm{W}$	Greenville	I	MI	B/CWF	June 1 to Sept 30	II		5	573
Wright to Dracut Pipeline Segment	Hillsborough	Greenville	J	7.91	SPI-585	UNT to Souhegan River	$42^{\circ} 47^{\prime} 11.896{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 47^{\prime} 36.173{ }^{\prime \prime} \mathrm{W}$	Greenville	I	I	B/CWF	June 1 to Sept 30	II		11	1,112
Wright to Dracut Pipeline Segment	Hillsborough	Mason	J	8.78	SPI-586	UNT to Spaulding Brook	$42^{\circ} 46^{\prime} 59.326^{\prime \prime} \mathrm{N}$	$71^{\circ} 46^{\prime} 36.892$ " W	Greenville	I	I	B/CWF	June 1 to Sept 30	II		16	1,675

Table 1.1-2
Waterbodies Associated With the Project in New Hampshire

Facility Name	County	Town	Segment ${ }^{1}$	Nearest Milepost ${ }^{2}$	Waterbody ID ${ }^{3}$	$\begin{aligned} & \text { Waterbody } \\ & \text { Name }^{4} \end{aligned}$	Latitude	Longitude	Quadrangle	Type ${ }^{5}$	FERCClass	Water Quality Designation / Fishery Classification ${ }^{7}$	Timing Restriction ${ }^{8}$	Crossing Method ${ }^{9,10}$	Comments ${ }^{11}$	Crossing Length ${ }^{12}$ (feet)	
																(feet)	(square feet)
Wright to Dracut Pipeline Segment	Hillsborough	Mason	J	10.26	SPI-587	UNT to Black Brook	$42^{\circ} 46^{\prime} 38.447^{\prime \prime} \mathrm{N}$	$71^{\circ} 44^{\prime} 55.732^{\prime \prime} \mathrm{W}$	Milford	I	I	B/CWF	June 1 to Sept 30	II		51	4,753
Wright to Dracut Pipeline Segment	Hillsborough	Mason	J	10.32	SPI-588	UNT to Black Brook	$42^{\circ} 46^{\prime} 37.566^{\prime \prime} \mathrm{N}$	$71^{\circ} 44^{\prime} 51.467{ }^{\prime \prime} \mathrm{W}$	Milford	I	I	B/CWF	June 1 to Sept 30	II		28	2,905
Wright to Dracut Pipeline Segment	Hillsborough	Mason	J	10.74	SPI-589	Spaulding Brook	$42^{\circ} 46^{\prime} 31.748^{\prime \prime} \mathrm{N}$	$71^{\circ} 44^{\prime} 23.307{ }^{\prime \prime} \mathrm{W}$	Milford	P	MA	B/CWF	June 1 to Sept 30	II		124	8,619
Wright to Dracut Pipeline Segment	Hillsborough	Mason	J	10.83	SPI-590	UNT to Spaulding Brook	$42^{\circ} 46^{\prime} 30.432^{\prime \prime} \mathrm{N}$	$71^{\circ} 44^{\prime} 16.939{ }^{\prime \prime} \mathrm{W}$	Milford	I	I	B/CWF	June 1 to Sept 30	II		52	4,299
Wright to Dracut Pipeline Segment	Hillsborough	Mason	J	10.90	SPI-591	UNT to Spaulding Brook	42 ${ }^{\circ} 46^{\prime} 29.499^{\prime \prime} \mathrm{N}$	$71^{\circ} 44^{\prime} 12.423^{\prime \prime} \mathrm{W}$	Milford	I	I	B/CWF	$\begin{aligned} & \text { June } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	II		13	1,808
Wright to Dracut Pipeline Segment	Hillsborough	Mason	J	10.92	SPI-591	UNT to Spaulding Brook	$42^{\circ} 46^{\prime} 29.254^{\prime \prime} \mathrm{N}$	$71^{\circ} 44^{\prime} 11.239^{\prime \prime} \mathrm{W}$	Milford	I	I	B/CWF	June 1 to Sept 30	II		14	654
Wright to Dracut Pipeline Segment	Hillsborough	Mason	J	10.93	SPI-591	UNT to Spaulding Brook	$42^{\circ} 46^{\prime} 29.022^{\prime \prime} \mathrm{N}$	$71^{\circ} 44^{\prime} 10.115^{\prime \prime} \mathrm{W}$	Milford	I	I	B/CWF	June 1 to Sept 30	II		29	1,054
Wright to Dracut Pipeline Segment	Hillsborough	Mason	J	10.94	SPI-591	UNT to Spaulding Brook	$42^{\circ} 46^{\prime} 29.148^{\prime \prime} \mathrm{N}$	71 $44^{\prime} 9.482^{\prime \prime} \mathrm{W}$	Milford	I	MI	B/CWF	June 1 to Sept 30	N/A		0	101
Wright to Dracut Pipeline Segment	Hillsborough	Mason	J	11.35	SPI-592	UNT to Spaulding Brook	$42^{\circ} 46^{\prime} 32.075{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 43^{\prime} 41.378{ }^{\prime \prime} \mathrm{W}$	Milford	I	I	B/CWF	June 1 to Sept 30	II		24	4,209
Wright to Dracut Pipeline Segment	Hillsborough	Mason	J	11.50	SPI-593	UNT to Spaulding Brook	$42^{\circ} 46^{\prime} 32.936^{\prime \prime} \mathrm{N}$	$71^{\circ} 43^{\prime} 30.859{ }^{\prime \prime} \mathrm{W}$	Milford	I	I	B/CWF	June 1 to Sept 30	II		16	1,407
Wright to Dracut Pipeline Segment	Hillsborough	Milford	J	11.95	SPI-594	UNT to Spaulding Brook	$42^{\circ} 46^{\prime} 34.794^{\prime \prime} \mathrm{N}$	$71^{\circ} 42^{\prime} 58.966{ }^{\prime \prime} \mathrm{W}$	Milford	P	I	B/CWF	$\begin{aligned} & \text { June } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	II		46	3,106

Table 1.1-2
Waterbodies Associated With the Project in New Hampshire

Facility Name	County	Town	Segment ${ }^{1}$	Nearest Milepost ${ }^{2}$	Waterbody ID 3	WaterbodyName 4	Latitude	Longitude	Quadrangle	Type ${ }^{5}$	FERC Class ${ }^{6}$	Water Quality Designation / Fishery Classification ${ }^{7}$	Timing Restriction ${ }^{8}$	Crossing Method ${ }^{9,10}$	Comments ${ }^{11}$	Crossing Length ${ }^{12}$ (feet)	
																(feet)	$\begin{gathered} \text { (square } \\ \text { feet) } \\ \hline \end{gathered}$
	Hillsborough	Milford	J	12.03	SPI-595	Spaulding Brook	$42^{\circ} 46^{\prime} 35.126^{\prime \prime} \mathrm{N}$	$71^{\circ} 42^{\prime} 53.269^{\prime \prime} \mathrm{W}$	Milford	P	I	B/CWF	June 1 to Sept 30	II		46	2,885
Wright to Dracut Pipeline Segment	Hillsborough	Milford	J	12.05	SPI-595	Spaulding Brook	$42^{\circ} 46^{\prime} 35.206{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 42^{\prime} 51.895{ }^{\prime \prime} \mathrm{W}$	Milford	P	I	B/CWF	June 1 to Sept 30	II		35	2,549
Wright to Dracut Pipeline Segment	Hillsborough	Milford	J	12.45	SPI-596	UNT to Spaulding Brook	$42^{\circ} 46^{\prime} 36.841^{\prime \prime} \mathrm{N}$	$71^{\circ} 42^{\prime} 23.790{ }^{\prime \prime} \mathrm{W}$	Milford	I	I	B/CWF	June 1 to Sept 30	II		37	3,415
Wright to Dracut Pipeline Segment	Hillsborough	Brookline	J	13.34	SPI-597	UNT to Spaulding Brook	$42^{\circ} 46^{\prime} 46.363{ }^{\prime \prime} \mathrm{N}$	71 41^{\prime} 23.837" W	Milford	P	MA	B/CWF	$\begin{aligned} & \text { June } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	II		103	6,524
Wright to Dracut Pipeline Segment	Hillsborough	Brookline	J	13.96	SPI-598	UNT to Spaulding Brook	$42^{\circ} 47^{\prime} 4.215^{\prime \prime} \mathrm{N}$	$71^{\circ} 40^{\prime} 47.172^{\prime \prime} \mathrm{W}$	Milford	I	I	B/CWF	$\begin{aligned} & \text { June } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	II		10	995
Wright to Dracut Pipeline Segment	Hillsborough	Brookline	J	14.08	SPI-599	UNT to Spaulding Brook	$42^{\circ} 47^{\prime} 7.716^{\prime \prime} \mathrm{N}$	$71^{\circ} 40^{\prime} 39.980{ }^{\prime \prime} \mathrm{W}$	Milford	I	I	B/CWF	$\begin{aligned} & \text { June } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	II		12	1,590
	Hillsborough	Brookline	J	14.35	SPI-601	UNT to Spaulding Brook	$42^{\circ} 47^{\prime} 15.449{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 40^{\prime} 24.093{ }^{\prime \prime} \mathrm{W}$	Milford	I	I	B/CWF	June 1 to Sept 30	II		21	2,590
Wright to Dracut Pipeline Segment	Hillsborough	Brookline	J	14.97	SPI-602	UNT to Ox Brook	$42^{\circ} 47^{\prime} 31.757{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 39^{\prime} 46.288{ }^{\prime \prime} \mathrm{W}$	Milford	I	I	B/CWF	June 1 to Sept 30	II		21	1,757
Wright to Dracut Pipeline Segment	Hillsborough	Milford	J	15.98	SPI-603	UNT to Ox Brook	$42^{\circ} 47^{\prime} 43.894^{\prime \prime} \mathrm{N}$	71 $38^{\prime} 38.691{ }^{\prime \prime} \mathrm{W}$	Milford	P	I	B/CWF	June 1 to Sept 30	II		48	3,596
Wright to Dracut Pipeline Segment	Hillsborough	Milford	J	17.23	SPI-608	UNT to Witches Brook	$42^{\circ} 48^{\prime} 0.613{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 37^{\prime} 13.478{ }^{\prime \prime} \mathrm{W}$	South Merrimack	P	I	B/CWF	June 1 to Sept 30	II		24	2,151
Wright to Dracut Pipeline Segment	Hillsborough	Milford	J	17.28	SPI-609	UNT to Witches Brook	$42^{\circ} 48^{\prime} 2.236^{\prime \prime} \mathrm{N}$	$71^{\circ} 37^{\prime} 11.099{ }^{\prime \prime} \mathrm{W}$	South Merrimack	P	MI	B/CWF	$\begin{aligned} & \text { June } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	N/A		0	3,067

Table 1.1-2
Waterbodies Associated With the Project in New Hampshire

Facility	County	Town	Segment ${ }^{1}$	Nearest	Waterbody ID 3	Waterbody	Latitude	Longitude	Quadrangle	Type ${ }^{5}$	FERC	Water Quality Designation /	Timing	Crossing	Comments ${ }^{11}$		$\begin{aligned} & \begin{array}{l} \text { sssing } \\ \text { 1gth } \\ \text { eet) } \\ \text { ent } \end{array} \end{aligned}$
												Fishery Classification ${ }^{7}$				(feet)	(square feet)
Wright to Dracut Pipeline Segment	Hillsborough	Milford	J	17.45	SPI-610	UNT to Witches Brook	$42^{\circ} 48^{\prime} 9.826^{\prime \prime} \mathrm{N}$	$71^{\circ} 37^{\prime} 3.902^{\prime \prime} \mathrm{W}$	South Merrimack	P	I	B/CWF	June 1 to Sept 30	II		73	8,671
Wright to Dracut Pipeline Segment	Hillsborough	Amherst	J	17.82	SPI-612	UNT to Witches Brook	$42^{\circ} 48^{\prime} 25.097{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 36{ }^{\prime} 48.417{ }^{\prime \prime} \mathrm{W}$	South Merrimack	P	MI	B/CWF	June 1 to Sept 30	N/A		0	463
Wright to Dracut Pipeline Segment	Hillsborough	Amherst	J	17.86	SPI-612	UNT to Witches Brook	$42^{\circ} 48^{\prime} 26.984^{\prime \prime} \mathrm{N}$	$71^{\circ} 36^{\prime} 46.788{ }^{\prime \prime} \mathrm{W}$	South Merrimack	P	MI	B/CWF	June 1 to Sept 30	N/A		0	301
Wright to Dracut Pipeline Segment	Hillsborough	Amherst	J	18.07	SPI-613	UNT to Witches Brook	$42^{\circ} 48^{\prime} 36.268^{\prime \prime} \mathrm{N}$	$71^{\circ} 36^{\prime} 38.728^{\prime \prime} \mathrm{W}$	South Merrimack	P	MI	B/CWF	June 1 to Sept 30	N/A		0	2,771
Wright to Dracut Pipeline Segment	Hillsborough	Amherst	J	18.16	SPI-614	UNT to Witches Brook	$42^{\circ} 48^{\prime} 38.146^{\prime \prime} \mathrm{N}$	$71^{\circ} 36{ }^{\prime} 34.632{ }^{\prime \prime} \mathrm{W}$	South Merrimack	P	MI	B/CWF	June 1 to Sept 30	N/A		0	64
Wright to Dracut Pipeline Segment	Hillsborough	Amherst	J	18.38	NHD-704	UNT to Witches Brook	$42^{\circ} 48^{\prime} 37.114^{\prime \prime} \mathrm{N}$	$71^{\circ} 36{ }^{\prime} 18.953$ " W	South Merrimack	I	MI	B/CWF	June 1 to Sept 30	II		5	1,525
Wright to Dracut Pipeline Segment	Hillsborough	Amherst	J	18.44	NHD-704	UNT to Witches Brook	$42^{\circ} 48^{\prime} 36.163 " \mathrm{~N}$	$71^{\circ} 36{ }^{\prime} 15.074^{\prime \prime} \mathrm{W}$	South Merrimack	I	MI	B/CWF	June 1 to Sept 30	II		5	935
Wright to Dracut Pipeline Segment	Hillsborough	Amherst	J	18.52	NHD-704	UNT to Witches Brook	$42^{\circ} 48^{\prime} 34.939^{\prime \prime} \mathrm{N}$	$71^{\circ} 36{ }^{\prime} 9.565{ }^{\prime \prime} \mathrm{W}$	South Merrimack	I	MI	B/CWF	June 1 to Sept 30	II		5	465
Wright to Dracut Pipeline Segment	Hillsborough	Merrimack	J	20.89	NHD-831	UNT to Witches Brook	$42^{\circ} 48^{\prime} 9.956^{\prime \prime} \mathrm{N}$	$71^{\circ} 33^{\prime} 33.330^{\prime \prime} \mathrm{W}$	South Merrimack	P	I	B/CWF	June 1 to Sept 30	II		25	1,950
Wright to Dracut Pipeline Segment	Hillsborough	Merrimack	J	22.80	NHD-829	UNT to Holts Pond	$42^{\circ} 48^{\prime} 27.142^{\prime \prime} \mathrm{N}$	$71^{\circ} 31^{\prime} 38.280 \prime \mathrm{~W}$	South Merrimack	AP	MI	B/CWF	$\begin{gathered} \text { June } 1 \text { to } \\ \text { Sept } 30 \end{gathered}$	II		8	672
Wright to Dracut Pipeline Segment	Hillsborough	Merrimack	J	23.48	NHD-827	UNT to Bowers Pond	$42^{\circ} 48^{\prime} 47.847^{\prime \prime} \mathrm{N}$	$71^{\circ} 31{ }^{\prime} 2.572{ }^{\prime \prime} \mathrm{W}$	South Merrimack	I	I	B/CWF	June 1 to Sept 30	II		10	1,300

Table 1.1-2
Waterbodies Associated With the Project in New Hampshire

Facility Name	County	Town	Segment ${ }^{1}$	Nearest Milepost ${ }^{2}$	Waterbody ID 3	Waterbody Name ${ }^{4}$	Latitude	Longitude	Quadrangle	Type ${ }^{5}$	FERCClass	Water Quality Designation / Fishery Classification ${ }^{7}$	Timing Restriction ${ }^{8}$	Crossing Method ${ }^{9,10}$	Comments ${ }^{11}$	Crossing Length ${ }^{12}$ (feet)	
																(feet)	(square feet)
Wright to Dracut Pipeline Segment	Hillsborough	Litchfield	J	26.19	SPI-626	Merrimack River	$42^{\circ} 49^{\prime} 44.580 " \mathrm{~N}$	$71^{\circ} 28^{\prime} 52.254^{\prime \prime} \mathrm{W}$	Nashua North	P	MA	B/CWF	June 1 to Sept 30	IV		565	28,825
Wright to Dracut Pipeline Segment	Hillsborough	Litchfield	J	26.58	SPI-627	UNT to Merrimack River	$42^{\circ} 49^{\prime} 49.212^{\prime \prime} \mathrm{N}$	$71^{\circ} 28^{\prime} 25.336^{\prime \prime} \mathrm{W}$	Nashua North	I	MI	B		N/A		0	133
Wright to Dracut Pipeline Segment	Hillsborough	Litchfield	J	26.62	SPI-628	UNT to Merrimack River	$42^{\circ} 49^{\prime} 50.330 " \mathrm{~N}$	$71^{\circ} 28^{\prime} 22.481{ }^{\prime \prime} \mathrm{W}$	Nashua North	I	I	B		II		30	3,485
Wright to Dracut Pipeline Segment	Rockingham	Londonderry	J	29.32	LD-L-S001A	Nesenkeag Brook	$42^{\circ} 50^{\prime} 32.360 " \mathrm{~N}$	$71^{\circ} 25^{\prime} 21.545^{\prime \prime} \mathrm{W}$	Nashua North	I	MI	B/CWF	June 1 to Sept 30	II		4	257
Wright to Dracut Pipeline Segment	Rockingham	Londonderry	J	29.32	LD-L-S001	Nesenkeag Brook	$42^{\circ} 50^{\prime} 32.885^{\prime \prime} \mathrm{N}$	$71^{\circ} 25^{\prime} 21.222^{\prime \prime} \mathrm{W}$	Nashua North	P	MI	B/CWF	$\begin{aligned} & \text { June } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	N/A		0	152
Wright to Dracut Pipeline Segment	Rockingham	Londonderry	J	30.13	LD-L-S002	UNT to Nesenkeag Brook	$42^{\circ} 50^{\prime} 23.785^{\prime \prime} \mathrm{N}$	$71^{\circ} 24^{\prime} 35.911^{\prime \prime} \mathrm{W}$	Nashua North	NF	I	B		II		69	3,005
Wright to Dracut Pipeline Segment	Hillsborough	Hudson	J	31.44	LD-Y-S001	UNT to Chase Brook	$42^{\circ} 49^{\prime} 28.224^{\prime \prime} \mathrm{N}$	$71^{\circ} 23^{\prime} 41.737^{\prime \prime} \mathrm{W}$	Nashua North	I	MI	B/CWF	June 1 to Sept 30	N/A	Wild Brook Trout	0	205
Wright to Dracut Pipeline Segment	Hillsborough	Hudson	J	32.37	HD-T-S001	UNT to Robinson Pond	$42^{\circ} 48^{\prime} 50.669^{\prime \prime} \mathrm{N}$	$71^{\circ} 23^{\prime} 0.248{ }^{\prime \prime} \mathrm{W}$	Nashua North	NF	MI	B/CWF	June 1 to Sept 30	II		3	56
Wright to Dracut Pipeline Segment	Hillsborough	Hudson	J	32.37	HD-T-S001	UNT to Robinson Pond	$42^{\circ} 48^{\prime} 50.544^{\prime \prime} \mathrm{N}$	$71^{\circ} 23^{\prime} 0.983{ }^{\prime \prime} \mathrm{W}$	Nashua North	NF	MI	B/CWF	June 1 to Sept 30	N/A		0	760
Wright to Dracut Pipeline Segment	Hillsborough	Hudson	J	32.91	HD-G-S002	UNT to Robinson Pond	$42^{\circ} 48^{\prime} 29.282^{\prime \prime} \mathrm{N}$	$71^{\circ} 22^{\prime} 35.887{ }^{\prime \prime} \mathrm{W}$	Nashua North	I	MI	B/CWF	$\begin{aligned} & \text { June } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	II		3	283
Wright to Dracut Pipeline Segment	Hillsborough	Hudson	J	33.04	HD-G-S001	UNT to Robinson Pond	$42^{\circ} 48^{\prime} 24.031^{\prime \prime} \mathrm{N}$	$71^{\circ} 22^{\prime} 29.836{ }^{\prime \prime} \mathrm{W}$	Windham	I	MI	B/CWF	$\begin{aligned} & \text { June } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	N/A		0	43

[^0]Table 1.1-2
Waterbodies Associated With the Project in New Hampshire

Facility Name	County	Town	Segment ${ }^{1}$	Nearest Milepost ${ }^{2}$	Waterbody ID ${ }^{3}$	Waterbody Name ${ }^{4}$	Latitude	Longitude	Quadrangle	Type ${ }^{5}$	FERCClass 6	Water Quality Designation / Fishery Classification ${ }^{7}$	Timing Restriction ${ }^{8}$	Crossing Method ${ }^{9,10}$	Comments ${ }^{11}$	Crossing Length ${ }^{12}$ (feet)	
																(feet)	$\begin{aligned} & \text { (square } \\ & \text { feet) } \\ & \hline \end{aligned}$
Wright to Dracut Pipeline Segment	Rockingham	Windham	J	34.00	HD-L-S001	Beaver Brook	$42^{\circ} 47^{\prime} 44.654^{\prime \prime} \mathrm{N}$	$71^{\circ} 21^{\prime} 48.470{ }^{\prime \prime} \mathrm{W}$	Windham	P	I	B/CWF	June 1 to Sept 30	II		18	1,942
Wright to Dracut Pipeline Segment	Rockingham	Windham	J	34.02	HD-L-S001	Beaver Brook	$42^{\circ} 47^{\prime} 43.854^{\prime \prime} \mathrm{N}$	$71^{\circ} 21^{\prime} 47.597^{\prime \prime} \mathrm{W}$	Windham	P	I	B/CWF	June 1 to Sept 30	II		44	3,040
Wright to Dracut Pipeline Segment	Rockingham	Windham	J	34.02	SPI-634	Beaver Brook	$42^{\circ} 47^{\prime} 43.497{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 21^{\prime} 47.790{ }^{\prime \prime} \mathrm{W}$	Windham	P	MI	B/CWF	June 1 to Sept 30	N/A		0	23
Wright to Dracut Pipeline Segment	Rockingham	Windham	J	34.02	HD-L-S001	Beaver Brook	$42^{\circ} 47^{\prime} 43.497{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 21^{\prime} 47.790^{\prime \prime} \mathrm{W}$	Windham	P	MI	B/CWF	June 1 to Sept 30	N/A		0	5
Wright to Dracut Pipeline Segment	Rockingham	Windham	J	34.03	SPI-634	Beaver Brook	$42^{\circ} 47^{\prime} 43.516^{\prime \prime} \mathrm{N}$	$71^{\circ} 21^{\prime} 47.228^{\prime \prime} \mathrm{W}$	Windham	P	I	B/CWF	$\begin{aligned} & \text { June } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	II		50	3,334
Wright to Dracut Pipeline Segment	Rockingham	Windham	J	34.03	SPI-634	Beaver Brook	$42^{\circ} 47^{\prime} 43.526^{\prime \prime} \mathrm{N}$	$71^{\circ} 21^{\prime} 47.066{ }^{\prime \prime} \mathrm{W}$	Windham	P	MI	B/CWF	$\begin{aligned} & \text { June } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	N/A		0	12
Wright to Dracut Pipeline Segment	Rockingham	Windham	J	34.03	HD-L-S001	Beaver Brook	$42^{\circ} 47^{\prime} 43.526^{\prime \prime} \mathrm{N}$	$71^{\circ} 21^{\prime} 47.066^{\prime \prime} \mathrm{W}$	Windham	P	MI	B/CWF	June 1 to Sept 30	N/A		0	5
Wright to Dracut Pipeline Segment	Rockingham	Windham	J	34.26	WD-K-S001	UNT to Beaver Brook	$42^{\circ} 47^{\prime} 33.173^{\prime \prime} \mathrm{N}$	$71^{\circ} 21^{\prime} 38.599 " \mathrm{~W}$	Windham	NF	MI	B/CWF	June 1 to Sept 30	N/A		0	3,999
Wright to Dracut Pipeline Segment	Rockingham	Windham	J	34.99	WD-D-S002	UNT to Beaver Brook	$42^{\circ} 47^{\prime} 4.493{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 21^{\prime} 9.062^{\prime \prime} \mathrm{W}$	Windham	P	I	B/CWF	June 1 to Sept 30	II		17	173
Wright to Dracut Pipeline Segment	Rockingham	Windham	J	35.00	WD-D-S002	UNT to Beaver Brook	$42^{\circ} 47^{\prime} 3.976{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 21^{\prime} 8.547^{\prime \prime} \mathrm{W}$	Windham	P	MI	B/CWF	$\begin{aligned} & \text { June } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	II		7	120
Wright to Dracut Pipeline Segment	Rockingham	Windham	J	35.00	SPI-638	UNT to Beaver Brook	$42^{\circ} 47^{\prime} 4.082^{\prime \prime} \mathrm{N}$	$71^{\circ} 21^{\prime} 8.236^{\prime \prime} \mathrm{W}$	Windham	I	MI	B/CWF	June 1 to Sept 30	N/A		0	206

Table 1.1-2
Waterbodies Associated With the Project in New Hampshire

Facility Name	County	Town	Segment ${ }^{1}$	Nearest Milepost ${ }^{2}$	Waterbody ID 3	$\begin{aligned} & \text { Waterbody } \\ & \text { Name }^{4} \end{aligned}$	Latitude	Longitude	Quadrangle	Type ${ }^{5}$	FERCClass	Water Quality Designation / Fishery Classification ${ }^{7}$	Timing Restriction ${ }^{8}$	Crossing Method 9,10	Comments ${ }^{11}$	Crossing Length ${ }^{12}$ (feet)	
																(feet)	(square feet)
Wright to Dracut Pipeline Segment	Rockingham	Windham	J	35.01	WD-D-S002	UNT to Beaver Brook	$42^{\circ} 47^{\prime} 3.768^{\prime \prime} \mathrm{N}$	$71^{\circ} 21^{\prime} 8.339 " \mathrm{~W}$	Windham	P	MI	B/CWF	June 1 to Sept 30	II		4	466
Wright to Dracut Pipeline Segment	Rockingham	Windham	J	35.31	SPI-643	UNT to Beaver Brook	42 ${ }^{\circ} 46^{\prime} 50.969^{\prime \prime} \mathrm{N}$	$71^{\circ} 20^{\prime} 55.867{ }^{\prime \prime} \mathrm{W}$	Windham	I	I	B/CWF	June 1 to Sept 30	II		27	2,313
Wright to Dracut Pipeline Segment	Rockingham	Windham	J	35.77	SPI-645	UNT to Beaver Brook	$42^{\circ} 46^{\prime} 31.3511^{\prime \prime}$	$71^{\circ} 20^{\prime} 41.717^{\prime \prime} \mathrm{W}$	Windham	I	I	B/CWF	June 1 to Sept 30	II		46	3,766
Wright to Dracut Pipeline Segment	Rockingham	Windham	J	35.78	SPI-646	UNT to Beaver Brook	$42^{\circ} 46^{\prime} 27.439 " \mathrm{~N}$	$71^{\circ} 20^{\prime} 47.773{ }^{\prime \prime} \mathrm{W}$	Windham	I	MI	B/CWF	June 1 to Sept 30	N/A		0	235
Wright to Dracut Pipeline Segment	Rockingham	Windham	J	36.04	SPI-647	UNT to Beaver Brook	$42^{\circ} 46^{\prime} 21.108^{\prime \prime} \mathrm{N}$	$71^{\circ} 20^{\prime} 27.743^{\prime \prime} \mathrm{W}$	Windham	I	MI	B/CWF	$\begin{aligned} & \text { June } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	N/A		0	50
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	36.32	PH-K-S001	UNT to Beaver Brook	$42^{\circ} 46^{\prime} 7.761{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 20^{\prime} 16.696{ }^{\prime \prime} \mathrm{W}$	Windham	NF	MI	B/CWF	June 1 to Sept 30	N/A		0	52
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	36.52	SPI-648	UNT to Beaver Brook	$42^{\circ} 46^{\prime} 7.193^{\prime \prime} \mathrm{N}$	$71^{\circ} 20^{\prime} 7.071{ }^{\prime \prime} \mathrm{W}$	Windham	I	I	B/CWF	June 1 to Sept 30	II		19	1,718
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	36.64	SPI-652	UNT to Beaver Brook	$42^{\circ} 46^{\prime} 2.412^{\prime \prime} \mathrm{N}$	$71^{\circ} 20^{\prime} 1.902^{\prime \prime} \mathrm{W}$	Windham	I	I	B/CWF	June 1 to Sept 30	II		13	1,326
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	36.80	SPI-655	UNT to Beaver Brook	$42^{\circ} 45^{\prime} 55.233 " \mathrm{~N}$	$71^{\circ} 19^{\prime} 56.457{ }^{\prime \prime} \mathrm{W}$	Windham	I	I	B/CWF	June 1 to Sept 30	II		14	1,220
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	36.87	SPI-656	UNT to Beaver Brook	$42^{\circ} 45^{\prime} 51.422^{\prime \prime} \mathrm{N}$	$71^{\circ} 20^{\prime} 0.107{ }^{\prime \prime} \mathrm{W}$	Windham	I	MI	B/CWF	June 1 to Sept 30	N/A		0	83
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	37.39	SPI-657	UNT to Beaver Brook	$42^{\circ} 45^{\prime} 24.907{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 19^{\prime} 45.554{ }^{\prime \prime} \mathrm{W}$	Windham	I	MI	B/CWF	June 1 to Sept 30	N/A		0	4,580

[^1]Table 1.1-2
Waterbodies Associated With the Project in New Hampshire

Facility	County	Town	Segment ${ }^{1}$	Nearest	Waterbody ID ${ }^{3}$	Waterbody	Latitude	Longitude	Quadrangle	Type ${ }^{5}$	FERC	Water Quality Designation /	Timing	Crossing	Comments ${ }^{11}$		$\begin{aligned} & \text { lssing } \\ & \text { loghth }^{12} \\ & \text { eet) } \end{aligned}$
												Fishery Classification ${ }^{7}$				(feet)	$\begin{aligned} & \text { (square } \\ & \text { feet) } \end{aligned}$
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	38.00	PH-Y-S001	UNT to Beaver Brook	$42^{\circ} 45^{\prime} 0.927^{\prime \prime} \mathrm{N}$	$71^{\circ} 19^{\prime} 20.612^{\prime \prime} \mathrm{W}$	Windham	I	MI	B/CWF	June 1 to Sept 30	II		2	123
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	38.69	SPI-661	Golden Brook	$42^{\circ} 44^{\prime} 29.893{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 18^{\prime} 56.474^{\prime \prime} \mathrm{W}$	Lowell	P	MI	B		N/A		0	1,570
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	38.72	SPI-660	Golden Brook	$42^{\circ} 44^{\prime} 28.930^{\prime \prime} \mathrm{N}$	$71^{\circ} 18^{\prime} 54.919{ }^{\prime \prime} \mathrm{W}$	Lowell	P	I	B		II		19	1,181
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	38.72	PH-X-S001	Golden Brook	$42^{\circ} 44^{\prime} 28.674^{\prime \prime} \mathrm{N}$	$71^{\circ} 18^{\prime} 55.300{ }^{\prime \prime} \mathrm{W}$	Lowell	P	MI	B		N/A		0	305
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	38.73	PH-X-S001	Golden Brook	$42^{\circ} 44^{\prime} 28.2655^{\prime \prime}$	$71^{\circ} 18^{\prime} 54.636{ }^{\prime \prime} \mathrm{W}$	Lowell	P	MI	B		N/A		0	3,489
Haverhill Lateral	Rockingham	Salem	P	6.96	SPI-728	UNT to Harris Brook	$42^{\circ} 44^{\prime} 37.929{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 12^{\prime} 40.128^{\prime \prime} \mathrm{W}$	Lawrence	RUB	I	B		II		38	1,155
Haverhill Lateral	Rockingham	Salem	P	7.04	SPI-730	UNT to Harris Brook	$42^{\circ} 44^{\prime} 40.4611^{\prime \prime} \mathrm{N}$	$71^{\circ} 12^{\prime} 35.844^{\prime \prime} \mathrm{W}$	Lawrence	P	I	B		II		43	1,282
Haverhill Lateral	Rockingham	Salem	P	7.39	SPI-731	UNT to Harris Brook	$42^{\circ} 44^{\prime} 45.197{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 12^{\prime} 11.948^{\prime \prime} \mathrm{W}$	Lawrence	P	MI	B		N/A		0	85
Haverhill Lateral	Rockingham	Salem	P	7.52	SPI-732	World End Brook	$42^{\circ} 44^{\prime} 54.935{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 12^{\prime} 8.668{ }^{\prime \prime} \mathrm{W}$	Lawrence	P	I	B		II		31	4,837
Haverhill Lateral	Rockingham	Salem	P	7.67	SPI-732	World End Brook	$42^{\circ} 45^{\prime} 1.938{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 12^{\prime} 3.706^{\prime \prime} \mathrm{W}$	Salem Depot	P	I	B		II		51	3,665
Haverhill Lateral	Rockingham	Salem	P	8.84	SPI-735	UNT to World End Pond	$42^{\circ} 45^{\prime} 46.844^{\prime \prime} \mathrm{N}$	$71^{\circ} 11^{\prime} 11.262{ }^{\prime \prime} \mathrm{W}$	Salem Depot	I	MI	B		N/A		0	1,684
Haverhill Lateral	Rockingham	Salem	P	8.86	SPI-735	$\begin{aligned} & \text { UNT to } \\ & \text { World End } \\ & \text { Pond } \end{aligned}$	$42^{\circ} 45^{\prime} 48.143^{\prime \prime} \mathrm{N}$	$71^{\circ} 11^{\prime} 10.436{ }^{\prime \prime} \mathrm{W}$	Salem Depot	I	MI	B		N/A		0	673
Fitchburg Lateral Extension	Hillsborough	Mason	Q	0.19	SPI-748	UNT to $\begin{array}{c}\text { Spaulding } \\ \text { Brook }\end{array}$	$42^{\circ} 46^{\prime} 18.885{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 44^{\prime} 11.484{ }^{\prime \prime} \mathrm{W}$	Milford	I	I	B/CWF	$\begin{gathered} \text { June } 1 \text { to } \\ \text { Sept } 30 \end{gathered}$	II		43	3,115

Table 1.1-2
Waterbodies Associated With the Project in New Hampshire

Facility Name	County	Town	Segment ${ }^{1}$	Nearest	Waterbody ID ${ }^{3}$	Waterbody	Latitude	Longitude	Quadrangle	Type ${ }^{5}$	FERC	Water Quality Designation /	Timing	Crossing	Comments ${ }^{11}$		$\begin{aligned} & \text { lssing } \\ & \text { loghth }^{12} \\ & \text { eet) } \end{aligned}$
												Fishery Classification ${ }^{7}$				(feet)	(square feet)
Fitchburg Lateral Extension	Hillsborough	Mason	Q	0.20	SPI-747	UNT to Spaulding Brook	$42^{\circ} 46^{\prime} 18.675{ }^{\prime \prime} \mathrm{N}$	710 44' 11.191" W	Milford	I	MI	B/CWF	June 1 to Sept 30	N/A		0	45
Fitchburg Lateral Extension	Hillsborough	Mason	Q	0.33	SPI-749	Spaulding Brook	$42^{\circ} 46^{\prime} 12.091{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 44^{\prime} 12.461{ }^{\prime \prime} \mathrm{W}$	Milford	P	I	B/CWF	June 1 to Sept 30	II		41	2,637
Fitchburg Lateral Extension	Hillsborough	Mason	Q	0.34	SPI-750	Spaulding Brook	$42^{\circ} 46^{\prime} 11.3477^{\prime \prime} \mathrm{N}$	$71^{\circ} 44^{\prime} 12.770{ }^{\prime \prime} \mathrm{W}$	Milford	P	I	B/CWF	June 1 to Sept 30	II		53	4,039
Fitchburg Lateral Extension	Hillsborough	Mason	Q	0.90	SPI-756	UNT to Spaulding Brook	$42^{\circ} 45^{\prime} 42.975{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 44^{\prime} 18.242^{\prime \prime} \mathrm{W}$	Milford	P	I	B/CWF	June 1 to Sept 30	II		16	881
Fitchburg Lateral Extension	Hillsborough	Mason	Q	0.90	SPI-756	UNT to Spaulding Brook	$42^{\circ} 45^{\prime} 42.713{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 44^{\prime} 18.273{ }^{\prime \prime} \mathrm{W}$	Milford	P	MA	B/CWF	June 1 to Sept 30	II		128	2,660
Fitchburg Lateral Extension	Hillsborough	Mason	Q	1.21	SPI-757	UNT to Spaulding Brook	$42^{\circ} 45^{\prime} 28.8477^{\prime \prime} \mathrm{N}$	$71^{\circ} 44^{\prime} 28.738^{\prime \prime} \mathrm{W}$	Milford	I	I	B/CWF	June 1 to Sept 30	II		70	4,953
Fitchburg Lateral Extension	Hillsborough	Mason	Q	1.28	SPI-757	$\begin{aligned} & \text { UNT to } \\ & \text { Spaulding } \\ & \text { Brook } \\ & \hline \end{aligned}$	$42^{\circ} 45^{\prime} 25.843^{\prime \prime} \mathrm{N}$	$71^{\circ} 44^{\prime} 30.211^{\prime \prime} \mathrm{W}$	Milford	I	I	B/CWF	June 1 to Sept 30	II		95	6,157
Fitchburg Lateral Extension	Hillsborough	Mason	Q	1.66	SPI-758	UNT to Gould Mill Brook	$42^{\circ} 45^{\prime} 7.096^{\prime \prime} \mathrm{N}$	$71^{\circ} 44^{\prime} 21.768^{\prime \prime} \mathrm{W}$	Milford	I	I	B/CWF	June 1 to Sept 30	II		14	889
Fitchburg Lateral Extension	Hillsborough	Mason	Q	1.70	SPI-759	UNT to Gould Mill Brook	$42^{\circ} 45^{\prime} 4.796^{\prime \prime} \mathrm{N}$	$71^{\circ} 44^{\prime} 21.579{ }^{\prime \prime} \mathrm{W}$	Milford	I	I	B/CWF	June 1 to Sept 30	II		16	1,343
Fitchburg Lateral Extension	Hillsborough	Mason	Q	2.58	SPI-760	Gould Mill Brook	$42^{\circ} 44^{\prime} 19.320 " \mathrm{~N}$	$71^{\circ} 44^{\prime} 17.842^{\prime \prime} \mathrm{W}$	Townsend	P	I	B/CWF	June 1 to Sept 30	II		22	1,523
Fitchburg Lateral Extension	Hillsborough	Mason	Q	2.68	SPI-762	UNT to Gould Mill Brook	$42^{\circ} 44^{\prime} 14.238{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 44^{\prime} 17.424^{\prime \prime} \mathrm{W}$	Townsend	I	I	B/CWF	$\begin{aligned} & \text { June } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	II		28	1,968
Fitchburg Lateral Extension	Hillsborough	Mason	Q	2.76	SPI-762	UNT to Gould Mill Brook	$42^{\circ} 44^{\prime} 9.955^{\prime \prime} \mathrm{N}$	$71^{\circ} 44^{\prime} 17.895{ }^{\prime \prime} \mathrm{W}$	Townsend	I	I	B/CWF	June 1 to Sept 30	II		24	1,845
Fitchburg Lateral Extension	Hillsborough	Mason	Q	2.80	SPI-762	UNT to Gould Mill Brook	$42^{\circ} 44^{\prime} 7.602^{\prime \prime} \mathrm{N}$	$71^{\circ} 44^{\prime} 18.588{ }^{\prime \prime} \mathrm{W}$	Townsend	I	I	B/CWF	June 1 to Sept 30	II		32	2,769
$\begin{gathered} \hline \text { Fitchburg } \\ \text { Lateral } \\ \text { Extension } \\ \hline \end{gathered}$	Hillsborough	Mason	Q	3.32	NHD-735	UNT to Mason Brook	$42^{\circ} 43^{\prime} 42.186{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 44^{\prime}$ 28.190" W	Townsend	P	MI	B/CWF	June 1 to Sept 30	II		5	785

Table 1.1-2

Waterbodies Associated With the Project in New Hampshire

Facility Name	County	Town	Segment ${ }^{1}$	Nearest Milepost ${ }^{2}$	Waterbody ID 3	Waterbody Name ${ }^{4}$	Latitude	Longitude	Quadrangle	Type ${ }^{5}$	FERCClass 6	WaterQualityDesignation /FisheryClassification	Timing Restriction ${ }^{8}$	Crossing Method ${ }^{9,10}$	Comments ${ }^{11}$	Crossing Length ${ }^{12}$ (feet)	
																(feet)	$\begin{gathered} \text { (square } \\ \text { feet) } \\ \hline \end{gathered}$
Fitchburg Lateral Extension	Hillsborough	Mason	Q	3.48	SPI-766	UNT to Mason Brook	$42^{\circ} 43^{\prime} 37.770^{\prime \prime} \mathrm{N}$	$71^{\circ} 44^{\prime} 37.090{ }^{\prime \prime} \mathrm{W}$	Townsend	I	I	B/CWF	June 1 to Sept 30	II		21	1,655
Fitchburg Lateral Extension	Hillsborough	Mason	Q	4.36	SPI-768	UNT to Mason Brook	$42^{\circ} 43^{\prime} 0.978{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 45^{\prime} 9.567{ }^{\prime \prime} \mathrm{W}$	Ashby	P	I	B/CWF	June 1 to Sept 30	II		46	3,672
Fitchburg Lateral Extension	Hillsborough	Mason	Q	4.37	SPI-769	UNT to Mason Brook	$42^{\circ} 43^{\prime} 0.627^{\prime \prime} \mathrm{N}$	$71^{\circ} 45^{\prime} 9.958{ }^{\prime \prime}$ W	Ashby	P	MA	B/CWF	June 1 to Sept 30	II		1,346	128,458
Fitchburg Lateral Extension	Hillsborough	Mason	Q	4.64	SPI-770	Mason Brook	$42^{\circ} 42^{\prime} 49.267{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 45^{\prime} 21.084^{\prime \prime} \mathrm{W}$	Ashby	P	I	B/CWF	June 1 to Sept 30	II	Wild Brook Trout	20	1,973
Fitchburg Lateral Extension	Hillsborough	Mason	Q	4.65	SPI-770	Mason Brook	$42^{\circ} 42^{\prime} 48.608{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 45^{\prime} 21.770{ }^{\prime \prime} \mathrm{W}$	Ashby	P	I	B/CWF	June 1 to Sept 30	II	Wild Brook Trout	28	2,221

Contractor Yards ${ }^{13}$																
$\begin{gathered} \hline \text { NED-J- } \\ 0200 \\ \hline \end{gathered}$	Hillsborough	Milford	J	14.88	NHD-702	Tucker Brook	42 ${ }^{\circ} 50^{\prime} 24.795{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 41^{\prime} 6.065{ }^{\prime \prime} \mathrm{W}$	Milford	P	MI	B/CWF	$\begin{aligned} & \hline \text { June } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	N/A	N/A	312
$\begin{gathered} \text { NED-J- } \\ 0200 \end{gathered}$	Hillsborough	Milford	J	14.88	NHD-703	Tucker Brook	$42^{\circ} 50^{\prime} 24.260^{\prime \prime} \mathrm{N}$	$71^{\circ} 41^{\prime} 7.997{ }^{\prime \prime} \mathrm{W}$	Milford	P	MI	B/CWF	$\begin{gathered} \hline \text { June } 1 \text { to } \\ \text { Sept } 30 \\ \hline \end{gathered}$	N/A	N/A	147
$\begin{gathered} \text { NED-I- } \\ 0201 \end{gathered}$	Cheshire	Jaffrey	I	15.92	NHD-836	UNT to Cummings Meadow Reservoir	$42^{\circ} 49^{\prime} 49.256{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 6^{\prime} 7.761{ }^{\prime \prime} \mathrm{W}$	Jaffrey	I	MI	B		N/A	N/A	693
$\begin{aligned} & \text { NED-J- } \\ & 0401 \end{aligned}$	Merrimack	Hooksett	J	29.79	NHD-837	$\begin{gathered} \text { UNT to } \\ \text { Peters } \\ \text { Brook } \\ \hline \end{gathered}$	$43^{\circ} 4^{\prime} 20.307{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 25^{\prime} 39.098{ }^{\prime \prime} \mathrm{W}$	Hooksett	C	MI	B		N/A	N/A	1,635
$\begin{gathered} \text { NED-J- } \\ 0401 \end{gathered}$	Merrimack	Hooksett	J	29.79	NHD-839	UNT to Peters Brook	$43^{\circ} 4^{\prime} 23.112^{\prime \prime} \mathrm{N}$	$71^{\circ} 25^{\prime} 45.168{ }^{\prime \prime} \mathrm{W}$	Hooksett	AP	MI	B		N/A	N/A	6
$\begin{gathered} \text { NED-J- } \\ 0401 \end{gathered}$	Merrimack	Hooksett	J	29.79	NHD-842	$\begin{aligned} & \hline \text { UNT to } \\ & \text { Peters } \\ & \text { Brook } \\ & \hline \end{aligned}$	$43^{\circ} 4^{\prime} 23.112{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 25^{\prime} 45.168{ }^{\prime \prime} \mathrm{W}$	Hooksett	AP	MI	B		N/A	N/A	6
$\begin{gathered} \text { NED-J- } \\ 0401 \end{gathered}$	Merrimack	Hooksett	J	29.79	NHD-843	UNT to Peters Brook	$43^{\circ} 4^{\prime} 20.307{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 25^{\prime} 39.098{ }^{\prime \prime} \mathrm{W}$	Hooksett	C	MI	B		N/A	N/A	1,641

Table 1.1-2

Waterbodies Associated With the Project in New Hampshire

Facility	County	Town	Segment ${ }^{1}$	Nearest	Waterbody ID 3	Waterbody	Latitude	Longitude	Quadrangle	Type ${ }^{5}$	FERC	Water Quality Designation /	Timing	Crossing	Comments ${ }^{11}$		$\begin{aligned} & \text { ossing } \\ & \text { pgth }^{12} \end{aligned}$ eet)
												Fishery Classification ${ }^{7}$				(feet)	(square feet)
$\begin{gathered} \hline \text { NED-J- } \\ 0401 \end{gathered}$	Merrimack	Hooksett	J	29.79	NHD-841	Peters Brook	$43^{\circ} 4^{\prime} 16.576{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 25^{\prime} 58.393{ }^{\prime \prime} \mathrm{W}$	Hooksett	AP	MI	B		N/A		N/A	27
$\begin{gathered} \text { NED-J- } \\ 0401 \end{gathered}$	Merrimack	Hooksett	J	29.79	NHD-837	UNT to Peters Brook	$43^{\circ} 4^{\prime} 21.355{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 25^{\prime} 40.229^{\prime \prime} \mathrm{W}$	Hooksett	C	MI	B		N/A		N/A	1,635
$\begin{gathered} \text { NED-J- } \\ 0401 \end{gathered}$	Merrimack	Hooksett	J	29.79	NHD-843	UNT to Peters Brook	$43^{\circ} 4^{\prime} 21.355{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 25^{\prime} 40.229^{\prime \prime} \mathrm{W}$	Hooksett	C	MI	B		N/A		N/A	1,641
$\begin{gathered} \text { NED-J- } \\ 0401 \\ \hline \end{gathered}$	Merrimack	Hooksett	J	29.79	NHD-838	Peters Brook	430 $4^{\prime} 16.509{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 25^{\prime} 58.468{ }^{\prime \prime} \mathrm{W}$	Hooksett	AP	MI	B		N/A		N/A	27
$\begin{gathered} \text { NED-J- } \\ 0401 \end{gathered}$	Merrimack	Hooksett	J	29.79	NHD-841	Peters Brook	43 ${ }^{\circ} 4^{\prime} 16.509{ }^{\prime \prime} \mathrm{N}$	71${ }^{\circ} 25^{\prime} 58.468{ }^{\prime \prime} \mathrm{W}$	Hooksett	AP	MI	B		N/A		N/A	27
$\begin{aligned} & \text { NED-J- } \\ & 0500 \end{aligned}$	Hillsborough	Pelham	J	37.31	SPI-657	UNT to Beaver Brook	$42^{\circ} 45^{\prime} 25.019^{\prime \prime} \mathrm{N}$	$71^{\circ} 19^{\prime} 44.853^{\prime \prime} \mathrm{W}$	Hillsborough	I	MI	B		N/A		N/A	4,580
$\begin{gathered} \text { NED-P- } \\ 0100 \\ \hline \end{gathered}$	Rockingham	Salem	P	7.56	SPI-732	World End Brook	$42^{\circ} 44^{\prime} 54.379{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 12^{\prime} 8.1500^{\prime \prime}$ W	Rockingham	P	MI	B		N/A		N/A	508
$\begin{gathered} \text { NED-P- } \\ 0100 \\ \hline \end{gathered}$	Rockingham	Salem	P	7.56	SPI-732	$\begin{gathered} \text { World End } \\ \text { Brook } \\ \hline \end{gathered}$	$42^{\circ} 44^{\prime} 55.792^{\prime \prime} \mathrm{N}$	71¹2 ${ }^{\prime}$ 8.697" W	Rockingham	P	MI	B		N/A		N/A	10
Contractor Yard Subtotal																0	12,895
Access Roads ${ }^{13}$																	
$\begin{gathered} \text { NED-TAR- } \\ \text { H-2101 } \end{gathered}$	Cheshire	Winchester	I	0.32	NHD-874	Black Brook	$42^{\circ} 43^{\prime} 37.554 " \mathrm{~N}$	72 ${ }^{\circ} 22^{\prime} 23.473^{\prime \prime} \mathrm{W}$	Mount Grace	P	MI	B		N/A		3	105
$\begin{aligned} & \text { NED-TAR- } \\ & \text { I-0001 } \end{aligned}$	Cheshire	Winchester	I	1.30	NHD-875	Black Brook	$42^{\circ} 43^{\prime} 59.252^{\prime \prime} \mathrm{N}$	$72^{\circ} 21^{\prime} 57.782^{\prime \prime} \mathrm{W}$	Mount Grace	P	MI	B		N/A		3	141
$\begin{aligned} & \text { NED-TAR- } \\ & \text { I-0200 } \end{aligned}$	Cheshire	Richmond	I	4.03	NHD-876	Brickyard Brook	$42^{\circ} 45^{\prime} 46.553 " \mathrm{~N}$	72º 19' $24.521{ }^{\prime \prime} \mathrm{W}$	West Swanzey	P	MI	B/CWF	June 1 to Sept 30	N/A	Wild Brook Trout	3	63
$\begin{gathered} \hline \text { NED-TAR- } \\ \text { I-0200 } \\ \hline \end{gathered}$	Cheshire	Richmond	I	4.03	NHD-685	Brickyard Brook	42 ${ }^{\circ} 46^{\prime} 15.493{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 19^{\prime} 27.908{ }^{\prime \prime} \mathrm{W}$	$\begin{gathered} \hline \text { West } \\ \text { Swanzey } \end{gathered}$	I	MI	B/CWF	$\begin{aligned} & \hline \text { June } 1 \text { to } \\ & \text { Sept } 30 \end{aligned}$	N/A	$\begin{gathered} \hline \text { Wild Brook } \\ \text { Trout } \\ \hline \end{gathered}$	3	63
NED-TAR- I-0200	Cheshire	Winchester	I	4.03	NHD-376	UNT to Roaring Brook	$42^{\circ} 45^{\prime} 41.867{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 20^{\prime} 34.654{ }^{\prime \prime} \mathrm{W}$	West Swanzey	I	MI	B/CWF	June 1 to Sept 31	N/A		3	63
NED-TAR- I-0200	Cheshire	Richmond	I	4.03	NHD-683	UNT to Roaring Brook	$42^{\circ} 45^{\prime} 49.545^{\prime \prime} \mathrm{N}$	$72^{\circ} 20^{\prime} 5.317{ }^{\prime \prime} \mathrm{W}$	West Swanzey	I	MI	B/CWF	June 1 to Sept 32	N/A		3	63
NED-TAR- I-0200	Cheshire	Richmond	I	4.03	NHD-684	UNT to Roaring Brook	$42^{\circ} 45^{\prime} 51.731 \mathrm{~N}$	72 ${ }^{\circ} 19^{\prime} 54.796{ }^{\prime \prime} \mathrm{W}$	West Swanzey	I	MI	B/CWF	June 1 to Sept 30	N/A		3	60
$\underset{\text { I-1101 }}{\text { NED-TAR- }}$	Cheshire	Rindge	I	21.21	NHD-877	UNT to Tarbell Brook	$42^{\circ} 44^{\prime} 33.812^{\prime \prime} \mathrm{N}$	$72^{\circ} 4^{\prime} 2.933{ }^{\prime \prime} \mathrm{W}$	Winchendon	P	MI	B/CWF	June 1 to Sept 30	N/A		3	78

Table 1.1-2

Waterbodies Associated With the Project in New Hampshire

Facility	County	Town	Segment ${ }^{1}$	Nearest	Waterbody ID 3	Waterbody	Latitude	Longitude	Quadrangle	Type ${ }^{5}$	FERC	Water Quality Designation /	Timing	Crossing	Comments ${ }^{11}$		$\begin{aligned} & \text { lssing } \\ & \text { loghth }^{12} \\ & \text { eet) } \end{aligned}$
												Fishery Classification ${ }^{7}$				(feet)	(square feet)
$\begin{aligned} & \text { NED-TAR- } \\ & \text { I-1900 } \end{aligned}$	Cheshire	Rindge	I	25.19	NHD-878	UNT to Lake Monomonac	$42^{\circ} 44^{\prime} 22.037{ }^{\prime \prime} \mathrm{N}$	71 $59^{\prime} 36.467{ }^{\prime \prime} \mathrm{W}$	Ashburnham	P	MI	B		N/A		3	45
$\begin{aligned} & \text { NED-TAR- } \\ & \text { I-1900 } \end{aligned}$	Cheshire	Rindge	I	25.19	NHD-879	UNT to Lake Monomonac	$42^{\circ} 44^{\prime} 22.200^{\prime \prime} \mathrm{N}$	$71^{\circ} 59^{\prime} 36.474{ }^{\prime \prime} \mathrm{W}$	Ashburnham	P	MI	B		N/A		3	45
NED-TAR- J-1000	Hillsborough	Brookline	J	12.03	NHD-880	UNT to Spaulding Brook	$42^{\circ} 46^{\prime} 6.585{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 42^{\prime} 27.241^{\prime \prime} \mathrm{W}$	Milford	I	MI	B		N/A		3	93
$\begin{gathered} \text { NED-TAR- } \\ \text { J-1000 } \end{gathered}$	Hillsborough	Milford	J	12.03	NHD-881	Mitchell Brook	$42^{\circ} 46^{\prime} 38.537{ }^{\prime \prime} \mathrm{N}$	$71^{\circ} 42^{\prime} 43.665{ }^{\prime \prime} \mathrm{W}$	Milford	P	MI	B		N/A		3	99
$\begin{gathered} \text { NED-TAR- } \\ \text { J-2300 } \end{gathered}$	Rockingham	Londonderry	J	29.16	NHD-882	Nesenkeag Brook	$42^{\circ} 50 \cdot 40.183 " \mathrm{~N}$	$71^{\circ} 25^{\prime} 22.007^{\prime \prime} \mathrm{W}$	Nashua North	P	MI	B		N/A		3	111
Access Road Subtotal																39	1,029
Total Crossing Length																5,368	490,241

publically available data was used where there was no parcel access and no photo interpreted aerial coverage. The publically available data is from the USGS-NHD 2015.
Each segment is associated with its own set of mileposts beginning at MP 0.00 .
${ }_{3}^{2}$ Nearest Milepost for access roads indicates the point at which the access road connects with the pipeline ROW, or closest milepost to ROW if there is no direct connection.
3 Waterbody ID in the form of NHD--XXX and NHD--R-XXX are USGS-NHD waterbodies, and waterbody ID in the form SPI-XXX are photo interpreted waterbodies. All other waterbody ID's represent field surveyed data.
${ }^{3}$ U Unamed tributary; waterbody is not mapped as a tributary on available GIS data layers; tributary name was identified based on review of USGS topographical mapping.
${ }^{5}$ P = Perennial; I Intermittent; E = Ephemeral; NF = No Flow; AP = Artificial Path; C = Connector
${ }^{6} \mathrm{MI}=$ Minor (<10 feet); I Intermediate ($10-100$ feet); MA $=$ Major ($(100$ feet)
7 CWF = Cold Water Fishery, A=Class A, B= Class B
Consultation with NHDES is ongoing. CWFs timing restrictions is based on FERC Plan and Procedures recommendations.
 be crossed using a dry crossing method.
 ${ }_{1}^{1}$ Consultation with NHFG (Carpenter 2015) indicated Commission.

 contractor yard. Access to aboveground facilities that require linear crossings of streams is accounted for in the AR line item and crossing length.
${ }_{13}$ Existing waterbodies will not be impacted. Any improvements to existing culverts will be permitted as necessary.

Table 1.1-3

Facility Name		Town	Segment ${ }^{1}$	Nearest Milepost ${ }^{2}$	$\underset{\mathbf{I D}^{3}}{\text { Waterbody }}$	WaterbodyName 4	Latitude	Longitude	Quadrangle	Type ${ }^{5}$	FERC Class ${ }^{6}$	WaterQualityDesignation /FisheryClassification ${ }^{7}$	Timing Restriction ${ }^{8}$	Crossing Method ${ }^{9,10}$	Comments	Crossing Length ${ }^{11}$	
	Co															(feet)	$\begin{gathered} \text { (square } \\ \text { feet) } \\ \hline \end{gathered}$
Pipeline Facilities																	
300 Line CT Loop	Hartford	Farmington	S	0.35	SPI-798	UNT to Trout Brook	$41^{\circ} 45^{\prime} 0.524^{\prime \prime} \mathrm{N}$	$72^{\circ} 47^{\prime} 43.457{ }^{\prime \prime} \mathrm{W}$	Avon	I	MI	A		II		5	245
300 Line CT Loop	Hartford	Farmington	S	0.36	SPI-798	UNT to Trout Brook	$41^{\circ} 45^{\prime} 0.870$ N	$72^{\circ} 47^{\prime} 43.560 " \mathrm{~W}$	Avon	I	MI	A		II		3	856
300 Line CT Loop	Hartford	West Hartford	S	0.50	SPI-800	UNT to Trout Brook	$41^{\circ} 45^{\prime} 8.450 " \mathrm{~N}$	$72^{\circ} 47^{\prime} 44.675{ }^{\prime \prime} \mathrm{W}$	Avon	I	MI	A		N/A		0	4
300 Line CT Loop	Hartford	West Hartford	S	0.50	SPI-800	UNT to Trout Brook	$41^{\circ} 45^{\prime} 8.308{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 47^{\prime} 45.492^{\prime \prime} \mathrm{W}$	Avon	I	MI	A		N/A		0	1,556
300 Line CT Loop	Hartford	West Hartford	S	0.51	SPI-799	$\begin{gathered} \text { UNT to Trout } \\ \text { Brook } \\ \hline \end{gathered}$	$41^{\circ} 45^{\prime} 8.604^{\prime \prime} \mathrm{N}$	$72^{\circ} 47^{\prime} 44.460{ }^{\prime \prime} \mathrm{W}$	Avon	I	MI	A		N/A		0	4
300 Line CT Loop	Hartford	Farmington	S	0.67	SPI-803	$\begin{gathered} \text { UNT to Trout } \\ \text { Brook } \end{gathered}$	$41^{\circ} 45^{\prime} 16.484^{\prime \prime} \mathrm{N}$	$72^{\circ} 47^{\prime} 48.341{ }^{\prime \prime} \mathrm{W}$	Avon	I	I	A		II		16	1,203
300 Line CT Loop	Hartford	Farmington	S	0.68	SPI-804	UNT to Trout Brook	$41^{\circ} 45^{\prime} 17.266^{\prime \prime} \mathrm{N}$	$72^{\circ} 47^{\prime} 48.575^{\prime \prime} \mathrm{W}$	Avon	I	MI	AA		II		8	688
300 Line CT Loop	Hartford	West Hartford	S	0.69	SPI-805	UNT to Trout Brook	$41^{\circ} 45^{\prime} 17.616{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 47^{\prime} 47.160{ }^{\prime \prime} \mathrm{W}$	Avon	I	MI	A		N/A		0	2
300 Line CT Loop	Hartford	West Hartford	S	0.95	SPI-807	UNT to Trout Brook	$41^{\circ} 45^{\prime} 30.682{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 47^{\prime} 45.735{ }^{\prime \prime} \mathrm{W}$	Avon	P	I	AA		II		14	2,007
300 Line CT Loop	Hartford	West Hartford	S	1.13	SPI-809	UNT to Trout Brook	$41^{\circ} 45^{\prime} 39.706{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 47^{\prime} 43.716^{\prime \prime} \mathrm{W}$	Avon	P	MI	A		N/A		0	5
300 Line CT Loop	Hartford	West Hartford	S	1.13	SPI-809	UNT to Trout Brook	$41^{\circ} 45^{\prime} 39.906{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 47^{\prime} 43.727^{\prime \prime} \mathrm{W}$	Avon	P	MI	AA		N/A		0	1,520
300 Line CT Loop	Hartford	West Hartford	S	1.63	SPI-811	UNT to Trout Brook	$41^{\circ} 46^{\prime} 5.120{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 47^{\prime} 36.146{ }^{\prime \prime} \mathrm{W}$	Avon	I	MI	A		N/A		0	1,352
300 Line CT Loop	Hartford	West Hartford	S	1.68	SPI-811	UNT to Trout Brook	$41^{\circ} 46^{\prime} 7.532{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 47^{\prime} 35.421{ }^{\prime \prime} \mathrm{W}$	Avon	I	MI	A		N/A		0	230
300 Line CT Loop	Hartford	West Hartford	S	1.69	SPI-812	UNT to Trout Brook	$41^{\circ} 46^{\prime} 8.082{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 47^{\prime} 34.843^{\prime \prime} \mathrm{W}$	Avon	I	MI	A		N/A		0	13
300 Line CT Loop	Hartford	West Hartford	S	2.25	SPI-814	UNT to Trout Brook	$41^{\circ} 46^{\prime} 36.572^{\prime \prime} \mathrm{N}$	$72^{\circ} 47^{\prime} 32.734^{\prime \prime} \mathrm{W}$	Avon	I	I	AA		II		10	1,348
300 Line CT Loop	Hartford	West Hartford	S	2.25	SPI-814	UNT to Trout Brook	$41^{\circ} 46^{\prime} 36.907{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 47^{\prime} 32.800^{\prime \prime} \mathrm{W}$	Avon	I	MI	AA		II		8	448
300 Line CT Loop	Hartford	West Hartford	S	2.51	SPI-815	UNT to Trout Brook	$41^{\circ} 46^{\prime} 49.999{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 47^{\prime} 35.108^{\prime \prime} \mathrm{W}$	Avon	I	MI	A		II		3	223
300 Line CT Loop	Hartford	West Hartford	S	2.52	SPI-815	UNT to Trout Brook	$41^{\circ} 46^{\prime} 50.434{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 47^{\prime} 35.260 " \mathrm{~W}$	Avon	I	I	A		II		15	993
300 Line CT Loop	Hartford	West Hartford	S	2.66	SPI-818	UNT to Trout Brook	$41^{\circ} 46^{\prime} 57.536^{\prime \prime} \mathrm{N}$	$72^{\circ} 47^{\prime} 32.625{ }^{\prime \prime} \mathrm{W}$	Avon	I	I	A		II		15	1,176
300 Line CT Loop	Hartford	West Hartford	S	3.00	SPI-819	UNT to Tumble Brook	$41^{\circ} 47^{\prime} 15.361{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 47^{\prime} 31.392{ }^{\prime \prime} \mathrm{W}$	Avon	I	MI	A		II		6	461

Table 1.1-3

											FERC	Water Quality	mi				$\begin{aligned} & \text { ossing } \\ & \text { ggth }^{11} \\ & \hline \end{aligned}$
		Town	Se	Milepost ${ }^{2}$		Name ${ }^{4}$					Class ${ }^{6}$	Fishery Classification ${ }^{7}$	Restriction ${ }^{8}$	Method ${ }^{\text {,10 }}$	Comments	(feet)	$\begin{aligned} & \text { (square } \\ & \text { feet) } \end{aligned}$
300 Line CT Loop	Hartford	West Hartford	S	3.02	SPI-820	UNT to Tumble Brook	$41^{\circ} 47^{\prime} 15.904{ }^{\prime \prime} \mathrm{N}$	72 ${ }^{\circ} 47^{\prime} 31.504{ }^{\prime \prime} \mathrm{W}$	Avon	I	I	A		II		24	1,960
300 Line CT Loop	Hartford	West Hartford	S	3.27	SPI-822	UNT to Tumble Brook	$41^{\circ} 47^{\prime} 28.899{ }^{\prime \prime} \mathrm{N}$	72 ${ }^{\circ} 47^{\prime}$ 27.934" W	Avon	I	I	A		II		20	3,772
300 Line CT Loop	Hartford	West Hartford	S	3.30	SPI-822	UNT to Tumble Brook	$41^{\circ} 47^{\prime} 30.014^{\prime \prime} \mathrm{N}$	72 ${ }^{\circ} 47^{\prime}$ 27.196" W	Avon	I	I	A		II		33	2,216
300 Line CT Loop	Hartford	West Hartford	S	3.34	SPI-822	UNT to Tumble Brook	$41^{\circ} 47^{\prime} 31.881^{\prime \prime} \mathrm{N}$	72 ${ }^{\circ} 47^{\prime}$ 25.957" W	Avon	I	MI	A		II		8	587
300 Line CT Loop	Hartford	West Hartford	S	3.36	SPI-823	UNT to Tumble Brook	$41^{\circ} 47^{\prime} 32.943^{\prime \prime} \mathrm{N}$	72 ${ }^{\circ} 47^{\prime} 25.410{ }^{\prime \prime} \mathrm{W}$	Avon	P	I	A		II		10	933
300 Line CT Loop	Hartford	West Hartford	S	3.39	SPI-824	UNT to Tumble Brook	$41^{\circ} 47^{\prime} 34.743^{\prime \prime} \mathrm{N}$	$72^{\circ} 47^{\prime} 24.500$ " W	Avon	I	I	A		II		15	1,134
300 Line CT Loop	Hartford	West Hartford	S	4.27	SPI-825	UNT to Tumble Brook	$41^{\circ} 48^{\prime} 16.331 " \mathrm{~N}$	72 ${ }^{\circ} 47^{\prime} 39.532 \mathrm{LW}$	Avon	I	I	A		II		10	729
300 Line CT Loop	Hartford	Bloomfield	S	4.34	SPI-826	UNT to Tumble Brook	$41^{\circ} 48^{\prime} 19.628^{\prime \prime} \mathrm{N}$	72 ${ }^{\circ} 47^{\prime} 41.902 \mathrm{~L}$ W	Avon	P	I	A		II		17	1,575
300 Line CT Loop	Hartford	Bloomfield	S	4.87	SPI-827	UNT to Tumble Brook	$41^{\circ} 48^{\prime} 45.697{ }^{\prime \prime} \mathrm{N}$	72 ${ }^{\circ} 47^{\prime} 33.475^{\prime \prime} \mathrm{W}$	Avon	P	MI	AA		II		5	630
300 Line CT Loop	Hartford	Bloomfield	S	5.73	SPI-828	UNT to Tumble Brook	$41^{\circ} 49^{\prime} 24.316^{\prime \prime} \mathrm{N}$	$72^{\circ} 47^{\prime} 7.192$ W	Avon	I	I	A		II		15	1,612
300 Line CT Loop	Hartford	Bloomfield	S	5.79	SPI-829	UNT to Tumble Brook	$41^{\circ} 49^{\prime} 26.5477^{\prime \prime} \mathrm{N}$	$72^{\circ} 47^{\prime} 4.052^{\prime \prime} \mathrm{W}$	Avon	I	I	AA		II		17	1,341
300 Line CT Loop	Hartford	Bloomfield	S	5.82	SPI-829	UNT to Tumble Brook	$41^{\circ} 49^{\prime} 27.395{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 47^{\prime} 2.882^{\prime \prime} \mathrm{W}$	Avon	I	I	AA		II		26	2,015
300 Line CT Loop	Hartford	Bloomfield	S	6.57	BL-O-S001	UNT to Tumble Brook	$41^{\circ} 50{ }^{\prime} 1.900{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 46^{\prime} 54.973{ }^{\prime \prime} \mathrm{W}$	Avon	I	MI	A		N/A		0	363
300 Line CT Loop	Hartford	Bloomfield	S	7.07	BL-P-S004	UNT to Tumble Brook	$41^{\circ} 50^{\prime} 21.553 " \mathrm{~N}$	$72^{\circ} 46^{\prime} 32.671{ }^{\prime \prime} \mathrm{W}$	Avon	E	I	A		II		31	1,803
300 Line CT Loop	Hartford	Bloomfield	S	7.08	BL-P-S004	UNT to Tumble Brook	$41^{\circ} 50^{\prime} 21.781^{\prime \prime} \mathrm{N}$	72 ${ }^{\circ} 46^{\prime} 32.106 \mathrm{l}$ W	Avon	E	MI	A		N/A		0	12
300 Line CT Loop	Hartford	Bloomfield	S	7.09	BL-P-S004	UNT to Tumble Brook	$41^{\circ} 50^{\prime} 22.005{ }^{\prime \prime} \mathrm{N}$	72 ${ }^{\circ} 46^{\prime} 31.895{ }^{\prime \prime} \mathrm{W}$	Avon	E	MI	A		N/A		0	24
300 Line CT Loop	Hartford	Bloomfield	S	7.09	BL-P-S004	UNT to Tumble Brook	$41^{\circ} 50^{\prime} 22.176{ }^{\prime \prime} \mathrm{N}$	72 ${ }^{\circ} 46^{\prime} 31.798{ }^{\prime \prime} \mathrm{W}$	Avon	E	MI	A		N/A		0	225
300 Line CT Loop	Hartford	Bloomfield	S	7.45	BL-B-S003	$\begin{gathered} \text { UNT to } \\ \text { Tumble Brook } \\ \hline \end{gathered}$	$41^{\circ} 50^{\prime} 37.5677^{\prime \prime} \mathrm{N}$	72 ${ }^{\circ} 46^{\prime} 19.882{ }^{\prime \prime} \mathrm{W}$	Avon	NF	MI	A		N/A		0	26
300 Line CT Loop	Hartford	Bloomfield	S	7.46	BL-P-S003	UNT to Tumble Brook	$41^{\circ} 50^{\prime} 39.225{ }^{\prime \prime}$	72 ${ }^{\circ} 46^{\prime}$ 20.611" W	Avon	P	MI	A		II		5	371
300 Line CT Loop	Hartford	Bloomfield	S	7.71	BL-P-S002	UNT to Tumble Brook	$41^{\circ} 50^{\prime} 46.502{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 46^{\prime} 7.493{ }^{\prime \prime} \mathrm{W}$	Avon	NF	MI	A		N/A		0	1,325
300 Line CT Loop	Hartford	Bloomfield	S	8.73	BL-P-S001	UNT to Wash Brook	$41^{\circ} 51^{\prime} 33.744^{\prime \prime} \mathrm{N}$	$72^{\circ} 45^{\prime} 40.880$ ' W	Avon	E	MI	A		N/A		0	56

Table 1.1-3

Facility Name	County	Town	Segment ${ }^{1}$	Nearest Milepost ${ }^{2}$	Waterbody ID 3	$\begin{gathered} \text { Waterbody } \\ \text { Name }^{4} \end{gathered}$	Latitude	Longitude	Quadrangle	Type ${ }^{5}$	FERCClass	WaterQualityDesignation /FisheryClassification ${ }^{7}$	$\begin{gathered} \text { Timing } \\ \text { Restriction } \end{gathered}$	Crossing Method ${ }^{9,10}$	Comments	Crossing Length ${ }^{11}$	
																(feet)	(square feet)
300 Line CT Loop	Hartford	Bloomfield	S	9.69	BL-P-S005	UNT to Wash Brook	$41^{\circ} 52^{\prime} 19.843{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 45^{\prime} 16.444^{\prime \prime} \mathrm{W}$	Avon	P	I	A		II		64	2,493
300 Line CT Loop	Hartford	Bloomfield	S	9.70	NHD-743	UNT to Wash Brook	$41^{\circ} 52^{\prime} 20.487{ }^{\prime \prime} \mathrm{N}$	72 ${ }^{\circ} 45^{\prime} 16.413^{\prime \prime} \mathrm{W}$	Avon	P	I	A		II		90	9,600
300 Line CT Loop	Hartford	Bloomfield	S	10.18	BL-P-S007	UNT to Wash Brook	$41^{\circ} 52^{\prime} 42.913^{\prime \prime} \mathrm{N}$	$72^{\circ} 45^{\prime} 4.862$ W ${ }^{\text {W }}$	Tariffville	E	MI	A		II		3	97
300 Line CT Loop	Hartford	Bloomfield	S	11.14	BL-P-S009	UNT to Farmington River	$41^{\circ} 53^{\prime} 19.245{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 44^{\prime} 23.576^{\prime \prime} \mathrm{W}$	Windsor Locks	I	MI	A		II		4	362
300 Line CT Loop	Hartford	Windsor	S	11.35	BL-P-S010	UNT to Farmington River	$41^{\circ} 53{ }^{\prime} 25.434{ }^{\prime \prime} \mathrm{N}$	72 ${ }^{\circ} 44^{\prime} 11.786^{\prime \prime} \mathrm{W}$	Windsor Locks	P	MI	A		IV		1	43
300 Line CT Loop	Hartford	Windsor	S	11.41	BL-P-S008	$\begin{gathered} \text { UNT to } \\ \text { Farmington } \\ \text { River } \\ \hline \end{gathered}$	$41^{\circ} 53{ }^{\prime} 27.882{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 44^{\prime} 9.962{ }^{\prime \prime} \mathrm{W}$	Windsor Locks	P	MA	A		IV		277	12,883
300 Line CT Loop	Hartford	Windsor	S	11.46	SPI-835	$\begin{gathered} \hline \text { Farmington } \\ \text { River } \\ \hline \end{gathered}$	$41^{\circ} 53^{\prime} 30.272{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 44^{\prime} 8.180 " \mathrm{~W}$	Windsor Locks	P	I	B		IV		13	2,157
300 Line CT Loop	Hartford	Windsor	S	11.46	SPI-836	$\begin{gathered} \text { Farmington } \\ \text { River } \\ \hline \end{gathered}$	41 ${ }^{\circ} 53^{\prime} 29.063{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 44^{\prime} 5.071{ }^{\prime \prime} \mathrm{W}$	Windsor Locks	P	MI	B		N/A		0	136
300 Line CT Loop	Hartford	Windsor	S	12.30	SPI-837	West Brook	$41^{\circ} 54^{\prime} 7.650$ " N	$72^{\circ} 43^{\prime} 46.965^{\prime \prime} \mathrm{W}$	Windsor Locks	I	I	A		II		28	2,773
Pipeline Subtotal																819	67,587
Aboveground Facilities																	
N/A																	
													Aboveg	round Facilit	ies Subtotal	0	0
Contractor Yards ${ }^{12}$																	
N/A																	
														Contractor Y	rd Subtotal	0	0
Access Roads ${ }^{12}$																	
TGP-TAR-S-0100	Hartford	West Hartford	S	0.70	NHD-887	UNT to Wash Brook	$41^{\circ} 47^{\prime} 24.080{ }^{\prime \prime} \mathrm{N}$	720 47' $20.879{ }^{\prime \prime} \mathrm{W}$	Avon	P	MI	A		N/A		3	61
TGP-TAR-S-0100	Hartford	West Hartford	S	0.70	NHD-888	UNT to Trout Brook	$41^{\circ} 46^{\prime} 39.4800^{\prime \prime}$	$72^{\circ} 47^{\prime} 30.274^{\prime \prime} \mathrm{W}$	Avon	P	MI	AA		N/A		3	69
$\begin{gathered} \text { NED-TAR-S- } \\ 0900 \\ \hline \end{gathered}$	Hartford	East Granby	S	14.80	NHD-910	DeGrayes Brook	$41^{\circ} 56^{\prime} 42.068{ }^{\prime \prime} \mathrm{N}$	$72^{\circ} 42^{\prime} 24.417^{\prime \prime} \mathrm{W}$	Windsor Locks	P	MI	A		N/A		3	90
Access Road Subtotal																9	220
Total Crossing Length																828	67,807

Table 1.1-3

Waterbodies Associated With the Project in Connecticut

$\underset{\text { Restriction }}{ }{ }^{\text {Timing }}$	Crossing Method ${ }^{9,10}$	Comments	Crossing Length ${ }^{11}$	
			(feet)	(square feet)

publically available data was used where there was no parcel access and no photo interpreted aerial coverage. The publically available data is from the USGS-NHD 2015 . publically available data was used where there was no parcel access and no photo
1 Each segment is associated with its own set of mileposts beginning at MP 0.00 .
${ }_{3}^{2}$ Nearest Milepost for access roads indicates the point at which the access road connects with the pipeline ROW, or closest milepost to ROW if there is no direct connection.
Waterbody ID in the form of NHD-XXX and NHD-R-XXX are USGS-NHD waterbodies, and waterbody ID in the form SPI-XXX are photo interpreted waterbodies. All other waterbody ID's represent field surveyed data.
Unnamed tributary; waterbody is not mapped as a tributary on available GIS data layers; tributary name was identified based on review of USGS topographical mapping.
${ }^{5} \mathrm{P}=$ Perennial; $\mathrm{I}=\mathrm{Intermittent;} \mathrm{E} \mathrm{=} \mathrm{Ephemeral;} \mathrm{NF} \mathrm{=} \mathrm{No} \mathrm{Flow;} \mathrm{AP} \mathrm{=} \mathrm{Artificial} \mathrm{Path;} \mathrm{C}=$ Connector
MI = Minor (<10 feet); I Intermediate ($10-100$ feet); MA = Major (>100 feet)
Water quality classification was identified through a desktop review of available GIS datalayers.
Consultation with CTDEEP is ongoing. CWFs timing restrictions is based on FERC Plan and Procedures recommendations.
 ${ }^{\text {be crossed using a dry crossing method. }}$

 limits, but does not cross the pipeline. N/A = Not Applicable. The Project will not cross waterbodies at aboveground facilities or contractor yards, however number of stream crossing indicated reflect streams on the entire parcel that will be avoided through final design of the aboveground facility or contractor yard. Access to aboveground facilities that require linear crossings of streams is accounted for in the AR line item and crossing length.
${ }^{12}$ Existing waterbodies will not be impacted. Any improvements to existing culverts will be permitted as necessary

This page intentionally left blank

1.1.1 Survey and Waterbody Information

Field surveys for the Project were initiated in June 2014 and were suspended in November 2014 due to winter weather conditions. Additional field surveys re-commenced in March 2015 and are continuing as additional survey access permissions are granted. Field surveys have included, but are not limited to, civil survey, wetland and waterbody delineations, rare species habitat assessment and presence/absence surveys, and cultural resources surveys. Completion of field surveys will be dependent upon the finalization of the Project alignment, as well as the acquisition of survey permission on all affected parcels. Supplemental data will be provided to the USACE as field surveys are completed.

Biological field survey data shown on the aerial alignment sheets included in Section 4 Appendix 1 incorporates survey data obtained through September 2, 2015. In addition, Tennessee conducted aerial flights to obtain high-resolution digital stereo aerial photography and light detection and ranging ("LiDAR") imagery. Tennessee utilized this imagery as well as to photo-interpret wetlands and waterbody boundaries, ecological communities, and rare species habitat in areas where survey access has not been granted. The LiDAR derived 1 -foot contours were overlain on project specific orthophotos to supplement the photointerpretation. Additional resources were referenced for supporting information including National Wetland Inventory ("NWI") maps, hydric soil maps, hydrology maps, topographic maps, and additional publicly available aerial photographs as needed to confirm a feature. In areas where high resolution was not collected (approximately 30 miles), Tennessee utilized publically available data to identify the presence of waterbodies. Photointerpretation provides a more accurate assessment of impacts as compared to publicly available data; however, Tennessee recognizes that all resource boundaries will require field verification for the issuance of environmental permits.

Waterbody IDs designated with SPI-XXX and wetland IDs designated as WPI-XXX represent those features that were photo-interpreted and not yet field verified. Those waterbodies with IDs NHD-XXX and NHD-R-XXX are USGS-NHD waterbodies. All other waterbody IDs represent field survey data. Wetlands designated as NWI-XXX represent NWI wetlands. All other wetland IDs represent field survey data. All features are depicted on the Project's aerial alignment sheets contained in Section 4 Appendix 1 of this Application.

Under the Federal Clean Water Act, waterbodies include streams, rivers, lakes, and ponds. Tennessee's review indicates that the Merrimack River in the towns of Litchfield and Merrimack, New Hampshire is considered a navigable water by the U.S. Army Corps of Engineers ("USACE") New England District under Section 10 of the Rivers and Harbors Act. In addition, the Connecticut River and the Merrimack River in Massachusetts are both considered navigable waters under Section 10. Tennessee will continue to consult with the New England District to confirm if any other waterbodies being crossed by the proposed Project meet the Section 10 definition of a navigable water of the U.S. In locations where field delineations were conducted, waterbody boundaries were field-delineated using the regulatory definition included in 33 CFR 328.4, which identifies the limit of federal jurisdiction under Section 404 of the CWA (33 USC 1344) for non-tidal Waters of the U.S. in the absence of adjacent wetlands as the ordinary high water mark ("OHWM"). The OHWM is established by observations of water fluctuation, physical characteristics, such as a clear natural line impressed on the bank, shelving, changes in the soil character, destruction of terrestrial vegetation, the presence of litter and debris, or other appropriate means that consider the characteristics of the surrounding areas" (33 CFR 328.3[e]).

The proposed alignment in Massachusetts will cross the waterbodies included in Table 1.1-1; in New Hampshire the proposed alignment will cross the waterbodies included in Table 1.1-2; and the proposed alignment in Connecticut will cross the waterbodies included in Table 1.1-3. Site specific wetland and watercourse drawings for field verified features in Massachusetts, New Hampshire, and Connecticut are included in Section 3 Appendices 2, 7, and 12 respectively. Detailed descriptions of these features are contained within the Inventory and Delineation of Wetlands and Watercourses along the Massachusetts Portion of the NED Project included in Section 3, Appendix 3; the Inventory and Delineation of Wetlands and Watercourses along the New Hampshire Portion of the NED Project included in Section 3 Appendix 8, and the Inventory and Delineation of Wetlands and Watercourses along the Connecticut Portion of the NED Project included in Section 3 Appendix 13.

1.1.2 FEMA and Federal Scenic Rivers Designation

Tennessee reviewed National Flood Insurance Program, Flood Insurance Rate Maps ("FIRM") issued by the Federal Environmental Management Agency ("FEMA") to identify proposed crossings of areas subject to flooding and high volume flows. Additionally, Tennessee will continue to consult with federal, state, and local agencies to identify any other areas where flooding is a concern that may not be currently mapped by FEMA. FEMA Special Flood Hazard Areas ("SFHAs") are those areas subject to flooding by the one percent annual chance flood (100-year flood).

The Massachusetts portion of the Project crosses the flood zone of Walker Brook, Willard Brook, Harris Brook, Trout Brook, Potash Brook, Merrimack River, Ipswich River, North Brook, and Cold Harbor Brook. Tennessee will continue to consult with federal, state, and local agencies to identify any other areas where flooding is a concern that may not be currently mapped by FEMA.

The New Hampshire portion of the Project crosses the flood zones of the Souhegan River, Naticook Brook, Merrimack River, Nesenkeag Brook, Beaver Brook, and Spicket River. Tennessee will continue to consult with federal, state, and local agencies to identify any additional areas where flooding is a concern that may not be currently mapped by FEMA.

The Connecticut portion of the Project crosses the flood zones of the Farmington River, Degrayes Brook, and Rippowam River. Tennessee will continue to consult with federal, state, and local agencies to identify any additional areas where flooding is a concern that may not be currently mapped by FEMA.

In Massachusetts, the Westfield River is crossed by the proposed Project at the Wright to Dracut Pipeline Segment (Massachusetts Portion), Segment G, MP 20.92 and is included on the NRI, NWRS list, and the state Scenic and Recreational Rivers list (NPS 2015a; NWSRS 2015; Massachusetts Executive Office of Energy and Environmental Affairs ["MAEEA"] 2015). The Deerfield River from Stillwater Bridge to Schneck Brook is listed on the NPS NRI for regionally significant trout streams and an historic Atlantic Salmon Fishery (NPS 2015a). The Project will also cross the Squannacook River and its tributaries, Walk Brook, Locke Brook, Willard Brook, and Pearl Hill Brook. The Squannacook River and its tributaries are listed as Wild and Scenic Study Rivers (NPS 2015b).

In New Hampshire, no waterbodies are designated as part of the National Wild and Scenic Rivers Systems (NWSRS 2015). Souhegan River from Wilton, New Hampshire, to Greenville, New Hampshire, is listed on the NPS NRI for a 6-mile stretch of Class II-III rapids which are significant because of their
consistent difficulty (NPS 2015). The Merrimack (Lower) and Souhegan Rivers are listed as Designated Rivers listed by the NH Rivers Management and Protection Program ("RMPP") (Mailloux 2015; Thompson 2015). A designated river is managed and protected for its natural and cultural resources in accordance with RSA 483, the Rivers Management \& Protection Act (NHDES 2015).

The Farmington River in Connecticut has been designated under the National Wild and Scenic Rivers ("NWSR") list. However, the portion of the Farmington River that coincides with the location of the proposed Project is not included on the NWSR list.

1.1.3 Avoidance, Minimization and Mitigation

In accordance with the Council on Environmental Quality ("CEQ") and federal Clean Water Act Section 404 (b)(1) guidance, Tennessee has designed this Project to:
(1) Avoid impacts to aquatic resources to the extent practicable;
(2) Minimize unavoidable impacts; and
(3) Mitigate for any unavoidable and remaining impacts to aquatic resources.

Avoidance and minimization measures have been incorporated into the Project since the inception of the feasibility stage.

Tennessee will implement the Commission’s Upland Erosion Control, Revegetation and Maintenance Plan (the "Plan", May 2013 version) and the Commission’s Wetland and Waterbody Construction and Mitigation Procedures (the "Procedures", May 2013 version), with the exception of any modifications requested by Tennessee and granted by the Commission. Tennessee's Plan and Procedures and additional conservation measures are provided in Tennessee's Project-specific Environmental Construction Plan ("ECP") for Massachusetts included in Section 3 Appendix 4, for New Hampshire included in Section 3 Appendix 9, and in Connecticut included in Section 3 Appendix 14. These documents include best management practices ("BMPs") which will be implemented during the construction and operation of the Project. BMPs applicable to floodplains include the control of erosion and sedimentation through installation of structural erosion and sedimentation facilities within and at the limits of the Project workspace. Typical drawings of these structures are contained within the Project-specific ECP for Massachusetts, New Hampshire, and Connecticut. BMPs will comply with Massachusetts, New Hampshire, and Connecticut standards for erosion and sediment control, including specifications for flooding frequency and volume. Additionally, the amount of vegetation cleared during construction will be limited to the removal of the minimum amount necessary for safe construction. Tennessee will restore and revegetate temporary workspace areas to minimize impacts on vegetated areas. Restoration and revegetation will comply with state and federal regulations and monitoring requirements. The construction workspace will be restored to pre-construction contours after construction and is not anticipated to result in increased flood heights or encroachment within floodways.

1.1.4 Cultural Investigations and Tribal Consultations

1.1.4.1 Massachusetts

In Massachusetts the project includes 163 kilometers (101.08 miles) of proposed new pipeline construction. For aboveground resources in Massachusetts, Secretary of Interior-qualified Architectural Historians with regional experience will conduct a field reconnaissance of properties 50 years of age or older that may be impacted by the proposed Project. The proposed survey area was established as a $400-$ foot corridor (200 feet on either side of the centerline), including the entirety of any parcel crossed by the corridor. A 0.25 -mile radius will be established around all aboveground and appurtenant facilities. Archaeological reconnaissance surveys began in August 2015 and are ongoing. To date, crews have completed pedestrian surveys on 31.17 kilometers (19.37 miles, 18.89 percent) of the proposed route, making refinements to the predictive model, and recording surface-visible sites and stone features. Five historic sites have been identified, 67 stone features were identified during pedestrian surveys, and 49 additional stone features were observed during visual inspection of high resolution orthophotography. Orthophoto review also indicated that 110 areas will require modification to the survey design or archaeological sensitivity because of roads, wetlands, rivers, slope, and a range of modern construction. No recommendations of eligibility can be made at this stage of survey as all sites identified during the pedestrian walk-over will require subsurface testing.

Site file research revealed 269 previously recorded aboveground historic resources located within a 0.8 kilometer (0.5 -mile) radius of the proposed centerline. Of those 269 resources, 14 are listed in both the State and National Registers of Historic Places, one is pending NRHP approval, one has been demolished, and the remaining 253 are inventoried but not listed on either the State or National Register and do not have determinations of eligibility. Architectural field reconnaissance has not yet begun in Massachusetts.

As part of the Commission's National Environmental Policy Act ("NEPA") pre-filing process for the Project, the Commission and Tennessee have held three group Project meetings with Native American tribes in response to interest in the Project. Continued communications regarding interest in the Project have been disseminated through formal notification letters, weekly e-mails, telephone conversations, and in-person discussions at group Project meetings. A number of interested federally recognized tribes are reviewing cultural resource investigations in Massachusetts. The Stockbridge Munsee-Mohican Community, Delaware Nation, Mashpee Wampanoag Tribe, Mashantucket Pequot, Mohegan Tribe of Indians of Connecticut, Narragansett Indian Tribe, and Wampanoag Tribe of Gay Head (Aquinnah) are consulting with the Commission regarding resources of concern, the unanticipated discoveries plan, and cultural resource investigations for the Project in Massachusetts. The Mashpee Wampanoag Tribe and Wampanoag Tribe of Gay Head (Aquinnah) have participated cultural resource field investigations in Massachusetts.

1.1.4.2 New Hampshire

In New Hampshire the project includes approximately 125 kilometers (78 miles) of proposed pipeline construction. The archaeological surveys began in August 2015 and are ongoing. To date, crews have surveyed 4.51 kilometers (2.80 miles) of the proposed route, excavating 1,190 shovel tests. Two historic archaeological sites, two historic isolated finds, and 15 stone features have been identified during the pedestrian survey and subsurface testing. Both sites are considered not eligible for listing on the NRHP.

High resolution orthophotos were also used to identify 19 areas requiring alterations to the testing strategy based on environmental conditions or proximity to known archaeological sites. Twenty-two additional stone features were identified during orthophoto review.

Site file research identified 23 previously recorded architectural resources within a 0.8 kilometer (0.5 mile) radius of the proposed centerline. Six of those resources have been determined as eligible for the NRHP, 15 properties are determined as not eligible, and two require more information for a determination to be made. A preliminary field reconnaissance (windshield survey) conducted in September 2015 identified areas of previously undocumented resources that are likely to be eligible for the NRHP, as well as developed relevant historic contexts for evaluation of future intensive survey.

In New Hampshire, the Commission and Tennessee have been in communication with 4 Native American tribes that expressed an interest in ongoing communications regarding the Project in New Hampshire. Continued communications regarding interest in the Project have been disseminated through formal notification letters, weekly e-mails, telephone conversations, and in-person discussions at group Project meetings. The FERC and Tennessee have held three group Project meetings with Native American tribes in response to interest in the Project. The Mashantucket Pequot, Mohegan Tribe of Indians of Connecticut, Narragansett Indian Tribe, and Wampanoag Tribe of Gay Head (Aquinnah) are consulting with the FERC regarding resources of concern, the unanticipated discoveries plan, and cultural resource investigations for the Project in New Hampshire. The Wampanoag Tribe of Gay Head (Aquinnah) has participated cultural resource field investigations in New Hampshire.

1.1.4.3 Connecticut

In Connecticut the project includes approximately 24 kilometers (15 miles) of proposed pipeline construction. Archaeological surveys began in July 2015 and are ongoing. To date Tennessee crews have surveyed 9.3 kilometers (5.78 miles, 38.9 percent) of the proposed route, excavated 1,693 shovel tests, and identified one new historic archaeological site. Four isolated finds were also identified. Tennessee considers the historic site TS 2401-01 and the four isolates to be not eligible for listing in the NRHP and recommends that no further action is required for these sites. Seven stone features have also been recorded.

Site file research revealed that only three previously recorded aboveground historic resources are located within a 0.8 -kilometer (0.5 -mile) radius of the proposed centerline. All three of the resources are listed in the NRHP. Field reconnaissance conducted in June 2015 identified 45 previously undocumented historic resources in the survey area. To date, preliminary evaluation has identified eight properties for further research. It is the opinion of Tennessee that the remaining 37 are not eligible.

In Connecticut, the Commission and Tennessee have been in communication with 4 Native American tribes that expressed an interest in ongoing communications regarding the Project in Connecticut. Continued communications regarding interest in the Project have been disseminated through formal notification letters, weekly e-mails, telephone conversations, and in-person discussions at group Project meetings. The Commission and Tennessee have held three group Project meetings with Native American tribes in response to interest in the Project. The Mashantucket Pequot, Mohegan Tribe of Indians of Connecticut, Narragansett Indian Tribe, and Wampanoag Tribe of Gay Head (Aquinnah) are consulting with the Commission regarding resources of concern, the unanticipated discoveries plan, and cultural
resource investigations for the Project in Connecticut. The Wampanoag Tribe of Gay Head (Aquinnah) has participated cultural resource field investigations in Connecticut.

1.1.5 Rare Species Investigations

1.1.5.1 Federal Species

At the federal level, Tennessee consulted with the Pennsylvania, New York, and New England USFWS Field Offices and the NMFS in order to determine potential threatened and endangered species impacts. At the state level, Pennsylvania Natural Diversity Inventory, New York NHP; Massachusetts NHESP; NHNHB; and CTNDDB were consulted on state-listed endangered, threatened, or species of special concern, rare plants and animal species, and other ecological resources. As of the date of this application, Tennessee has received responses from all agencies based on the January 2015 Project route. Agency correspondence received as of October 1, 2015 is provided in Section 4 Appendix 2. A summary table of each species and survey status is provided in Section 4 Appendix 6.

Tennessee is currently in communication with the Pennsylvania, New York, and New England USFWS Field Offices regarding the threatened and endangered species and associated habitats identified within the Project vicinity. Species-specific surveys and habitat assessments are underway for various rare plants, bald eagles, bats, and bog turtles; with protocols being developed for many other species and taxonomic groups. This is the critical first step in developing appropriate impact avoidance and minimization measures. Following avoidance and then minimization to the extent practicable, the data will be used in the development of mitigation in cooperation with the jurisdictional agencies. Mitigation strategies will be incorporated into Tennessee’s Project-specific ECPs for each state for the Project and communicated with appropriate agencies.

Tennessee has received some avoidance, minimization, and mitigation recommendations from the USFWS for particular species. Tennessee will continue to update the appropriate agencies as consultations are received and evaluated.

The New England USFWS Field Office responded to a consultation request on March 5, 2015 (Chapman 2015) and identified three federal-listed species and one species under consideration for listing, with ranges that overlap with the Project, including Dwarf Wedgemussel, Northeastern Bulrush, Northern Long-Eared Bat, and New England Cottontail. However, the New England Cottontail has been dropped for candidacy. The New England Field Office identified the potential for impacts to migratory birds and bald eagles, and bats.

1.2 NATURE OF ACTIVITY (BLOCK 18)

1.2.1 Pipeline Facilities

The proposed Project mainline pipeline facilities in Massachusetts consist of approximately 64 miles of 30-inch-diameter pipeline, beginning at the New York/Massachusetts border and extending to the Massachusetts/New Hampshire border in Franklin County in western Massachusetts. This mileage also includes the portion of mainline from the New Hampshire/Massachusetts border to Dracut in Middlesex County in eastern Massachusetts (as part of the Wright to Dracut Pipeline Segment). Portions of the Wright to Dracut Pipeline Segment will be located in New York, Massachusetts, and New Hampshire.

Approximately 63 miles of this new proposed mainline pipeline (beginning at the New York/Massachusetts border) will be generally co-located with an existing utility corridor to the extent practicable, feasible, and in compliance with existing law. The remainder of the proposed mainline pipeline facilities in Massachusetts will be new pipeline ROW. The entirety of the proposed mainline pipeline facilities in Massachusetts (64 miles of 30 -inch-diameter pipeline) will be designed for a MAOP and a MOP of 1,460 psig.

Additionally, Tennessee is proposing five separate new laterals in Massachusetts as part of the Project:

- The 30 -inch diameter Maritimes Delivery Line will be 0.75 miles in length with a MAOP and a MOP of 1,460 psig and will extend from the Market Path Tail Station to an interconnect with the Maritimes and Northeast Pipeline System.
- The 24 -inch diameter Lynnfield Lateral will be 14.28 miles in length with a MAOP and a MOP of 1,460 psig. Approximately 8.95 miles of the 14.28 miles will be co-located with an existing utility corridor.
- The 24 -inch diameter Peabody Lateral will be 5.32 miles in length with a MAOP of $1,460 \mathrm{psig}$ and a MOP of 730 psig and will extend from the new Lynnfield Lateral proposed as part of the Project. Construction of this lateral will include a 0.4 -mile take-up and relay of Tennessee's existing 8 -inch-diameter Beverly-Salem Colonial Delivery Lateral pipeline.
- The 20-inch diameter Haverhill Lateral (Massachusetts Portion) will be approximately 9.27 miles in length that will extend from Massachusetts through New Hampshire with a MAOP of 800 psig and a MOP of 750 psig. Construction of this lateral will include a partial take-up and relay of Tennessee's existing 10 -inch diameter Haverhill Lateral pipeline. The entire 7.23 miles in Massachusetts will be a take-up and relay of the existing Haverhill Lateral within Tennessee's existing ROW.
- The 12 -inch-diameter Fitchburg Lateral Extension (Massachusetts Portion) will be 13.97 miles in length with a MAOP and a MOP of 1,460 psig. This lateral will be an extension of Tennessee's existing Fitchburg Lateral which will connect to the Wright to Dracut Pipeline Segment in New Hampshire. Approximately 8.89 miles (of which 3.71 miles will be co-located with an existing utility corridor) of the 13.97 miles will be located in Massachusetts.

In Massachusetts, temporary and permanent impacts to wetlands associated with the pipeline construction can be found in Attachment 2, Table 2.2-7.

The proposed Project mainline pipeline facilities in New Hampshire consist of approximately 70 miles of 30-inch-diameter pipeline, beginning at the Massachusetts/New Hampshire border and extending east to the Massachusetts/New Hampshire border north of Dracut, Massachusetts (as part of the Wright to Dracut Pipeline Segment). Portions of the Wright to Dracut Pipeline Segment will be located in New York, Massachusetts, and New Hampshire. Approximately 57 miles of this new proposed mainline pipeline (beginning at the Massachusetts/New Hampshire border) will be generally co-located with an existing utility corridor to the extent practicable, feasible, and in compliance with existing law.

The proposed Project pipeline facilities in New Hampshire also include the remaining lengths of the Fitchburg Lateral Extension and the Haverhill Lateral (described in the discussion of Massachusetts pipeline facilities). Approximately 2.04 miles of the 9.27 -mile Haverhill Lateral and 5.08 miles of the 13.97-mile Fitchburg Lateral Extension will be located in New Hampshire. The remaining portions of
these laterals will be located within Massachusetts. The Haverhill Lateral will have a MAOP of 1,460 psig and an MOP of 750 psig. The Fitchburg Lateral Extension will have a MAOP and MOP of 1,460 psig.

In New Hampshire, temporary and permanent impacts to wetlands associated with the pipeline construction can be found in Attachment 2, Table 2.2-8.

The proposed Project pipeline facility in Connecticut includes the 300 Line Connecticut Loop. The 300 Line Connecticut Loop consists of approximately 14.80 miles of new 24 -inch-diameter pipeline generally located within or directly adjacent to Tennessee's existing 300 Line's ROW. This proposed loop segment will be designed for a MAOP of 800 and a MOP of 719 psig.

In Connecticut, temporary and permanent impacts to wetlands associated with the pipeline construction can be found in Attachment 2, Table 2.2-9.

1.2.2 Aboveground and Appurtenant Facilities

1.2.2.1 Compressor Stations

Compressor stations are facilities which aid in the transportation of natural gas. Compressor stations compress the natural gas, increase its pressure, and provide energy to move the natural gas through the pipeline system. Compressor stations are placed along a pipeline route at varying intervals based on the diameter of the pipeline, the volume of gas to be moved, and the terrain. Footprints of compressor stations are assumed to impact approximately 10 to 20 acres of land based on Tennessee's experience constructing and operating existing station requirements; these impacts will be refined as civil and field surveys are completed and final designs are developed.

Facilities in Massachusetts will include three new compressor stations. The Market Path Mid Station 2 will be located in Berkshire County and will include two Titan 130 turbines, ISO-rated for a total of $41,000 \mathrm{hp}$. The Market Path Mid Station 3 will be located in Franklin County and will also include two Titan 130 turbines, ISO-rated for a total of $41,000 \mathrm{hp}$. The Market Path Tail Station will be located in Middlesex County and will include one 8,000 and one $15,000 \mathrm{hp}$ electric units for a total of $23,000 \mathrm{hp}$. In Massachusetts, temporary and permanent impacts to wetlands associated with compressor station construction can be found in Attachment 2, Table 2.2-7.

Facilities in New Hampshire will include the addition of a new natural gas-powered compressor station. The Market Path Mid Station 4 will be located in Hillsborough County and will include two Titan 130 turbines, ISO-rated for a total of $41,000 \mathrm{hp}$. In New Hampshire, temporary and permanent impacts to wetlands associated with the compressor station construction can be found in Attachment 2, Table 2.2-8.

No compressor station modifications are proposed in Connecticut for the Project.

1.2.2.2 Meter Stations

Meter stations are built for the purposes of measuring continuous natural gas flow entering and exiting a pipeline system. Meter stations also possess regulating components which regulate the pressure and delivery volumes of natural gas into and out of the pipeline system.

The construction and modification of custody transfer meters is to meet the specific needs of Project Shippers contracting for firm transportation service on the Project. The work involved at new meter stations will include the installation of tap, metering, regulation, heating, flow control, and overpressure protection, as necessary unless specified otherwise. The work involved at existing meter stations will include the modification to the station tap, inlet piping, headers, meter runs, and outlet piping as necessary, unless specified otherwise.

In Massachusetts, Tennessee proposes to construct or modify 20 meter stations as listed below:
The new and modified meter stations in Massachusetts will include:

- North Adams Check - Berkshire County, Massachusetts: This is a new check meter station at the interconnection of the Wright to Dracut Pipeline Segment with the existing Tennessee North Adams Lateral. Meter station components include metering, regulation/flow control, EGM, and communications. Space will be set aside on-site for heating, if required in the future. Where practical, it is anticipated that the major station components and piping assemblies will be fabricated, assembled, and housed in pre-fabricated buildings to be shipped to the site for final installation.
- West Greenfield - Franklin County, Massachusetts: This is a new delivery meter station to Berkshire Gas off of the Wright to Dracut Pipeline Segment. Meter station components include metering, in-line strainer, EGM, and communications. Heating, regulation, and odorization facilities will be installed by Berkshire Gas, as required. Where practical, it is anticipated that the major station components and piping assemblies will be fabricated, assembled, and housed in prefabricated buildings to be shipped to the site for final installation.
- Maritimes - Middlesex County, Massachusetts: This is a new meter station at the interconnection of the Wright to Dracut Pipeline Segment with the Spectra Maritimes pipeline. Meter station components include metering, regulation/flow control, filter-separator, EGM, gas quality, and communications. Where practical, it is anticipated that the major station components and piping assemblies will be fabricated, assembled, and housed in pre-fabricated buildings to be shipped to the site for final installation.
- 200-1 Check - Essex County, Massachusetts: This is a new check meter station between the end of the NED Lynnfield Lateral and the beginning of the NED Peabody Lateral. Meter station components include metering, regulation/flow control, heating, EGM, and communications. Where practical, it is anticipated that the major station components and piping assemblies will be fabricated, assembled, and housed in pre-fabricated buildings to be shipped to the site for final installation.
- Haverhill Check - Middlesex County, Massachusetts: This is a new check meter station at the interconnection of the Wright to Dracut Pipeline Segment with the existing Tennessee Haverhill Lateral. Meter station components include metering, regulation/flow control, heating, EGM, and communications. Where practical, it is anticipated that the major station components and piping
assemblies will be fabricated, assembled, and housed in pre-fabricated buildings to be shipped to the site for final installation.
- Fitchburg Lateral Check - Worcester County, Massachusetts: This is a new check meter station at the interconnection of the NED Fitchburg Lateral with the existing Tennessee Fitchburg Lateral. Meter station components include metering, regulation/flow control, heating, EGM, and communications. Where practical, it is anticipated that the major station components and piping assemblies will be fabricated, assembled, and housed in pre-fabricated buildings to be shipped to the site for final installation.
- Longmeadow - Hampden County, Massachusetts: This is a new delivery meter station to Columbia Gas off of the existing Tennessee 200 pipeline. Meter station components include metering, filter-separator, EGM, and communications. Heating, regulation and odorization facilities will be installed by Columbia Gas, as required. Where practical, it is anticipated that the major station components and piping assemblies will be fabricated, assembled, and housed in prefabricated buildings to be shipped to the site for final installation.
- Everett - Middlesex County, Massachusetts: This is a new delivery meter station to National Grid off of the existing Tennessee Saugus-Everett Lateral. Meter station components include metering, in-line strainer, heating, regulation, odorization, EGM, and communications. Where practical, it is anticipated that the major station components and piping assemblies will be fabricated, assembled, and housed in pre-fabricated buildings to be shipped to the site for final installation.
- North Adams Custody - Berkshire County, Massachusetts: Tennessee proposes to hydrotest its existing facility. The North Adams Lateral feeding this meter station is scheduled to be uprated to approximately 1,320 psig. Existing station piping to be hydrotested to allow lateral uprate.
- Lawrence - Essex County, Massachusetts: This is an upgrade to an existing meter station. Modifications include the installation of a new station tap assembly, replacement of the station inlet piping, addition of an in-line strainer upstream of the meter runs, replacement of the existing meter run headers, replacement of an existing 6 inch ultrasonic meter with a new 8 inch ultrasonic meter, and the addition of a 4 -inch rotary meter.
- Southbridge - Worcester County, Massachusetts: This is an upgrade to an existing meter station. Modifications include the installation of a new station tap assembly, replacement of the station inlet piping and the modification to the existing meter run inlet header.
- Spencer - Worcester County, Massachusetts: This is an upgrade to an existing meter station. Modifications include the installation of a new station tap assembly, replacement of the station inlet piping and the modification to the existing meter run inlet header.
- Lunenburg - Worcester County, Massachusetts: This is an upgrade to an existing meter station. Modifications include the installation of a new station tap assembly, replacement of the station inlet piping, replacement of an existing 2-inch turbine meter with a new 4 inch rotary meter, and the addition of gas chromatograph/building.
- Lexington - Middlesex County, Massachusetts: This is an upgrade to an existing meter station. Modifications include the installation of a new station tap assembly, replacement of the station inlet piping, addition of an in-line strainer upstream of the meter runs, replacement of the existing meter run headers, replacement of the two existing 4 -inch orifice meters with one new 3 inch rotary meter and one new 4-inch ultrasonic meter, and the replacement of the existing station outlet piping.
- Burlington - Middlesex County, Massachusetts: This is an upgrade to an existing meter station. Modifications include the installation of a new station tap assembly and the replacement of a portion of the existing station outlet piping.
- Arlington - Middlesex County, Massachusetts: This is an upgrade to an existing meter station. Modifications include the replacement of a portion of the outlet piping downstream of the meter run outlet header.
- Reading - Middlesex County, Massachusetts: This is an upgrade to an existing meter station. Modifications include the addition of an in-line strainer upstream of the meter runs and the replacement of the two existing orifice meters with one new 4 inch rotary meter and one new 6 -inch ultrasonic meter.
- Essex - Essex County, Massachusetts: This is an upgrade to an existing meter station. Modifications include the installation of a new station tap assembly, replacement of the station inlet piping, replacement of the existing meter run headers, and the addition of a new 3inch rotary meter.
- Pittsfield - Berkshire County, Massachusetts: This is an upgrade to an existing meter station. Modifications include the replacement of an existing 6 -inch orifice meter with a new 4inch orifice meter.
- North Adams Regulator - Berkshire County, Massachusetts: This adds a regulation station at the interconnection location of the Wright to Dracut Pipeline Segment and the North Adams Lateral. The MAOP of the North Adams Lateral is less than that of the Wright to Dracut Pipeline Segment, which then requires regulation measures to flow gas to the lateral.
- Wilmington Regulator - Middlesex County, Massachusetts: This adds a regulator/isolation valve assembly in the piping of the Beverly-Salem Lateral. This piping assembly will be located in the 12 -inch lateral piping at the existing Wilmington meter station yard. The addition of the regulator at this location will provide increased flexibility to address operational issues on the lateral east of the Wilmington station.

The new meter stations in New Hampshire will include:

- Merrimack - Hillsborough County, New Hampshire: This is a new delivery meter station to Liberty Utilities off of the Wright to Dracut Pipeline Segment. Meter station components include metering, in-line strainer, EGM, and communications. Heating, regulation, and odorization facilities will be installed by Liberty Utilities, as required. Where practical, it is anticipated that the major station components and piping assemblies will be fabricated, assembled, and housed in pre-fabricated buildings to be shipped to the site for final installation.
- 200-2 Check - Rockingham County, New Hampshire: This is a new check meter station at the interconnection of the Wright to Dracut Pipeline Segment with the existing Tennessee Concord Lateral. Meter station components include metering, regulation/flow control, heating, EGM, and communications. Where practical, it is anticipated that the major station components and piping assemblies will be fabricated, assembled, and housed in pre-fabricated buildings to be shipped to the site for final installation.

The modified meter station in Connecticut will include:

- Easton - Fairfield County, Connecticut: This is an upgrade to an existing meter station. Modifications include the installation of a new 4-inch rotary meter in place of the existing meter by-pass run.
- North Bloomfield - Hartford County, Connecticut: This is an upgrade to an existing meter station. Modifications include the installation of a new station tap assembly, replacement of the station inlet piping, addition of a filter-separator, replacement of the existing meter run headers, replacement and/or addition to the station metering.
- Milford - New Haven County, Connecticut: This is an upgrade to an existing meter station. Modifications include the replacement of the station inlet piping and the replacement of an existing 2 -inch turbine meter run.

Temporary and permanent impacts to wetlands associated with meter station construction can be found in Attachment 2, Tables 2.2-7 (Massachusetts), 2.2-8 (New Hampshire) and 2.2-9 (Connecticut).

1.2.2.3 Mainline Valves, Pig Facilities and Cathodic Protection Facilities

For the Project, Tennessee proposes that MLVs will generally be installed and operated within the proposed permanent ROW associated with the applicable pipeline segment(s). Each MLV will generally consist of a 60 -foot by 50 -foot graveled area and will be fenced within the permanent ROW. Tennessee has conducted a class study on each proposed pipeline segment and designed MLV locations that meet or exceed the federal spacing requirements. For this reason, wetlands and waterbody resources associated with the MLVs and the potential impacts of these facilities on Waters of the U.S. will be the same as those associated with the corresponding pipeline segment(s).

A total of 19 new MLVs are proposed in Massachusetts, 7 new MLVs in New Hampshire, and 3 new MLVs in Connecticut.

Tennessee also intends on installing pig barrels to accommodate internal inspection of the pipeline segments in accordance with 49 CFR, Part 192, Subpart O, which provides requirements for gas transmission pipeline integrity management. At a minimum, these barrels will be installed at compressor stations and the beginning and end of each proposed lateral. For this reason, wetlands and waterbody resources associated with the pig facilities and the potential impacts of these facilities on Waters of the U.S. will be the same as those associated with the corresponding compressor station or pipeline segment(s).

A total of 14 new pig facilities are proposed in Massachusetts, 3 new pig facilities in New Hampshire, and 1 new pig facility in Connecticut.

Requirements for pipeline corrosion control are provided in 49 CFR, Part 192, Subpart I. Tennessee intends to design cathodic protection for the Project in accordance with these regulations. For pipeline segments that are proposed to be co-located with Tennessee's pipeline system, the new segments will be interconnected to the existing cathodic protection system and evaluated for compliance with USDOT regulations. Enhancements have been provided as required to comply with the regulations. On new segments, a new cathodic protection system will be designed and installed. This will include
aboveground rectifiers and buried ground beds. The rectifiers will generally be installed on poles within the permanent ROW. These rectifiers will require low voltage power and are typically located at road crossings or other facility sites. These sites may be graveled so that future maintenance can be performed in a safe manner. For this reason, wetlands and waterbody resources associated with the cathodic protection facilities and the potential impacts of these facilities on Waters of the U.S. will be the same as those associated with the corresponding pipeline segments.

A total of 20 new cathodic protection facilities are proposed in Massachusetts, 11 in New Hampshire, and 3 in Connecticut.

A portion of the proposed pipeline segments will be co-located with high voltage electric powerlines. Tennessee will design an alternating current ("AC") and Direct Current ("DC") mitigation system that will protect the pipeline facilities and operations personnel. It is anticipated that the design will include zinc ribbon, grounding mats, and other equipment, most of which will be buried.

A total of 9 new AC mitigation sites are proposed for the Project in Massachusetts, 3 in New Hampshire, and 2 in Connecticut.

1.2.3 Access Roads

Tennessee anticipates utilizing temporary and permanent ARs during the construction of each portion of the Project. Temporary ARs will be used during construction and will not be used once construction is complete. Although public roads and the construction ROW will be used for primary access to the pipeline segments during construction, private ARs have been identified for potential use during construction of the Project as well, and Tennessee is currently obtaining permission for use of these private ARs. Tennessee has worked to locate and design any improvements to the ARs in a manner that avoids and minimizes impacts to wetlands and waterbodies to the extent practicable. This includes locating as many of the roads as possible along existing ARs that were previously utilized as construction ARs, agricultural ARs, along existing logging roads, along utility service roads, and along existing all-terrain-vehicle ("ATV") trails. ARs identified include roads that have been previously utilized on prior Tennessee projects and those approved for use during construction of the Constitution Pipeline Project, as well as new ARs. Some of the proposed ARs, if utilized, will require minor improvements to allow for passage of construction vehicles.

Tennessee is still in the process of conducting field surveys at the proposed access roads. Waterbodies that may be temporarily impacted by access roads are listed in Tables 1.1-1 (Massachusetts), 1.1-2 (New Hampshire), and 1.1-3 (Connecticut). Temporary and permanent impacts to wetlands can be found in Section 3 Attachment 2 Tables 2.2-7 (Massachusetts), 2.2-8 (New Hampshire), and 2.2-9 (Connecticut). Desktop data indicates the potential for additional wetland impacts; however, these locations will need to be field verified to assess actual impacts.

1.2.4 Contractor Yards

Tennessee has identified locations proposed to be utilized for contractor yards. These areas will be used for storage of equipment, pipes, and other materials, as well as temporary field offices and pipe preparation/field assembly areas. Contractor yards proposed at this time represent locations that have
been utilized on past Tennessee projects, those being used for the construction of the Constitution Pipeline Project, and additional locations identified by Tennessee.

Tennessee has identified locations to be utilized for contractor yards for the Project (Section 3 Appendices 1, 6, and 11). These areas will be used for equipment, pipe, and material storage and staging, as well as temporary field offices and pipe preparation/field assembly areas. Locations of these proposed contractor yards are depicted on the USGS topographic maps for each state (Section 3 Appendices 1, 6, and 11) and the aerial alignment sheets (Section 4, Appendix 1). Contractor yards that are proposed to be used for the Project include those located in previously disturbed areas such as open fields, sand and gravel pits, parking lots and industrial facilities.

A desktop review of these areas has indicated that wetlands may be present at the proposed contractor yard locations. Tennessee will conduct field verification surveys of these areas to determine if any impacts to wetlands and waterbodies may occur from the temporary use of these areas. Although certain wetland impacts for these previously disturbed areas have been included in the wetland impact tables based on desktop review of the areas (Attachment 2, Tables 2.2-7, 2.2-8, and 2.2-9), Tennessee will select contractor yard sites considering these environmental impacts and obtain the appropriate regulatory permits prior to utilizing these sites.

1.2.5 Pipeline Construction

Tennessee is requesting issuance of a certificate order from the Commission in November 2016 and proposes to commence construction activities in January 2017, in anticipation of placing the Project facilities in-service by November 2018 (with the exception of the proposed pipeline looping segment in Connecticut, which would be placed in-service by November 2019), consistent with the terms and conditions of the precedent agreements executed with Project Shippers.

The Project will be constructed in several stages, some overlapping in time. Certain work activities and sequences may vary, based on factors such as site-specific conditions, the final Project designs, and the requirements of regulatory approvals. Tennessee will complete pre-construction planning activities and continue consulting with the municipalities and state and federal agencies to minimize or avoid adverse effects to the environment and to the public. Tennessee will use conventional buried pipeline construction techniques and will follow all permit conditions and requirements set forth in the Commission's Plan and Procedures.

At a minimum, Tennessee will perform the following pipeline construction procedures:

- Survey and stake the centerline of the new pipeline and ROW boundaries;
- Clearing and grading;
- Trenching;
- Stringing;
- Pipe preparation (welding, bending, weld coating, X-ray, and coating repair) and lowering in;
- Backfilling and grade restoration;
- Hydrostatic testing and tie-ins; and
- Cleanup and restoration.

The above-listed procedures will typically follow in the sequence listed. Areas requiring special construction techniques include road or utility crossings, waterbodies and wetlands, unusual topographies such as unstable soils and trench conditions, residential or urban areas, agricultural areas, areas requiring rock removal, and permanent recreation facilities.

Where possible, Tennessee has proposed to use existing roads as ARs for the Project; if no existing road is available for use, Tennessee has sited new ARs away from sensitive resources to the extent practicable. Temporary soil erosion and sediment control measures will be installed along the proposed ARs in accordance with Tennessee's Project-specific ECP for Massachusetts in Section 3 Appendix 4, New Hampshire in Section 3 Appendix 9, and Connecticut in Section 3 Appendix 14.

The effects from the Project on air quality in the area will be short-term and minimal, occurring only during construction and maintenance activities. Construction and maintenance of the Project may cause a temporary reduction in the local ambient air quality due to fugitive dust and emissions generated by construction and maintenance equipment. These effects will only occur in the vicinity of the construction or maintenance activity. The emissions from vehicles and equipment will have minimal effects on the air quality of the region. Once construction and maintenance activities are completed, emissions will subside and ambient air quality will return to pre-construction levels.

1.2.6 Facility Construction

The new and modified compressor stations, the new and modified meter stations, and appurtenant facilities, including pig launcher/receivers, will be constructed in accordance with industry standards. Construction of these facilities will coincide with construction of the pipeline facilities. Cathodic protection will be installed at each compressor station location. Certain of the appurtenant facilities may require cathodic protection (as determined by cathodic protection pre- and post-surveys). At a minimum, construction of the facilities will include the following:

- Clearing and grading;
- Foundations;
- Building design and construction;
- High pressure piping;
- Pressure testing;
- Infrastructure facilities;
- Control checkout and startup;
- Final grading and landscaping; and
- Erosion control procedures.

1.3 REFERENCES

Cairns, S. 2015. Email correspondence between Sara Cairns, of the New Hampshire Natural Heritage Bureau, and Timothy O'Sullivan, AECOM, on March 11, 2015.

Chapman, T.R. 2015. Written correspondence between Thomas R. Chapman, U.S. Fish and Wildlife Service, New England Field Office, and Timothy O’Sullivan, AECOM, on March 5, 2015.

CTDEEP. 2015. Connecticut's Endangered, Threatened, and Special Concern Species 2015. . [Online WWW]. Available URL: http://www.ct.gov/deep/lib/deep/wildlife/pdf_files/nongame/ ETS15.pdf [Accessed October 2015].

DeBarros, N.B. 2015. Written correspondence between Nelson B. DeBarros, Botanist/Ecologist, Connecticut Natural Diversity Database, and Timothy O’Sullivan, AECOM, on March 11, 2015

French, T.W. 2015a. Written correspondence between Thomas W. French, Assistant Director, Massachusetts Natural Heritage and Endangered Species Program and Timothy O’Sullivan, AECOM, on March 3, 2015.

French, T.W. 2015b. Written correspondence between Thomas W. French, Assistant Director, Massachusetts Natural Heritage and Endangered Species Program and Timothy O’Sullivan, AECOM, on July 23, 2015.

MAEEA. 2015. Energy and Environmental Affairs. State Wild and Scenic Rivers. [Online WWW]. Available URL: http://www.mass.gov/eea/agencies/dfg/der/technical-assistance/wild-and-scenicrivers.html. [Accessed January 25, 2015].

Mailloux, C.P. 2015. Letter from Colleen P. Mailloux, Town of Amherst. Office of Community Development to Lori Ferry, AECOM on February 27, 2015.

McKay, D.M. 2015a. Written correspondence between Dawn M. McKay, Environmental Analyst, Connecticut Natural Diversity Database, and Timothy O’Sullivan, AECOM, on March 11, 2015.

McKay, D.M. 2015b. Email correspondence - Mussel Survey Protocol Approval between Dawn M. McKay, Environmental Analyst, Connecticut Natural Diversity Database, and Timothy O'Sullivan, AECOM, on September 7, 2015.

NHDES. 2015. Designated Rivers [Online WWW]. Available URL: http://des.nh.gov/organization/divisions/water/wmb/rivers/desigriv.htm. [Accessed May 29, 2015].

NPS. 2015a. Nationwide Rivers Inventory. [Online WWW]. Available URL: http://www.nps.gov/ncrc/programs/rtca/nri/. [Accessed January 23, 2015].

NPS. 2015b. Letter to FERC from James Comiskey, NPS on August 31, 2015.

NWSRS. 2015. Explore Designated Rivers. [Online WWW]. Available URL: http:/www.rivers.gov/map.php. [Accessed January 23, 2015].

Riese, F.L. 2014. Correspondence between Frederick L. Riese, Senior Environmental Analyst, Connecticut Department of Energy and Environmental Protection and Lori Ferry, AECOM, on December 17, 2014.

Schluter, E. 2015. Email correspondence between Eve Schluter, Massachusetts Natural Heritage and Endangered Species Program and Timothy O’Sullivan, AECOM, on July 24, 2015.

Thompson, T.J. 2015. Letter from Timothy J. Thompson, Town of Merrimack, NH Community Development Department to Lori Ferry, AECOM on March 5, 2015.
U.S. Army Corps of Engineers Permit

Company, L.L.C.
a Kinder Morgan company

Section 3 - Attachment 2

Dredge and/or Fill Materials Discharge

(Blocks 20-23)

This page intentionally left blank

SUPPLEMENTAL INFORMATION TO ENG FORM 4345

ATTACHMENT 2 - DREDGE AND/OR FILL MATERIALS DISCHARGE (BLOCKS 20 - 23)

2.1 REASONS FOR DISCHARGE (BLOCK 20)

To the extent that it is practicable, feasible, and in compliance with existing law, Tennessee proposes to locate proposed pipeline facilities (either pipeline looping segments or co-located pipeline facilities) generally within or adjacent to its existing right-of-way ("ROW") associated with its existing 300 Line in Pennsylvania and Connecticut; its existing 200 Line in New York and Massachusetts; and existing utility (pipeline and powerline) corridors in Pennsylvania, New York, Massachusetts, and New Hampshire. In order to construct the pipeline and aboveground appurtenant facilities, the pipeline will have to cross wetlands and watercourses along the proposed alignment. In the majority of these locations, the effects on wetlands and watercourses will be temporary. ROW configuration drawings are provided in the Projectspecific ECPs included in Section 3, Appendix 4 for Massachusetts, Appendix 9 for New Hampshire, and Appendix 14 for Connecticut.

Tennessee anticipates that waterbodies not crossed using trenchless methods will be crossed by one of the open cut methods described in the Project-specific ECP for Massachusetts, New Hampshire, or Connecticut. To minimize temporary impacts on installation of the pipeline facilities, Tennessee will implement the waterbody construction procedures, erosion control measures, and post-construction restoration activities identified in the Procedures and incorporated into the Project-specific ECPs (Section 3 Appendix 4 for Massachusetts, Appendix 9 for New Hampshire, and Appendix 14 for Connecticut).

Tennessee will attempt to minimize impacts to waterbodies present within the construction ROW but not directly crossed by the pipeline. If waterbodies cannot be avoided, impacts will be limited to minor disturbances associated with the installation of equipment crossings (where necessary) and/or potential impacts related to the clearing of adjacent vegetation. Waterbodies located within the construction ROW that cannot be avoided due to constraints associated with site access or construction workspace configurations, will be traversed via equipment crossings consisting of temporary equipment mats supported by temporary culverts or equipment bridges in accordance with the Project-specific procedures, incorporated into the Project-specific ECP for Massachusetts, New Hampshire, or Connecticut. In locations where equipment crossing impacts can be avoided, Tennessee will attempt to maintain a 15 -foot undisturbed vegetated buffer between the waterbodies and the construction workspace, except where maintaining this offset will result in greater impacts to wetlands or waterbodies. Sediment barriers will be installed, inspected, and maintained in accordance with the Project-specific procedures, incorporated into the Projectspecific ECP for Massachusetts, New Hampshire, or Connecticut at the time of clearing, parallel to the banks of all waterbodies located within the construction ROW.

Construction access to the Project areas and ancillary facilities will be by way of the construction ROW and existing and new public and private roads. Tennessee anticipates utilizing temporary and permanent ARs during the construction of each portion of the Project with permanent ARs to be used during operation of the Project. ARs identified to date include temporary roads that have been previously utilized for prior Tennessee projects, and additional roads identified by Tennessee. Where possible, Tennessee has proposed to use existing roads as ARs for the Project; if no existing road is available for use, Tennessee has sited new ARs away from Waters of the U.S. to the extent practicable. Temporary soil erosion and sediment control measures will be installed along the proposed ARs in accordance with Tennessee's Project-specific ECP for Massachusetts, New Hampshire, or Connecticut. Where alternative means of access across uplands does not exist, temporary matting will provide temporary access across Waters of the U.S. to minimize rutting and wetland impacts. Aerial alignment sheets depicting the proposed temporary and permanent ARs which will be used for the Project is included in Section 4, Appendix 1.

Wetlands crossed by the Project will be constructed in accordance with one of the crossing methods detailed in the Project-specific ECP for Massachusetts, New Hampshire, or Connecticut. Along the proposed Project, vegetation removal and tree clearing will be required for temporary workspace ("TWS") and additional temporary workspace ("ATWS") to install the pipeline facilities. As a result, trees within forested wetlands along the portions of the existing ROWs or new ROW areas will be removed. All wetlands will be substantially restored to their pre-construction grades, contours, and drainage patterns. In temporary workspace areas, trees will be allowed to regrow and return to forested wetlands following construction. In forested wetlands, Tennessee will minimize tree clearing to the maximum extent practicable while maintaining safe construction conditions. The permanent impacts on wetlands associated with the pipeline segments will consist of a conversion of palustrine forested ("PFO") wetlands to palustrine scrub-shrub ("PSS") or palustrine emergent ("PEM") wetland vegetation cover types. Woody vegetation within the new permanent ROW will be allowed to regenerate within the ROW except for a 10 -foot wide area centered over the pipeline that will be maintained in an herbaceous/scrub-shrub state to allow for inspection and maintenance of the pipeline once the Project is in-service. In addition, trees within 15 feet of the pipeline that could damage the pipeline coating may be selectively cut and removed from the new permanent ROW.

The use of proposed access roads will result in temporary and permanent impacts to wetlands (Tables 2-8 through 2-10 for Massachusetts, New Hampshire, and Connecticut respectively).

Tennessee has identified locations to be utilized for contractor yards for the Project (Section 3, Appendices 1,6 , and 11). These areas will be used for equipment, pipe, and material storage and staging, as well as temporary field offices and pipe preparation/field assembly areas. Locations of these proposed contractor yards are depicted on the USGS topographic maps for each state (Section 3, Appendices 1, 6, and 11) and the aerial alignment sheets (Section 4, Appendix 1). Contractor yards that are proposed to be used for the Project include those located in previously disturbed areas such as open fields, sand and gravel pits, parking lots, and industrial facilities. Although certain wetland impacts for these previously disturbed areas have been included in the wetland impact tables (Tables 2.3-7, 2.3-8, and 2.3-9), Tennessee will select contractor yard sites considering these environmental impacts and obtain the appropriate regulatory permits prior to utilizing these sites. Temporary impacts to wetlands from contractor yards in Massachusetts, New Hampshire, and Connecticut can be found in Tables 2.3-7, 2.3-8, and 2.3-9 respectively.
a Kinder Morgan company

U.S. Army Corps of Engineers Permit Northeast Energy Direct Project

Section 3, Attachment 2
Dredge and/or Fill Materials Discharge (Blocks 20-23)
The proposed Project includes construction of new meter stations and compressor stations, and also modifications to existing meter stations and compressor stations. Tennessee continues to evaluate sites for new stations and will consider all potential environmental impacts in the selection and design of these facilities. Temporary and permanent impacts from meter stations and compressor stations in Massachusetts, New Hampshire, and Connecticut can be found in Tables 2.3-7, 2.3-8, and 2.3-9 respectively.

Access within the ROW across wetlands will only be permitted where soils are non-saturated and able to support construction equipment at the time of crossing, during frozen soil conditions (for winter tree clearing), or with the use of timber mats to avoid rutting of the wetland soil. If mats are not used, the EI will record the pre- and post-construction soil density using a penetrometer to determine if the soil has been inadvertently compacted during construction or access.

2.2 TYPE(S) OF MATERIAL BEING DISCHARGED (BLOCK 21)

Construction of the Project requires both temporary and permanent discharges of materials to Waters of the U.S. Discharges will result from temporary stockpiling of soils in wetlands and from installation of the new pipeline, the construction of temporary access roads, the placement of temporary timber construction mats to serve as construction workspace in wetlands and floodplains, the use of contractor yards and the maintenance, improvement, or extension of ARs. The types of materials being discharged include trench spoil, rock or gravel for AR improvements and wood matting for temporary ARs or work areas (e.g. temporary workspace or contractor yards). Table 2.2-1 summarizes the estimated cubic yards of materials being discharged.

Table 2.2-1
Estimated Material Being Discharged for the Project

Project Activity	Estimated Volume of Temporary Discharge (cubic yards) ${ }^{2}$	Estimated Volume of Permanent Discharge (cubic yards)
Massachusetts		
Pipeline ${ }^{1,4}$	198,421	0
Aboveground Facilities ${ }^{1}$	1,286	984
Access Roads ${ }^{1}$	15,610	0
Contractor Yards ${ }^{1}$	35,274	0
Stream Bed (linear feet crossed) ${ }^{5}$	7,692	0
Massachusetts Total	250,591	984
New Hampshire		
Pipeline ${ }^{1,4}$	202,835	0
Aboveground Facilities ${ }^{1}$	807	371
Access Roads ${ }^{1}$	13,784	16
Contractor Yards ${ }^{1}$	49,717	0
Stream Bed (linear feet crossed) ${ }^{5}$	5,329	0
New Hampshire Total	267,143	387

Table 2.2-1
Estimated Material Being Discharged for the Project

Project Activity	Estimated Volume of Temporary Discharge (cubic yards) 2	Cstimated Volume of Permanent Discharge (cubic yards) 3
Pipeline 1,4	48,386	0
Aboveground Facilities 1	16	0
Access Roads 1	460	0
Contractor Yards 1	0	0
Stream Bed (linear feet crossed) 5	819	0
Connecticut Total	$\mathbf{4 8 , 8 6 2}$	$\mathbf{0}$
New England Project Total	$\mathbf{5 6 6 , 5 9 6}$	$\mathbf{1 3 7 1}$

${ }^{1}$ For the purposes of calculating cubic yards of discharge from pipeline workspace, aboveground facilities, access roads, stream beds and contractor yards, a depth of 1 foot was assumed to all stream and wetlands. Temporary swamp mats are considered temporary discharge.
${ }^{2}$ Estimated Volume of Temporary Discharge was calculated using the construction impacts to wetlands and waterbodies.
${ }^{3}$ Estimated Volume of Permanent Discharge represent wetlands that will be permanently filled.
${ }^{4}$ The pipeline workspace does not take into consideration the 15 Horizontal Directional Drills (HDDs) for the project that will reduce impacts to several wetlands and waterbodies.
${ }^{5}$ Stream Bed (linear feet crossed) is the length of pipeline crossing wetlands.

No upland spoils generated during construction will be deposited or stored in wetlands. In wetlands, up to the top 12 inches of the wetland topsoil over the trenchline will be segregated from subsoil, unless saturated according to the Commission's Plan and Procedures. Trench spoil will be temporarily stockpiled along the pipeline trench. Construction mats, whether wood or other material, will be removed and the disturbed area restored, as close as practicable, to pre-construction conditions. If shallow groundwater is encountered during excavation, dewatering would be performed in accordance with local permit conditions and construction BMPs. Such practices typically include pumping the water into a temporary sediment filter device such as a hay bale corral or filter bag in an adjacent upland area to minimize sediments from entering wetlands and waterbodies (See Section 3, Appendices 4, 9, and 14).

2.3 SURFACE AREA IN ACRES OF WETLANDS OR OTHER WATERS TO BE FILLED (BLOCK 22)

The surface area of federal jurisdictional wetlands that would be filled as a result of the construction of the Project is summarized in Tables 2.3-1 through 2.3-3.
U.S. Army Corps of Engineers Permit

Northeast Energy Direct Project
Section 3, Attachment 2
Dredge and/or Fill Materials Discharge (Blocks $20-23$)

Table 2.3-1
Estimated Surface Area of Impacts to Federal Jurisdictional Wetlands in Massachusetts

Project Activity	Estimated Temporary Effect (acres)	Estimated Permanent Effect (acres)
Pipeline Workspace	106.83	23.17
Aboveground Facilities	0.68	0.61
Access Roads	9.64	0.00
Contractor Yards	21.09	0.00
Total Direct Wetland Effects (Fill) ${ }^{\mathbf{1}}$	$\mathbf{1 3 8 . 2 4}$	$\mathbf{0 . 6 1}$
Total Secondary Wetland Effects (Vegetation Removal in Wetlands)	$\mathbf{1 1 1 . 8 8}$	$\mathbf{2 3 . 7 8}$
Impacts to Stream Bed and Channel	$\mathbf{1 7 . 0 9}$	$\mathbf{0 . 0 0}$

These impacts represent numbers of acres impacted during construction and operation of the pipeline facilities.
${ }^{2}$ These impacts represent numbers of acres of secondary impacts due to vegetation removal. Temporary impacts include all forested and scrub-shrub wetlands within the construction workspace. Permanent impacts include those areas that will be maintained in scrub-shrub or emergent wetland during operation of the pipeline.

Table 2.3-2
Estimated Surface Area of Impacts to Federal Jurisdictional Wetlands in New Hampshire

Project Activity	Estimated Temporary Effect (acres)	Estimated Permanent Effect (acres)
Pipeline Workspace	114.85	24.57
Aboveground Facilities	0.44	0.23
Access Roads	8.52	0.01
Contractor Yards	30.52	0.00
Total Direct Wetland Effects (Fill) ${ }^{\mathbf{1}}$	$\mathbf{1 5 4 . 3 3}$	$\mathbf{0 . 2 4}$
Total Secondary Wetland Effects (Vegetation Removal in Wetlands)	$\mathbf{1 1 5 . 7 9}$	$\mathbf{2 4 . 8 1}$
Impacts to Stream Bed and Channel	$\mathbf{1 1 . 2 5}$	$\mathbf{0 . 0 0}$

${ }^{1}$ These impacts represent numbers of acres impacted during construction and operation of the pipeline facilities.
2 These impacts represent numbers of acres of secondary impacts due to vegetation removal. Temporary impacts include all forested and scrub-shrub wetlands within the construction workspace. Permanent impacts include those areas that will be maintained in scrub-shrub or emergent wetland during operation of the pipeline.

Table 2.3-3
Estimated Surface Area of Impacts to Federal Jurisdictional Wetlands in Connecticut

Project Activity	Estimated Temporary Effect (acres)	Estimated Permanent Effect (acres)
Pipeline Workspace	28.44	5.91
Aboveground Facilities	0.01	0.00
Access Roads	0.28	0.00
Contractor Yards	0.00	0.00
Total Direct Wetland Effects (Fill)		
Total Secondary Wetland Effects		
(Vegetation Removal in Wetlands)	$\mathbf{2 8 . 7 3}$	$\mathbf{0 . 0 0}$
Impacts to Stream Bed and Channel	$\mathbf{1 8 . 6 4}$	$\mathbf{5 . 9 1}$

${ }^{1}$ These impacts represent numbers of acres impacted during construction and operation of the pipeline facilities.
${ }^{2}$ These impacts represent numbers of acres of secondary impacts due to vegetation removal. Temporary impacts include all forested and scrub-shrub wetlands within the construction workspace. Permanent impacts include those areas that will be maintained in scrub-shrub or emergent wetland during operation of the pipeline.

Tables 2.3-4 through 2.3-6 provide summaries of wetland impacts by municipality for Massachusetts, New Hampshire, and Connecticut respectively. Detailed summaries of the temporary, permanent, and secondary impacts to each wetland along each pipeline segment are presented in Tables 2.3-7, 2.3-8, and 2.3-9. Detailed site specific permit drawings for wetlands and watercourses are provided in Section 3, Appendix 2 (Massachusetts), Appendix 7 (New Hampshire) and Appendix 12 (Connecticut). Detailed summaries of the temporary and permanent impacts to vernal pool habitat are presented in Tables 2.3-10 through 2.3-12 for Massachusetts, New Hampshire, and Connecticut respectively.

A general description of pipeline and facility construction methods is provided in Attachment 1 and also in the Project-specific ECPs for each state. Soil erosion and sediment control procedures, including the basic measures to be used to minimize erosion and sedimentation into Waters of the U.S. are included in the Project-specific ECP for Massachusetts, New Hampshire, and Connecticut included in Section 3, Appendices 4, 9, and 14 respectively. This application only includes Site Specific wetland and watercourse permit drawings for those wetlands that were delineated in the field. Site Specific wetland and watercourse permit drawings are not provided for interpolated wetlands from aerial imagery.

Table 23-4

Summary of Temporary and Permanent Impacts by Municipality for Massachusetts

Municipality	Pipeline Impacts (acres)		Aboveground Facility Impacts (acres)		Contractor Yard Impacts (acres)		Access Roads in Wetlands (acres)		Wetland Vegetation Removal (acres) ${ }^{2}$		Non-wetland Tree Removal (acres) ${ }^{3}$	
	Temporary	Permanent ${ }^{1}$	Temporary	Permanent								
Hancock	1.36	0.18	0.00	0.00	0.25	0.00	0.00	0.00	1.29	0.18	23.01	9.78
Lanesborough	3.85	0.73	0.00	0.00	1.12	0.00	0.04	0.00	3.69	0.73	40.28	17.11
Cheshire	1.42	0.04	0.00	0.00	0.00	0.00	0.10	0.00	0.75	0.04	13.58	5.78
Dalton	1.51	0.15	0.00	0.00	0.14	0.00	1.05	0.00	2.38	0.15	27.47	9.57
Hinsdale	2.61	0.58	0.00	0.00	0.00	0.00	0.50	0.00	2.63	0.58	36.63	14.37
Peru	1.43	0.55	0.00	0.00	0.00	0.00	0.09	0.00	1.45	0.55	15.80	4.00
Windsor	2.50	0.74	0.01	0.00	0.97	0.00	0.68	0.00	2.86	0.74	56.40	22.81
Plainfield	5.31	1.41	0.00	0.00	0.00	0.00	0.32	0.00	4.79	1.41	52.72	23.89
Ashfield	7.25	2.41	0.00	0.00	0.13	0.00	0.74	0.00	7.47	2.41	66.21	29.78
Conway	0.63	0.18	0.00	0.00	0.00	0.00	0.39	0.00	1.01	0.18	37.21	18.12
Deerfield	1.80	0.37	0.00	0.00	0.00	0.00	0.00	0.00	1.32	0.37	45.63	22.69
Montague	0.92	0.30	0.00	0.00	0.00	0.00	0.05	0.00	0.84	0.30	52.42	21.45
Erving	0.48	0.11	0.00	0.00	0.00	0.00	0.01	0.00	0.49	0.11	40.94	15.97
Northfield	2.40	0.51	0.04	0.00	0.00	0.00	0.31	0.00	2.15	0.51	124.67	56.80
Warwick	0.21	0.06	0.00	0.00	0.00	0.00	0.02	0.00	0.22	0.06	16.72	6.51
Dracut	10.91	2.09	0.62	0.61	6.08	0.00	0.14	0.00	14.26	2.70	104.31	32.76
Tewksbury	3.04	1.09	0.00	0.00	0.00	0.00	0.04	0.00	2.99	1.09	20.88	9.19
Wilmington	4.26	0.30	0.00	0.00	11.23	0.00	0.35	0.00	10.23	0.30	10.80	3.39
North Reading	11.76	2.85	0.00	0.00	0.00	0.00	0.28	0.00	9.95	2.85	19.43	8.60
Reading	3.54	0.86	0.00	0.00	0.00	0.00	0.00	0.00	3.51	0.86	0.00	0.00
Townsend	10.84	2.04	0.00	0.00	0.08	0.00	3.68	0.00	13.71	2.04	28.88	18.93
Andover	4.43	1.26	0.00	0.00	0.46	0.00	0.12	0.00	3.30	1.26	32.69	15.35
Lynnfield	3.34	1.11	0.01	0.00	0.00	0.00	0.00	0.00	3.00	1.11	28.60	11.73
Peabody	5.66	0.30	0.00	0.00	0.00	0.00	0.01	0.00	4.08	0.30	4.26	1.89
Danvers	1.51	0.44	0.00	0.00	0.00	0.00	0.00	0.00	1.02	0.44	4.25	2.22
Methuen	6.34	0.03	0.00	0.00	0.63	0.00	0.00	0.00	4.50	0.03	13.69	0.68
Lunenburg	7.52	2.48	0.00	0.00	0.00	0.00	0.72	0.00	7.99	2.48	30.60	17.28
Middleton	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.47	2.01
Shelburne	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	10.60	5.83
Athol	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.89	0.00
Massachusetts Total ${ }^{4}$	106.83	23.17	0.68	0.61	21.09	0.00	9.64	0.00	111.88	23.78	967.04	408.49

*Note: Impact areas are of federal wetlands and do not include impacts to the state-regulated upland review areas, buffer areas or floodplains.

- These impacts include numbers of acres converted from forested wetland to scrub-shrub or emergent wetland and from scrub-shrub to emergent during operation of the pipeline.
${ }^{2}$ - These impacts represent the number of acres of wetland forest and scrub-shrub impacted during construction and operation. These wetland forest and scrub-shrub impacts are a total of all Project facilities (pipeline,
access roads, contractor yards) constructed and operated as part of the Project.
- These impacts represent numbers of acres of secondary upland impacts due to vegetation removal.
${ }^{4}$ - Minor apparent discrepancies between totals and sums of individual impacts are a result of rounding.

Table 2.3-5
Summary of Temporary and Permanent Impacts by Municipality for New Hampshire

Municipality	Pipeline Impacts (acres)		Aboveground Facility Impacts (acres)		Contractor Yard Impacts (acres)		Access Roads in Wetlands (acres)		Wetland Vegetation Removal (acres) 2		Non-wetland Tree Removal (acres) ${ }^{3}$	
	Temporary	Permanent ${ }^{1}$	Temporary	Permanent								
Winchester	2.26	0.79	0.00	0.00	0.00	0.00	0.06	0.00	2.32	0.79	54.99	23.58
Richmond	3.29	0.81	0.00	0.00	0.00	0.00	0.56	0.00	3.17	0.81	73.21	32.02
Troy	1.11	0.17	0.00	0.00	0.00	0.00	0.98	0.00	1.58	0.17	16.17	7.55
Fitzwilliam	15.35	2.30	0.00	0.00	0.00	0.00	0.13	0.00	9.44	2.30	59.13	26.58
Rindge	22.10	4.66	0.00	0.00	0.00	0.00	3.41	0.00	18.66	4.66	63.99	28.88
Keene	0.00	0.00	0.00	0.00	2.90	0.00	0.00	0.00	2.90	0.00	0.00	0.00
Jaffrey	0.00	0.00	0.00	0.00	8.89	0.00	0.00	0.00	1.17	0.00	1.91	0.00
New Ipswich	4.86	1.16	0.44	0.23	0.01	0.00	1.26	0.00	5.04	1.39	97.76	51.44
Greenville	0.23	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.23	0.04	18.65	7.20
Mason	13.33	4.47	0.00	0.00	0.00	0.00	0.91	0.00	13.23	4.47	80.84	43.93
Milford	4.91	1.00	0.00	0.00	0.41	0.00	0.18	0.00	3.95	1.00	20.87	10.21
Brookline	2.82	1.03	0.00	0.00	0.00	0.00	0.03	0.00	2.80	1.03	27.54	13.85
Amherst	2.70	0.67	0.00	0.00	10.67	0.00	0.00	0.00	12.71	0.67	71.37	7.97
Hollis	0.20	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.20	0.03	1.71	0.91
Merrimack	3.97	1.38	0.00	0.00	0.00	0.00	0.05	0.00	3.97	1.38	43.20	20.79
Litchfield	14.90	2.30	0.00	0.00	0.46	0.00	0.48	0.00	14.58	2.30	3.07	1.91
Londonderry	4.71	1.14	0.00	0.00	0.00	0.00	0.01	0.00	3.47	1.14	13.45	7.29
Hudson	5.02	0.80	0.00	0.00	0.00	0.00	0.17	0.00	3.49	0.80	7.60	4.59
Windham	1.87	0.21	0.00	0.00	0.00	0.00	0.03	0.00	1.26	0.21	12.28	6.60
Pelham	5.43	0.89	0.00	0.00	6.56	0.00	0.26	0.01	6.77	0.90	38.76	19.90
Salem	5.79	0.72	0.00	0.00	0.62	0.00	0.00	0.00	4.85	0.72	2.78	0.29
Swanzey	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00
New HampshireTotal ${ }^{4}$	114.85	24.57	0.44	0.23	30.52	0.00	8.52	0.01	115.79	24.81	709.31	315.49

*Note: Impact areas are of federal wetlands and do not include impacts to the state-regulated upland review areas, buffer areas or floodplains.
${ }^{1}$ - These impacts include numbers of acres converted from forested wetland to scrub-shrub or emergent wetland and from scrub-shrub to emergent during operation of the pipeline

- These impacts include numbers of acres converted from forested wettand to scrub-Shrub or emergent wettand and from scrub-shrub to emergent during operation of the pipeline.
access roads, contractor yards) constructed and operated as part of the Project.
These impacts represent numbers of acres of secondary upland impacts due to vegetation removal.
- Minor apparent discrepancies between totals and sums of individual impacts are a result of rounding.

Table 2.3-6
Summary of Temporary and Permanent Impacts by Municipality for Connecticu

Municipality	Pipeline Impacts (acres)		Aboveground Facility Impacts (acres)		Contractor Yard Impacts (acres)		Access Roads in Wetlands (acres)		Wetland Vegetation Removal (acres) 2		Non-wetland Tree Removal (acres) ${ }^{3}$	
	Temporary	Permanent ${ }^{1}$	Temporary	Permanent								
Farmington	0.42	0.12	0.00	0.00	0.00	0.00	0.00	0.00	0.35	0.12	7.51	1.73
West Hartford	6.29	1.31	0.00	0.00	0.00	0.00	0.23	0.00	4.76	1.31	40.71	13.87
Bloomfield	18.36	3.69	0.01	0.00	0.00	0.00	0.05	0.00	10.85	3.69	48.15	19.51
Windsor	3.02	0.70	0.00	0.00	0.00	0.00	0.00	0.00	2.33	0.70	20.77	9.05
East Granby	0.35	0.09	0.00	0.00	0.00	0.00	0.00	0.00	0.35	0.09	5.86	1.13
Avon	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.46	0.00
Connecticut Total ${ }^{4}$	28.44	5.91	0.01	0.00	0.00	0.00	0.28	0.00	18.64	5.91	123.46	45.29

Note: Impact areas are of federal wetlands and do not include impacts to the state-regulated upland review areas, buffer areas or floodplains.

- These impacts include numbers of acres converted from forested wetland to scrub-shrub or emergent wetland and from scrub-shrub to emergent during operation of the pipeline.
- These impacts represent the number of acres of wetland forest and scrub-shrub impacted during construction and operation. These wetland forest and scrub-shrub impacts are a total of all Project facilities (pipeline,
access roads, contractor yards) constructed and operated as part of the Project
- These impacts represent numbers of acres of secondary upland impacts due to vegetation removal.
${ }^{4}$ - Minor apparent discrepancies between totals and sums of individual impacts are a result of rounding

Table 2.3-7

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{aligned} & \text { Wetland } \\ & \mathbf{I D}^{3,4} \end{aligned}$	Wetland Class ${ }^{5}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method ${ }^{7}$	Comments	Wetland Impact (acres)							Crossing Length (feet) ${ }^{1}$	
						Construction ${ }^{8}$								Operation ${ }^{9}$								
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$		
Pipeline Facilities																						
Wright to Dracut Pipeline Segment	Berkshire	Hancock	G	0.47	0.50		WPI-1213	PEM	BVW	$\begin{array}{r} 42^{\circ} 32^{\prime} \\ 24.551^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 73^{\circ} 19^{\prime} \\ 56.934^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Hancock	II		0.08	0.00	0.00	0.00	0.00	0.00	0.00	75
Wright to Dracut Pipeline Segment	Berkshire	Hancock	G	0.39	0.44	WPI-1211	PSS	BVW	$\begin{gathered} 42^{\circ} 32^{\prime} \\ 26.306^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 73^{\circ} 20^{\prime} \\ 2.011^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Hancock	II		0.00	0.00	0.39	0.00	0.00	0.05	0.00	236	
Wright to Dracut Pipeline Segment	Berkshire	Hancock	G	0.43	0.45	WPI-1212	PFO	BVW	$\begin{gathered} 42^{\circ} 32^{\prime} \\ 25.203^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 19^{\prime} \\ 59.168^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Hancock	N/A		0.00	0.05	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Berkshire	Hancock	G	0.46	0.50	WPI-1212	PFO	BVW	$\begin{gathered} 42^{\circ} 32^{\prime} \\ 24.500^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 19 ' \\ 57.359 " \mathrm{~W} \\ \hline \end{gathered}$	Hancock	II		0.00	0.16	0.00	0.00	0.05	0.00	0.00	69	
Wright to Dracut Pipeline Segment	Berkshire	Hancock	G	0.50	0.51	WPI-1214	PSS	BVW	$\begin{gathered} 42^{\circ} 32^{\prime} \\ 24.331^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 19^{\prime} \\ 54.785^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Hancock	N/A		0.00	0.00	0.02	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Berkshire	Hancock	G	0.52	0.55	WPI-1216	PSS	BVW	$\begin{array}{r} 42^{\circ} 32^{\prime} \\ 23.676^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 73^{\circ} 19^{\prime} \\ 53.434^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Hancock	II		0.00	0.00	0.08	0.00	0.00	0.01	0.00	11	
Wright to Dracut Pipeline Segment	Berkshire	Hancock	G	0.73	0.76	HA-N-W001	PFO	BVW	$\begin{gathered} 42^{\circ} 32^{\prime} \\ 19.370^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 19^{\prime} \\ 40.163^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Hancock	II		0.00	0.17	0.00	0.00	0.05	0.00	0.00	117	
Wright to Dracut Pipeline Segment	Berkshire	Hancock	G	0.76	0.76	HA-N-W001	PFO	BVW	$\begin{gathered} 42^{\circ} 32^{\prime} \\ 18.761^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 19^{\prime} \\ 38.072^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Hancock	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Berkshire	Hancock	G	2.09	2.10	WPI-1223	PFO	BVW	$\begin{array}{r} 42^{\circ} 32^{\prime} \\ 4.934^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 73^{\circ} 18^{\prime} \\ 6.469^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Hancock	N/A		0.00	0.02	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Berkshire	Hancock	G	2.21	2.24	WPI-1227	PSS	BVW	$\begin{gathered} 42^{\circ} 32^{\prime} \\ 3.873^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 17^{\prime} \\ 57.835^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Hancock	N/A		0.00	0.00	0.06	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Berkshire	Hancock	G	2.24	2.32	WPI-1230	PSS	BVW	$\begin{gathered} 42^{\circ} 32^{\prime} \\ 3.369^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 17^{\prime} \\ 55.821^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Hancock	II		0.00	0.00	0.28	0.00	0.00	0.02	0.00	333	
Wright to Dracut Pipeline Segment	Berkshire	Hancock	G	2.26	2.26	WPI-1227	PSS	BVW	$\begin{gathered} 42^{\circ} 32^{\prime} \\ 3.320^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 17^{\prime} \\ 54.469^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Hancock	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Berkshire	Hancock	G	2.27	2.28	WPI-1227	PSS	BVW	$\begin{array}{r} 42^{\circ} 32^{\prime} \\ 3.290^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 73^{\circ} 17^{\prime} \\ 54.208^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Hancock	N/A		0.00	0.00	0.02	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Berkshire	Hancock	G	2.29	2.30	WPI-1229	PSS	BVW	$\begin{gathered} 42^{\circ} 32^{\prime} \\ 2.925^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 73^{\circ} 17^{\prime} \\ 52.428^{\prime \prime} \mathrm{W} \end{gathered}$	Hancock	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Berkshire	Lanesborough	G	3.60	3.63	WPI-1239	PFO	BVW	$\begin{gathered} 42^{\circ} 31^{\prime} \\ 40.001 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 16^{\prime} \\ 26.941^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Hancock	II		0.00	0.20	0.00	0.00	0.09	0.00	0.00	149	
Wright to Dracut Pipeline Segment	Berkshire	Lanesborough	G	3.60	3.63	WPI-1238	PSS	BVW	$\begin{array}{r} 42^{\circ} 31^{\prime} \\ 40.002^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 73^{\circ} 16^{\prime} \\ 26.996^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Hancock	N/A		0.00	0.00	0.04	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Berkshire	Lanesborough	G	3.63	3.66	WPI-1243	PFO	BVW	$\begin{array}{r} 42^{\circ} 31^{\prime} \\ 40.210^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 73^{\circ} 16^{\prime} \\ 24.858^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Hancock	II		0.00	0.24	0.00	0.00	0.11	0.00	0.00	156	
Wright to Dracut Pipeline Segment	Berkshire	Lanesborough	G	3.63	3.66	WPI-1242	PSS	BVW	$\begin{array}{r} 42^{\circ} 31^{\prime} \\ 40.276^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 73^{\circ} 16^{\prime} \\ 24.9966^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Hancock	N/A		0.00	0.00	0.02	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Berkshire	Lanesborough	G	4.45	4.53	WPI-1245	PSS/PEM	BVW	$\begin{gathered} 42^{\circ} 31^{\prime} \\ 37.848^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 15^{\prime} \\ 27.822^{\prime \prime} \mathrm{W} \end{gathered}$	Hancock	II		0.00	0.00	0.67	0.00	0.00	0.09	0.00	407	
Wright to Dracut Pipeline Segment	Berkshire	Lanesborough	G	4.56	4.60	WPI-1245	PSS/PEM	BVW	$\begin{gathered} 42^{\circ} 31^{\prime} \\ 35.650 " \mathrm{~N} \end{gathered}$	$\begin{gathered} 73^{\circ} 15^{\prime} \\ 20.141^{\prime \prime} \mathrm{W} \end{gathered}$	Hancock	II		0.00	0.00	0.24	0.00	0.00	0.04	0.00	168	
Wright to Dracut Pipeline Segment	Berkshire	Lanesborough	G	4.59	4.61	WPI-1246	Other	BVW	$\begin{gathered} 42^{\circ} 31^{\prime} \\ 36.041^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 15^{\prime} \\ 18.1455^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Hancock	II		0.00	0.00	0.00	0.05	0.00	0.00	0.00	27	
Wright to Dracut Pipeline Segment	Berkshire	Lanesborough	G	4.61	4.61	WPI-1247	PSS/PEM	BVW	$\begin{array}{r} 42^{\circ} 31^{\prime} \\ 35.7599^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 73^{\circ} 15^{\prime} \\ 16.634 \mathrm{~W} \\ \hline \end{gathered}$	Hancock	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Berkshire	Lanesborough	G	4.96	5.01	WPI-1249	PFO	BVW	$\begin{gathered} 42^{\circ} 31^{\prime} \\ 30.543^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 14^{\prime} \\ 52.799^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Cheshire	N/A		0.00	0.21	0.00	0.00	0.03	0.00	0.00	0	

Table 2.3-7

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{aligned} & \text { Wetland } \\ & \mathbf{I D}^{3,4} \end{aligned}$	Wetland Class ${ }^{5}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method ${ }^{7}$	Comments	Wetland Impact (acres)							Crossing Length (feet) ${ }^{11}$	
						Construction ${ }^{8}$								Operation ${ }^{9}$								
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$		
Wright to Dracut Pipeline Segment	Berkshire	Lanesborough	G	4.97	5.02		WPI-1250	PSS	BVW	$\begin{array}{r} 42^{\circ} 31^{\prime} \\ 31.231^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 73^{\circ} 14^{\prime} \\ 52.391^{\prime} \mathrm{W} \\ \hline \end{gathered}$	Cheshire	II		0.00	0.00	0.20	0.00	0.00	0.06	0.00	241
Wright to Dracut Pipeline Segment	Berkshire	Lanesborough	G	5.70	5.73	WPI-1252	PFO	BVW	$\begin{gathered} 42^{\circ} 31^{\prime} \\ 30.720^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 14^{\prime} \\ 1.886^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Cheshire	N/A		0.00	0.10	0.00	0.00	0.01	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Berkshire	Lanesborough	G	5.73	5.76	WPI-1256	PSS/PEM	BVW	$\begin{gathered} 42^{\circ} 31^{\prime} \\ 30.091^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 14^{\prime} \\ 0.347^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Cheshire	II		0.00	0.00	0.14	0.00	0.00	0.02	0.00	96	
Wright to Dracut Pipeline Segment	Berkshire	Lanesborough	G	5.74	5.75	WPI-1254	PSS/PEM	BVW	$\begin{array}{r} 42^{\circ} 31^{\prime} \\ 30.5355^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 73^{\circ} 13^{\prime} \\ 59.229^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Cheshire	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Berkshire	Lanesborough	G	5.75	5.81	WPI-1258	PFO	BVW	$\begin{gathered} 42^{\circ} 31^{\prime} \\ 30.291^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 13^{\prime} \\ 59.064^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Cheshire	II		0.00	0.32	0.00	0.00	0.10	0.00	0.00	130	
Wright to Dracut Pipeline Segment	Berkshire	Lanesborough	G	5.75	5.81	WPI-1260	PSS/PEM	BVW	$\begin{gathered} 42^{\circ} 31^{\prime} \\ 30.002^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 13^{\prime} \\ 58.732^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Cheshire	II		0.00	0.00	0.19	0.00	0.00	0.05	0.00	195	
Wright to Dracut Pipeline Segment	Berkshire	Lanesborough	G	5.80	5.81	WPI-1262	PFO	BVW	$\begin{gathered} 42^{\circ} 31^{\prime} \\ 30.076^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 13^{\prime} \\ 54.951^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Cheshire	N/A		0.00	0.02	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Berkshire	Lanesborough	G	5.81	5.84	WPI-1263	PEM	BVW	$\begin{array}{r} 42^{\circ} 31^{\prime} \\ 29.868^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 73^{\circ} 13^{\prime} \\ 54.352^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Cheshire	II		0.21	0.00	0.00	0.00	0.00	0.00	0.00	121	
Wright to Dracut Pipeline Segment	Berkshire	Lanesborough	G	5.84	5.86	WPI-1265	PSS	BVW	$\begin{gathered} 42^{\circ} 31^{\prime} \\ 29.840^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 13^{\prime} \\ 52.747^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Cheshire	N/A		0.00	0.00	0.09	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Berkshire	Lanesborough	G	5.84	5.89	WPI-1266	PSS/PEM	BVW	$\begin{gathered} 42^{\circ} 31^{\prime} \\ 29.344^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 73^{\circ} 13^{\prime} \\ 52.590^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Cheshire	II		0.00	0.00	0.43	0.00	0.00	0.07	0.00	293	
Wright to Dracut Pipeline Segment	Berkshire	Lanesborough	G	6.87	6.92	WPI-1269	PSS	BVW	$\begin{gathered} 42^{\circ} 31^{\prime} \\ 13.227^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 12^{\prime} \\ 44.360^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Cheshire	II		0.00	0.00	0.46	0.00	0.00	0.06	0.00	268	
Wright to Dracut Pipeline Segment	Berkshire	Cheshire	G	7.52	7.56	WPI-1272	PSS	BVW	$\begin{gathered} 42^{\circ} 31^{\prime} \\ 12.139^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 11^{\prime} \\ 59.139^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Cheshire	II		0.00	0.00	0.32	0.00	0.00	0.02	0.00	89	
Wright to Dracut Pipeline Segment	Berkshire	Cheshire	G	7.54	7.55	WPI-1274	PEM	BVW	$\begin{gathered} \hline 42^{\circ} 31^{\prime} \\ 12.247^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 73^{\circ} 11^{\prime} \\ 57.819^{\prime \prime} \mathrm{W} \end{gathered}$	Cheshire	N/A		0.02	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Berkshire	Cheshire	G	7.56	7.57	WPI-1276	PEM	BVW	$\begin{gathered} 42^{\circ} 31^{\prime} \\ 12.332^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 11^{\prime} \\ 56.517^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Cheshire	II		0.06	0.00	0.00	0.00	0.00	0.00	0.00	4	
Wright to Dracut Pipeline Segment	Berkshire	Cheshire	G	7.70	7.75	WPI-1280	PSS	BVW	$\begin{gathered} 42^{\circ} 31^{\prime} \\ 11.490^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 11^{\prime} \\ 46.185^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Cheshire	II		0.00	0.00	0.30	0.00	0.00	0.02	0.00	90	
Wright to Dracut Pipeline Segment	Berkshire	Cheshire	G	7.71	7.73	NWI-111	PSS/EM	BVW	$\begin{gathered} 42^{\circ} 31^{\prime} \\ 10.952^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 11^{\prime} \\ 45.879^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Cheshire	N/A		0.00	0.00	0.09	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Berkshire	Cheshire	G	8.26	8.32	CS-M-W002	PEM	BVW	$\begin{gathered} 42^{\circ} 31^{\prime} \\ 11.416^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 73^{\circ} 11^{\prime} \\ 7.053^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Cheshire	II		0.46	0.00	0.00	0.00	0.00	0.00	0.00	254	
Wright to Dracut Pipeline Segment	Berkshire	Cheshire	G	8.32	8.35	WPI-1285	PEM	BVW	$\begin{aligned} & 42^{\circ} 31^{\prime} \\ & 9.646^{\prime \prime} \mathrm{N} \end{aligned}$	$\begin{gathered} 73^{\circ} 11^{\prime} \\ 2.933^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Cheshire	II		0.17	0.00	0.00	0.00	0.00	0.00	0.00	104	
Wright to Dracut Pipeline Segment	Berkshire	Dalton	G	9.51	9.51	WPI-1291	PSS/PEM	BVW	$\begin{array}{r} 42^{\circ} 30^{\prime} \\ 52.640 " \mathrm{~N} \\ \hline \end{array}$	$\begin{gathered} 73^{\circ} 9^{\prime} \\ 42.924 " \mathrm{~W} \\ \hline \end{gathered}$	Cheshire	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Berkshire	Dalton	G	9.69	9.71	WPI-1292	PSS/PEM	BVW	$\begin{gathered} 42^{\circ} 30^{\prime} \\ 50.089^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 9^{\prime} \\ 31.283^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Cheshire	N/A		0.00	0.00	0.03	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Berkshire	Dalton	G	9.71	9.72	WPI-1293	PFO	BVW	$\begin{gathered} 42^{\circ} 30^{\prime} \\ 50.511^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 9^{\prime} \\ 29.449^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Cheshire	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Berkshire	Dalton	G	9.74	9.78	WPI-1293	PFO	BVW	$\begin{gathered} 42^{\circ} 30^{\prime} \\ 49.834^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 9^{\prime} \\ 27.481^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Cheshire	N/A		0.00	0.15	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Berkshire	Dalton	G	9.79	9.80	WPI-1294	PFO	BVW	$\begin{array}{r} 42^{\circ} 30^{\prime} \\ 48.478^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 73^{\circ} 9^{\prime} \\ 24.265^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Cheshire	II		0.00	0.03	0.00	0.00	0.01	0.00	0.00	15	
Wright to Dracut Pipeline Segment	Berkshire	Dalton	G	9.79	9.83	WPI-1295	PSS/PEM	BVW	$\begin{gathered} 42^{\circ} 30^{\prime} \\ 48.443^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 73^{\circ} 9^{\prime} \\ 24.308^{\prime \prime} \mathrm{W} \end{gathered}$	Cheshire	II		0.00	0.00	0.20	0.00	0.00	0.03	0.00	129	

Table 2.3-7

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{gathered} \text { Wetland } \\ \mathbf{I D}^{3,4} \end{gathered}$	Wetland Class ${ }^{5}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method	Comments	Wetland Impact (acres)							Crossing Length (feet) ${ }^{11}$	
						Construction ${ }^{8}$								Operation ${ }^{9}$								
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$		
Wright to Dracut Pipeline Segment	Berkshire	Dalton	G	9.81	9.82		WPI-1297	PFO	BVW	$\begin{array}{r} 42^{\circ} 30^{\prime} \\ 48.796^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 73^{\circ} 9^{\prime} \\ 22.477^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Cheshire	II		0.00	0.02	0.00	0.00	0.01	0.00	0.00	13
Wright to Dracut Pipeline Segment	Berkshire	Dalton	G	10.28	10.30	WPI-1298	PSS/PEM	BVW	$\begin{array}{r} 42^{\circ} 30^{\prime} \\ 33.725^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 73^{\circ} 8^{\prime} \\ 57.851^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Cheshire	N/A		0.00	0.00	0.06	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Berkshire	Dalton	G	10.35	10.37	WPI-1298	PSS/PEM	BVW	$\begin{gathered} 42^{\circ} 30^{\prime} \\ 31.096^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 8^{\prime} \\ 54.507^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Cheshire	N/A		0.00	0.00	0.09	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Berkshire	Dalton	G	10.47	10.48	WPI-1300	PSS/PEM	BVW	$\begin{gathered} 42^{\circ} 30^{\prime} \\ 26.690^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 8^{\prime} \\ 48.341^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Cheshire	N/A		0.00	0.00	0.03	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Berkshire	Dalton	G	10.71	10.73	WPI-1301	PSS	BVW	$\begin{gathered} 42^{\circ} 30^{\prime} \\ 17.150^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 8^{\prime} \\ 36.767^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Cheshire	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Berkshire	Dalton	G	10.77	10.78	WPI-1303	PFO	BVW	$\begin{gathered} 42^{\circ} 30^{\prime} \\ 15.439^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 8^{\prime} \\ 33.033^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Cheshire	II		0.00	0.04	0.00	0.00	0.02	0.00	0.00	28	
Wright to Dracut Pipeline Segment	Berkshire	Dalton	G	10.78	10.78	WPI-1304	PSS/PEM	BVW	$\begin{gathered} 42^{\circ} 30^{\prime} \\ 14.896^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 8^{\prime} \\ 33.481^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Cheshire	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Berkshire	Dalton	G	10.78	10.81	WPI-1305	PSS/PEM	BVW	$\begin{gathered} 42^{\circ} 30^{\prime} \\ 15.177^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 8^{\prime} \\ 32.700^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Cheshire	II		0.00	0.00	0.18	0.00	0.00	0.02	0.00	108	
Wright to Dracut Pipeline Segment	Berkshire	Dalton	G	10.80	10.81	WPI-1306	PFO	BVW	$\begin{gathered} 42^{\circ} 30^{\prime} \\ 14.454^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 8^{\prime} \\ 31.779^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Cheshire	II		0.00	0.06	0.00	0.00	0.02	0.00	0.00	24	
Wright to Dracut Pipeline Segment	Berkshire	Dalton	G	11.33	11.33	WPI-1310	PSS	BVW	$\begin{gathered} 42^{\circ} 29^{\prime} \\ 53.792^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 8^{\prime} \\ 7.063^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Pittsfield East	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Berkshire	Dalton	G	11.47	11.48	WPI-1311	PSS	BVW	$\begin{gathered} 42^{\circ} 29^{\prime} \\ 48.430^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 8^{\prime} \\ 0.246^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Pittsfield East	II		0.00	0.00	0.05	0.00	0.00	0.01	0.00	29	
Wright to Dracut Pipeline Segment	Berkshire	Dalton	G	11.76	11.77	WPI-1312	PSS	BVW	$\begin{gathered} 42^{\circ} 29^{\prime} \\ 37.700^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 7^{\prime} \\ 45.975^{\prime \prime} \mathrm{W} \end{gathered}$	Pittsfield East	N/A		0.00	0.00	0.03	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Berkshire	Dalton	G	11.84	11.84	WPI-1314	PEM	BVW	$\begin{gathered} 42^{\circ} 29^{\prime} \\ 34.623^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 7^{\prime} \\ 42.424^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Pittsfield East	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Berkshire	Dalton	G	11.84	11.84	WPI-1315	PEM	BVW	$\begin{gathered} 42^{\circ} 29^{\prime} \\ 34.531^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 7^{\prime} \\ 42.272^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Pittsfield East	II		0.02	0.00	0.00	0.00	0.00	0.00	0.00	17	
Wright to Dracut Pipeline Segment	Berkshire	Dalton	G	11.97	12.00	WPI-1317	PSS	BVW	$\begin{gathered} 42^{\circ} 29^{\prime} \\ 29.566^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 7^{\prime} \\ 36.097^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Pittsfield East	II		0.00	0.00	0.17	0.00	0.00	0.02	0.00	99	
Wright to Dracut Pipeline Segment	Berkshire	Dalton	G	11.98	11.99	WPI-1316	PEM	BVW	$\begin{gathered} 42^{\circ} 29^{\prime} \\ 28.940^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 7 \\ 35.469^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Pittsfield East	II		0.01	0.00	0.00	0.00	0.00	0.00	0.00	4	
Wright to Dracut Pipeline Segment	Berkshire	Dalton	G	12.25	12.30	WPI-1318	PEM	BVW	$\begin{gathered} \hline 42^{\circ} 29^{\prime} \\ 18.684^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 73^{\circ} 7^{\prime} \\ 22.433^{\prime \prime} \mathrm{W} \end{gathered}$	Peru	II		0.20	0.00	0.00	0.00	0.00	0.00	0.00	115	
Wright to Dracut Pipeline Segment	Berkshire	Dalton	G	12.31	12.32	WPI-1319	PSS	BVW	$\begin{gathered} \hline 42^{\circ} 29^{\prime} \\ 16.874^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 7^{\prime} \\ 19.401^{\prime \prime} \mathrm{W} \end{gathered}$	Peru	II		0.00	0.00	0.08	0.00	0.00	0.01	0.00	53	
Wright to Dracut Pipeline Segment	Berkshire	Hinsdale	G	13.14	13.15	HN-N-W006	PSS	BVW	$\begin{array}{r} 42^{\circ} 28^{\prime} \\ 38.426^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 73^{\circ} 6^{\prime} \\ 56.747^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Berkshire	Hinsdale	G	13.27	13.29	WPI-1320	PEM	BVW	$\begin{array}{r} 42^{\circ} 28^{\prime} \\ 32.160^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 73^{\circ} 6^{\prime} \\ 54.451^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	N/A		0.04	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Berkshire	Hinsdale	G	13.52	13.56	HN-MW001	PFO	BVW	$\begin{array}{r} 42^{\circ} 28^{\prime} \\ 25.274^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 73^{\circ} 6^{\prime} \\ 39.449^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	II		0.00	0.29	0.00	0.00	0.11	0.00	0.00	172	
Wright to Dracut Pipeline Segment	Berkshire	Hinsdale	G	13.55	13.56	$\begin{aligned} & \text { HN-M- } \\ & \text { W001 } \\ & \hline \end{aligned}$	PFO	BVW	$\begin{gathered} 42^{\circ} 28^{\prime} \\ 24.413^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 6^{\prime} \\ 37.604^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	II		0.00	0.04	0.00	0.00	0.02	0.00	0.00	26	
Wright to Dracut Pipeline Segment	Berkshire	Hinsdale	G	13.59	13.63	HN-M- W002	PFO	BVW	$\begin{array}{r} 42^{\circ} 28^{\prime} \\ 23.320^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 73^{\circ} 6^{\prime} \\ 34.744^{\prime \prime} \mathrm{W} \end{gathered}$	Peru	II		0.00	0.21	0.00	0.00	0.11	0.00	0.00	170	
Wright to Dracut Pipeline Segment	Berkshire	Hinsdale	G	13.59	13.63	$\begin{aligned} & \text { HN-M- } \\ & \text { W002 } \end{aligned}$	PSS	BVW	$\begin{array}{r} 42^{\circ} 28^{\prime} \\ 23.169^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 73^{\circ} 6^{\prime} \\ 34.804^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	N/A		0.00	0.00	0.03	0.00	0.00	0.00	0.00	0	

Table 2.3-7

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{aligned} & \text { Wetland } \\ & \mathbf{I D}^{3,4} \end{aligned}$	Wetland Class ${ }^{5}$	State Wetland	Latitude	Longitude	Quadrangle	Crossing Method	Comments	Wetland Impact				Operation ${ }^{9}$			Crossing Length (feet) ${ }^{11}$
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$	
Wright to Dracut Pipeline Segment	Berkshire	Hinsdale	G	13.96	13.96	HN-MW005	PFO	BVW	$\begin{gathered} 42^{\circ} 28^{\prime} \\ 13.550^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 6^{\prime} \\ 12.212^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Berkshire	Hinsdale	G	14.01	14.05	HN-MW005	PFO	BVW	$\begin{gathered} 42^{\circ} 28^{\prime} \\ 12.121^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 73^{\circ} 6^{\prime} \\ 9.401 " \mathrm{~W} \\ \hline \end{gathered}$	Peru	II		0.00	0.17	0.00	0.00	0.06	0.00	0.00	101
Wright to Dracut Pipeline Segment	Berkshire	Hinsdale	G	14.03	14.06	$\begin{aligned} & \text { HN-M- } \\ & \text { W005 } \\ & \hline \end{aligned}$	PSS	BVW	$\begin{gathered} 42^{\circ} 28^{\prime} \\ 11.056^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 6^{\prime} \\ 8.512^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	N/A		0.00	0.00	0.04	0.00	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Berkshire	Hinsdale	G	14.65	14.67	$\begin{aligned} & \hline \text { HN-M- } \\ & \text { W007 } \\ & \hline \end{aligned}$	PEM	BVW	$\begin{gathered} 42^{\circ} 28^{\prime} \\ 10.893^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 5^{\prime} \\ 28.719^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	II		0.12	0.00	0.00	0.00	0.00	0.00	0.00	86
Wright to Dracut Pipeline Segment	Berkshire	Hinsdale	G	14.72	14.77	$\begin{aligned} & \hline \text { HN-M- } \\ & \text { W006 } \\ & \hline \end{aligned}$	PSS	BVW	$\begin{gathered} 42^{\circ} 28^{\prime} \\ 9.758^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 5^{\prime} \\ 23.772^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	II		0.00	0.00	0.34	0.00	0.00	0.04	0.00	195
Wright to Dracut Pipeline Segment	Berkshire	Hinsdale	G	14.90	14.91	HN-N-W001	PSS	BVW	$\begin{gathered} \hline 42^{\circ} 28^{\prime} \\ 12.344^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 5^{\prime} \\ 11.263^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	II		0.00	0.00	0.04	0.00	0.00	0.01	0.00	32
Wright to Dracut Pipeline Segment	Berkshire	Hinsdale	G	14.98	14.99	HN-N-W002	PFO	BVW	$\begin{gathered} 42^{\circ} 28^{\prime} \\ 12.808^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 5^{\prime} \\ 5.709 " \mathrm{~W} \\ \hline \end{gathered}$	Peru	II		0.00	0.02	0.00	0.00	0.01	0.00	0.00	7
Wright to Dracut Pipeline Segment	Berkshire	Hinsdale	G	14.99	14.99	HN-MW002	PFO	BVW	$\begin{gathered} 42^{\circ} 28^{\prime} \\ 12.924^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 5^{\prime} \\ 5.232 " \mathrm{~W} \\ \hline \end{gathered}$	Peru	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Berkshire	Hinsdale	G	15.00	15.00	HN-N-W002	PFO	BVW	$\begin{gathered} \hline 42^{\circ} 28^{\prime} \\ 13.674^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 73^{\circ} 5^{\prime} \\ 4.742^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Peru	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Berkshire	Hinsdale	G	15.15	15.18	$\begin{gathered} \hline \text { HN-M- } \\ \text { W008 } \\ \hline \end{gathered}$	PFO	BVW	$\begin{gathered} 42^{\circ} 28^{\prime} \\ 16.233^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 4^{\prime} \\ 54.805^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	II		0.00	0.23	0.00	0.00	0.09	0.00	0.00	130
Wright to Dracut Pipeline Segment	Berkshire	Hinsdale	G	15.22	15.29	HN-MW008	PSS	BVW	$\begin{gathered} 42^{\circ} 28^{\prime} \\ 17.096^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 4^{\prime} \\ 49.954^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	II		0.00	0.00	0.62	0.00	0.00	0.08	0.00	351
Wright to Dracut Pipeline Segment	Berkshire	Hinsdale	G	15.44	15.45	HN-N-W005	PFO	BVW	$\begin{gathered} 42^{\circ} 28^{\prime} \\ 20.215^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 4^{\prime} \\ 35.169^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	II		0.00	0.03	0.00	0.00	0.01	0.00	0.00	2
Wright to Dracut Pipeline Segment	Berkshire	Hinsdale	G	15.54	15.55	$\begin{gathered} \hline \text { HN-M- } \\ \text { W009 } \\ \hline \end{gathered}$	PFO	BVW	$\begin{gathered} \hline 42^{\circ} 28^{\prime} \\ 22.589^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 4^{\prime} \\ 29.024^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	II		0.00	0.05	0.00	0.00	0.01	0.00	0.00	15
Wright to Dracut Pipeline Segment	Berkshire	Hinsdale	G	15.59	15.59	HN-M- W011	PFO	BVW	$\begin{gathered} 42^{\circ} 28^{\prime} \\ 23.501 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 4^{\prime} \\ 25.263^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Berkshire	Hinsdale	G	15.59	15.62	$\begin{aligned} & \hline \text { HN-M- } \\ & \text { W010 } \end{aligned}$	PSS	BVW	$\begin{gathered} \hline 42^{\circ} 28^{\prime} \\ 22.713^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 73^{\circ} 4^{\prime} \\ 24.866^{\prime \prime} \mathrm{W} \end{gathered}$	Peru	N/A		0.00	0.00	0.06	0.00	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Berkshire	Hinsdale	G	15.63	15.70	HN-MW010	PSS	BVW	$\begin{gathered} 42^{\circ} 28^{\prime} \\ 23.828^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 73^{\circ} 4^{\prime} \\ 22.351^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	II		0.00	0.00	0.23	0.00	0.00	0.03	0.00	105
Wright to Dracut Pipeline Segment	Berkshire	Peru	G	16.00	16.01	WPI-1334	PSS	BVW	$\begin{gathered} 42^{\circ} 28^{\prime} \\ 29.410^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 3^{\prime} \\ 57.243^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Berkshire	Peru	G	16.03	16.04	WPI-1336	PSS	BVW	$\begin{gathered} 42^{\circ} 28^{\prime} \\ 29.798^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 73^{\circ} 3^{\prime} \\ 55.642^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	II		0.00	0.00	0.06	0.00	0.00	0.01	0.00	24
Wright to Dracut Pipeline Segment	Berkshire	Peru	G	16.04	16.08	WPI-1337	PFO	BVW	$\begin{gathered} 42^{\circ} 28^{\prime} \\ 30.616^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 3^{\prime} \\ 55.483^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	II		0.00	0.36	0.00	0.00	0.14	0.00	0.00	205
Wright to Dracut Pipeline Segment	Berkshire	Peru	G	16.08	16.13	WPI-1338	PFO	BVW	$\begin{gathered} 42^{\circ} 28^{\prime} \\ 31.089^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 73^{\circ} 3^{\prime} \\ 52.722^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	II		0.00	0.49	0.00	0.00	0.20	0.00	0.00	288
Wright to Dracut Pipeline Segment	Berkshire	Peru	G	16.14	16.22	WPI-1342	PFO	BVW	$\begin{array}{r} 42^{\circ} 28^{\prime \prime} \\ 32.274^{\prime \prime} \end{array}$	$\begin{gathered} 73^{\circ} 3^{\prime} \\ 48.643^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	II		0.00	0.51	0.00	0.00	0.20	0.00	0.00	304
Wright to Dracut Pipeline Segment	Berkshire	Windsor	G	16.86	16.90	WPI-1352	PFO	BVW	$\begin{array}{r} 42^{\circ} 28^{\prime \prime} \\ 44.056^{\prime \prime} \mathrm{C} \\ \hline \end{array}$	$\begin{gathered} 73^{\circ} 3^{\prime} \\ 0.013^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	II		0.00	0.32	0.00	0.00	0.13	0.00	0.00	192
Wright to Dracut Pipeline Segment	Berkshire	Windsor	G	17.02	17.03	$\begin{aligned} & \hline \text { WR-M- } \\ & \text { W022 } \\ & \hline \end{aligned}$	PFO	BVW	$\begin{gathered} 42^{\circ} 28^{\prime \prime} \\ 42.375^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 2^{\prime} \\ 47.970^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	II		0.00	0.05	0.00	0.00	0.01	0.00	0.00	20
Wright to Dracut Pipeline Segment	Berkshire	Windsor	G	17.15	17.15	$\begin{aligned} & \text { WR-M- } \\ & \text { W023 } \end{aligned}$	PEM	BVW	$\begin{gathered} 42^{\circ} 28^{\prime} \\ 45.110^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 2^{\prime} \\ 39.749^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	II		0.02	0.00	0.00	0.00	0.00	0.00	0.00	15

Table 2.3-7

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{gathered} \text { Wetland } \\ \text { ID }^{3,4} \end{gathered}$	Wetland Class	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method ${ }^{7}$	Comments			Wetla	Impact	Operation ${ }^{9}$			Crossing Length (feet) ${ }^{11}$	
						Construction ${ }^{8}$																
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$		
Wright to Dracut Pipeline Segment	Berkshire	Windsor	G	17.16	17.16		$\begin{aligned} & \hline \text { WR-M- } \\ & \text { W023 } \end{aligned}$	PEM	BVW	$\begin{array}{r} 42^{\circ} 28^{\prime} \\ 45.281^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 73^{\circ} 2^{\prime} \\ 39.029^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	II		0.02	0.00	0.00	0.00	0.00	0.00	0.00	10
Wright to Dracut Pipeline Segment	Berkshire	Windsor	G	17.17	17.22	$\begin{aligned} & \text { WR-M- } \\ & \text { W004 } \end{aligned}$	PFO	BVW	$\begin{array}{r} 42^{\circ} 28^{\prime} \\ 45.393^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 73^{\circ} 2^{\prime} \\ 37.980^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	II		0.00	0.31	0.00	0.00	0.12	0.00	0.00	225	
Wright to Dracut Pipeline Segment	Berkshire	Windsor	G	17.31	17.32	WR-MW005	PSS	BVW	$\begin{array}{r} 42^{\circ} 28^{\prime} \\ 49.106^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 73^{\circ} 2^{\prime \prime} \\ 29.493^{\prime \prime} \mathrm{W} \end{gathered}$	Peru	N/A		0.00	0.00	0.04	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Berkshire	Windsor	G	17.99	18.00	WPI-1356	PFO	BVW	$\begin{array}{r} \hline 42^{\circ} 29^{\prime} \\ 2.214^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 73^{\circ} 1^{\prime} \\ 44.879^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	II		0.00	0.11	0.00	0.00	0.04	0.00	0.00	62	
Wright to Dracut Pipeline Segment	Berkshire	Windsor	G	18.04	18.05	WPI-1358	PFO	BVW	$\begin{array}{r} 42^{\circ} 29^{\prime} \\ 2.265^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 73^{\circ} 1^{\prime} \\ 40.792^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Berkshire	Windsor	G	18.14	18.14	WPI-1361	PSS	BVW	$\begin{array}{r} 42^{\circ} 29^{\prime} \\ 3.812^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 73^{\circ} 1^{\prime} \\ 34.387^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Berkshire	Windsor	G	18.67	18.74	$\begin{aligned} & \hline \text { WR-M- } \\ & \text { W012 } \\ & \hline \end{aligned}$	PSS	BVW	$\begin{gathered} 42^{\circ} 29^{\prime} \\ 25.888^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 1^{\prime} \\ 18.581^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	II		0.00	0.00	0.39	0.00	0.00	0.05	0.00	258	
Wright to Dracut Pipeline Segment	Berkshire	Windsor	G	18.74	18.76	WR-MW012	PSS	BVW	$\begin{gathered} 42^{\circ} 29^{\prime} \\ 29.520^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 1^{\prime} \\ 18.099^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	II		0.00	0.00	0.02	0.00	0.00	0.01	0.00	10	
Wright to Dracut Pipeline Segment	Berkshire	Windsor	G	18.75	18.75	WR-MW012	PSS	BVW	$\begin{gathered} 42^{\circ} 29^{\prime} \\ 29.662^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 1^{\prime} \\ 18.737^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Berkshire	Windsor	G	19.06	19.09	WR-NW002	PFO	BVW	$\begin{gathered} 42^{\circ} 29^{\prime} \\ 43.095^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 73^{\circ} 1^{\prime} \\ 10.799^{\prime \prime} \mathrm{W} \end{gathered}$	Peru	N/A		0.00	0.05	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Berkshire	Windsor	G	19.09	19.10	WR-NW002	PFO	BVW	$\begin{array}{r} 42^{\circ} 29^{\prime} \\ 43.723^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 73^{\circ} 1^{\prime} \\ 8.9944^{\prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Berkshire	Windsor	G	19.10	19.11	WR-NW002	PFO	BVW	$\begin{gathered} 42^{\circ} 29^{\prime} \\ 43.980^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 1^{\prime} \\ 8.009^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Berkshire	Windsor	G	19.11	19.13	WR-NW002	PFO	BVW	$\begin{gathered} 42^{\circ} 29^{\prime} \\ 44.165^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 1^{\prime} \\ 7.299^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	II		0.00	0.15	0.00	0.00	0.05	0.00	0.00	78	
Wright to Dracut Pipeline Segment	Berkshire	Windsor	G	19.15	19.17	WR-NW002	PFO	BVW	$\begin{array}{r} 42^{\circ} 29^{\prime} \\ 44.428^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 73^{\circ} 1^{\prime} \\ 4.3666^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Peru	II		0.00	0.06	0.00	0.00	0.04	0.00	0.00	86	
Wright to Dracut Pipeline Segment	Berkshire	Windsor	G	19.17	19.21	$\begin{aligned} & \text { WR-N- } \\ & \text { W002 } \end{aligned}$	PSS	BVW	$\begin{gathered} 42^{\circ} 29^{\prime} \\ 44.496^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 1^{\prime} \\ 2.987 \text { " } \mathrm{C} \end{gathered}$	Peru	II		0.00	0.00	0.14	0.00	0.00	0.02	0.00	92	
Wright to Dracut Pipeline Segment	Berkshire	Windsor	G	20.36	20.38	$\begin{aligned} & \text { WR-M- } \\ & \text { W015 } \\ & \hline \end{aligned}$	PFO	BVW	$\begin{array}{r} 42^{\circ} 30^{\prime} \\ 4.504^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 59^{\prime} \\ 45.488^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Plainfield	II		0.00	0.14	0.00	0.00	0.05	0.00	0.00	71	
Wright to Dracut Pipeline Segment	Berkshire	Windsor	G	20.42	20.44	WR-MW016	PFO	BVW	$\begin{gathered} 42^{\circ} 30^{\prime} \\ 5.571^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 59^{\prime} \\ 41.998^{\prime \prime} \mathrm{W} \end{gathered}$	Plainfield	II		0.00	0.15	0.00	0.00	0.06	0.00	0.00	91	
Wright to Dracut Pipeline Segment	Berkshire	Windsor	G	20.62	20.63	$\begin{aligned} & \text { WR-M- } \\ & \text { W020 } \end{aligned}$	PFO	BVW	$\begin{gathered} 42^{\circ} 30^{\prime} \\ 8.863^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 59^{\prime} \\ 28.207{ }^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Plainfield	N/A		0.00	0.02	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Berkshire	Windsor	G	20.78	20.79	WPI-1368	PSS	BVW	$\begin{gathered} 42^{\circ} 30^{\prime} \\ 12.239^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 59^{\prime} \\ 17.981^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Plainfield	II		0.00	0.00	0.05	0.00	0.00	0.01	0.00	30	
Wright to Dracut Pipeline Segment	Berkshire	Windsor	G	20.80	20.83	WPI-1369	PFO	BVW	$\begin{gathered} 42^{\circ} 30^{\prime} \\ 12.777^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 59^{\prime} \\ 16.835^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Plainfield	II		0.00	0.20	0.00	0.00	0.07	0.00	0.00	107	
Wright to Dracut Pipeline Segment	Berkshire	Windsor	G	21.18	21.20	WPI-1373	PFO	BVW	$\begin{gathered} 42^{\circ} 30^{\prime} \\ 18.624^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 58^{\prime} \\ 51.449^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Plainfield	II		0.00	0.11	0.00	0.00	0.05	0.00	0.00	74	
Wright to Dracut Pipeline Segment	Berkshire	Windsor	G	21.18	21.21	WPI-1374	PSS	BVW	$\begin{gathered} 42^{\circ} 30^{\prime} \\ 18.753^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 58^{\prime} \\ 50.954^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Plainfield	II		0.00	0.00	0.04	0.00	0.00	0.01	0.00	21	
Wright to Dracut Pipeline Segment	Berkshire	Windsor	G	21.19	21.21	WPI-1372	PFO	BVW	$\begin{gathered} 42^{\circ} 30^{\prime} \\ 18.825^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 58^{\prime} \\ 50.677^{\prime \prime} \mathrm{W} \end{gathered}$	Plainfield	II		0.00	0.06	0.00	0.00	0.02	0.00	0.00	30	
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	21.53	21.54	WPI-1375	PSS	BVW	$\begin{gathered} 42^{\circ} 30^{\prime} \\ 25.399^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 58^{\prime} \\ 28.518^{\prime \prime} \mathrm{W} \end{gathered}$	Plainfield	II		0.00	0.00	0.07	0.00	0.00	0.01	0.00	47	

Table 23-7

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{gathered} \text { Wetland } \\ \mathbf{I D}^{3,4} \end{gathered}$	Wetland Class ${ }^{5}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method	Comments	Wetland Impact (acres)							Crossing Length (feet) ${ }^{11}$	
						Construction ${ }^{8}$								Operation ${ }^{9}$								
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$		
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	21.54	21.55		WPI-1376	PEM	BVW	$\begin{array}{r} 42^{\circ} 30^{\prime} \\ 24.890^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 58^{\prime} \\ 27.4577^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Plainfield	II		0.05	0.00	0.00	0.00	0.00	0.00	0.00	23
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	21.56	21.57	WPI-1376	PEM	BVW	$\begin{array}{r} 42^{\circ} 30^{\prime} \\ 24.844^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 58^{\prime} \\ 25.626^{\prime \prime} \mathrm{W} \end{gathered}$	Plainfield	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	21.98	21.99	PL-M-W006	PFO	BVW	$\begin{array}{r} 42^{\circ} 30^{\prime} \\ 33.421^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 72^{\circ} 57^{\prime} \\ 58.190^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Plainfield	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	22.02	22.03	PL-M-W004	PFO	BVW	$\begin{array}{r} 42^{\circ} 30^{\prime} \\ 34.016^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 57^{\prime} \\ 55.506^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Plainfield	II		0.00	0.07	0.00	0.00	0.03	0.00	0.00	40	
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	22.05	22.05	PL-E-W001	PFO	BVW	$\begin{array}{r} 42^{\circ} 30^{\prime} \\ 33.658^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 57 \prime \\ 53.261^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Plainfield	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	22.87	22.88	WPI-1379	PSS	BVW	$\begin{gathered} 42^{\circ} 30^{\prime} \\ 47.943^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 72^{\circ} 56^{\prime} \\ 58.600^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Plainfield	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	23.27	23.28	PL-M-W002	PEM	BVW	$\begin{gathered} 42^{\circ} 30^{\prime} \\ 54.914^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 56^{\prime} \\ 32.249^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Plainfield	II		0.04	0.00	0.00	0.00	0.00	0.00	0.00	19	
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	23.42	23.43	PL-M-W001	PFO	BVW	$\begin{gathered} 42^{\circ} 30^{\prime} \\ 58.214^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 72^{\circ} 56^{\prime} \\ 22.588^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Plainfield	II		0.00	0.05	0.00	0.00	0.02	0.00	0.00	34	
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	23.43	23.44	PL-M-W007	PSS	BVW	$\begin{array}{r} 42^{\circ} 30^{\prime} \\ 57.163^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 56^{\prime} \\ 20.991^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Plainfield	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	23.98	24.05	WPI-1386	PFO	BVW	$\begin{array}{r} 42^{\circ} 31^{\prime} \\ 7.975^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 55^{\prime} \\ 45.079^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Plainfield	II		0.00	0.47	0.00	0.00	0.20	0.00	0.00	288	
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	24.04	24.05	WPI-1387	PSS	BVW	$\begin{array}{r} 42^{\circ} 31^{\prime} \\ 8.307^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 55^{\prime} \\ 40.784^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Plainfield	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	24.04	24.06	WPI-1388	PSS	BVW	$\begin{array}{r} 42^{\circ} 31^{\prime} \\ 9.034^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 55^{\prime} \\ 41.009^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Plainfield	II		0.00	0.00	0.08	0.00	0.00	0.01	0.00	52	
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	24.07	24.08	WPI-1390	PEM	BVW	$\begin{array}{r} \hline 42^{\circ} 31^{\prime} \\ 9.537^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 55^{\prime} \\ 39.075^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Plainfield	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	24.07	24.09	WPI-1395	PSS	BVW	$\begin{gathered} 42^{\circ} 31^{\prime} \\ 8.888^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 55^{\prime} \\ 38.941^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Plainfield	II		0.00	0.00	0.11	0.00	0.00	0.01	0.00	57	
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	24.08	24.09	WPI-1392	PSS	BVW	$\begin{array}{r} 42^{\circ} 31^{\prime} \\ 9.601^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 55^{\prime} \\ 38.433^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Plainfield	II		0.00	0.00	0.06	0.00	0.00	0.01	0.00	44	
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	24.09	24.17	WPI-1397	PFO	BVW	$\begin{array}{r} 42^{\circ} 31^{\prime} \\ 9.702^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 55^{\prime} \\ 37.742^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Plainfield	II		0.00	0.67	0.00	0.00	0.27	0.00	0.00	389	
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	24.64	24.66	WPI-1400	PEM	BVW	$\begin{gathered} 42^{\circ} 31^{\prime} \\ 25.857^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 72^{\circ} 55 \prime \\ 8.806 " \mathrm{~W} \\ \hline \end{array}$	Plainfield	II		0.09	0.00	0.00	0.00	0.00	0.00	0.00	58	
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	24.65	24.66	WPI-1401	PSS	BVW	$\begin{array}{r} 42^{\circ} 31^{\prime} \\ 26.310^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 72^{\circ} 55^{\prime} \\ 7.813^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Plainfield	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	24.68	24.71	WPI-1399	PSS	BVW	$\begin{array}{r} 42^{\circ} 31^{\prime} \\ 27.7344^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 55^{\prime} \\ 7.078^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Plainfield	II		0.00	0.00	0.05	0.00	0.00	0.01	0.00	25	
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	25.07	25.09	PL-E-W003	PEM	BVW	$\begin{array}{r} 42^{\circ} 31^{\prime} \\ 29.107^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 54^{\prime} \\ 42.758^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Plainfield	N/A		0.09	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	25.07	25.08	PL-E-W003	PFO	BVW	$\begin{array}{r} 42^{\circ} 31^{\prime} \\ 29.373^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 54^{\prime} \\ 42.714^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Plainfield	II		0.00	0.03	0.00	0.00	0.02	0.00	0.00	54	
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	25.07	25.07	WPI-1402	PSS	BVW	$\begin{gathered} 42^{\circ} 31^{\prime} \\ 29.356^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 54^{\prime} \\ 43.077^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Plainfield	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	25.13	25.23	PL-E-W003	PEM	BVW	$\begin{gathered} 42^{\circ} 31^{\prime} \\ 27.857^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 54^{\prime} \\ 39.227^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Plainfield	N/A		0.47	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	25.14	25.26	PL-E-W003	PFO	BVW	$\begin{array}{r} 42^{\circ} 31^{\prime} \\ 28.0344^{\prime \prime} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 54^{\prime} \\ 37.945^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Plainfield	II		0.00	0.27	0.00	0.00	0.13	0.00	0.00	333	

Table 2.3-7

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{gathered} \text { Wetland } \\ \mathbf{I D}^{3,4} \end{gathered}$	Wetland Class ${ }^{5}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method	Comments	Construction ${ }^{8}$				Operation ${ }^{9}$			Crossing Length (feet) ${ }^{11}$
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$	
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	25.21	25.30	PL-E-W003	PSS	BVW	$\begin{gathered} 42^{\circ} 31^{\prime} \\ 27.108^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 54^{\prime} \\ 33.817^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Plainfield	II		0.00	0.00	0.50	0.00	0.00	0.04	0.00	356
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	25.26	25.29	PL-E-W003	PFO	BVW	$\begin{array}{r} \hline 42^{\circ} 31^{\prime} \\ 26.676^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 54^{\prime} \\ 30.341^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Plainfield	N/A		0.00	0.06	0.00	0.00	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	25.48	25.49	PL-E-W002	PFO	BVW	$\begin{array}{r} 42^{\circ} 31^{\prime} \\ 26.708^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 54^{\prime} \\ 14.981^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Plainfield	II		0.00	0.11	0.00	0.00	0.05	0.00	0.00	69
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	25.49	25.58	PL-E-W002	PFO	BVW	$\begin{gathered} 42^{\circ} 31^{\prime} \\ 27.010^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 54^{\prime} \\ 14.002^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Plainfield	II		0.00	0.67	0.00	0.00	0.16	0.00	0.00	399
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	25.57	25.59	PL-E-W002	PFO	BVW	$\begin{array}{r} 42^{\circ} 31^{\prime} \\ 27.770^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 54^{\prime} \\ 8.522^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Plainfield	II		0.00	0.08	0.00	0.00	0.02	0.00	0.00	36
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	25.95	25.96	WPI-1410	PFO	BVW	$\begin{array}{r} 42^{\circ} 31^{\prime} \\ 31.9344^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 53^{\prime} \\ 42.448^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Plainfield	II		0.00	0.05	0.00	0.00	0.03	0.00	0.00	44
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	25.96	25.97	WPI-1412	PSS	BVW	$\begin{array}{r} 42^{\circ} 31^{\prime} \\ 32.047{ }^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 53^{\prime} \\ 41.625^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Plainfield	II		0.00	0.00	0.05	0.00	0.00	0.01	0.00	23
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	25.97	25.98	WPI-1411	PFO	BVW	$\begin{array}{r} 42^{\circ} 31^{\prime} \\ 32.170^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 72^{\circ} 53^{\prime} \\ 40.732^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Plainfield	II		0.00	0.04	0.00	0.00	0.02	0.00	0.00	30
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	25.97	25.98	WPI-1413	PSS	BVW	$\begin{array}{r} 42^{\circ} 31^{\prime} \\ 31.952^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 53^{\prime} \\ 41.168^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Plainfield	II		0.00	0.00	0.07	0.00	0.00	0.01	0.00	48
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	26.23	26.24	WPI-1415	PFO	BVW	$\begin{gathered} 42^{\circ} 31^{\prime} \\ 34.615^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 53^{\prime} \\ 22.939^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Plainfield	II		0.00	0.10	0.00	0.00	0.04	0.00	0.00	58
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	26.24	26.25	WPI-1419	PFO	BVW	$\begin{gathered} 42^{\circ} 31^{\prime} \\ 34.730^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 53^{\prime} \\ 22.101^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Plainfield	II		0.00	0.05	0.00	0.00	0.02	0.00	0.00	33
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	26.34	26.34	WPI-1422	PEM	BVW	$\begin{array}{r} 42^{\circ} 31^{\prime} \\ 34.906^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 53^{\prime} \\ 15.334^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Plainfield	II		0.02	0.00	0.00	0.00	0.00	0.00	0.00	9
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	26.46	26.47	WPI-1425	PFO	BVW	$\begin{gathered} 42^{\circ} 31^{\prime} \\ 36.4877^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 53^{\prime} \\ 7.303^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Plainfield	II		0.00	0.05	0.00	0.00	0.03	0.00	0.00	41
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	26.72	26.72	PL-M-W009	PEM	BVW	$\begin{array}{r} 42^{\circ} 31^{\prime} \\ 38.367{ }^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 52^{\prime} \\ 49.0299^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Plainfield	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	26.72	26.75	PL-M-W009	PFO	BVW	$\begin{gathered} \hline 42^{\circ} 31^{\prime} \\ 38.458^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 52^{\prime} \\ 49.015 " \mathrm{~W} \\ \hline \end{gathered}$	Plainfield	N/A		0.00	0.21	0.00	0.00	0.03	0.00	0.00	0
Wright to Dracut Pipeline Segment	Hampshire	Plainfield	G	26.76	26.83	PL-M-W010	PFO	BVW	$\begin{gathered} 42^{\circ} 31^{\prime} \\ 39.628^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 52^{\prime} \\ 45.923^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Plainfield	II		0.00	0.48	0.00	0.00	0.23	0.00	0.00	332
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	26.96	26.99	AS-M-W001	PFO	BVW	$\begin{array}{r} 42^{\circ} 31^{\prime} \\ 41.095^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 52^{\prime} \\ 32.033^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Plainfield	II		0.00	0.20	0.00	0.00	0.08	0.00	0.00	121
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	26.99	27.07	AS-M-W001	PFO	BVW	$\begin{gathered} 42^{\circ} 31^{\prime} \\ 41.130^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 52^{\prime} \\ 29.999^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashfield	II		0.00	0.66	0.00	0.00	0.27	0.00	0.00	398
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	27.06	27.10	AS-M-W001	PSS	BVW	$\begin{gathered} 42^{\circ} 31^{\prime} \\ 41.804^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 52^{\prime} \\ 25.090^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashfield	II		0.00	0.00	0.25	0.00	0.00	0.03	0.00	133
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	27.07	27.08	AS-M-W001	PFO	BVW	$\begin{array}{r} 42^{\circ} 31^{\prime} \\ 42.523^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 52^{\prime} \\ 24.435^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashfield	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	27.10	27.10	AS-M-W001	PSS	BVW	$\begin{array}{r} 42^{\circ} 31^{\prime} \\ 42.839^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 52^{\prime} \\ 23.039^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashfield	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	27.10	27.13	AS-M-W001	PSS	BVW	$\begin{array}{r} 42^{\circ} 31^{\prime} \\ 42.917^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 52^{\prime} \\ 22.4655^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashfield	II		0.00	0.00	0.15	0.00	0.00	0.02	0.00	78
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	27.12	27.15	AS-M-W001	PFO	BVW	$\begin{gathered} 42^{\circ} 31^{\prime} \\ 43.056^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 52^{\prime} \\ 21.458^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashfield	II		0.00	0.17	0.00	0.00	0.05	0.00	0.00	96
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	27.16	27.20	AS-M-W001	PFO	BVW	$\begin{array}{r} 42^{\circ} 31^{\prime} \\ 42.739^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 72^{\circ} 52^{\prime} \\ 18.271^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Ashfield	II		0.00	0.23	0.00	0.00	0.06	0.00	0.00	88

Table 2.3-7

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{aligned} & \text { Wetland } \\ & \mathbf{I D}^{3,4} \end{aligned}$	Wetland Class ${ }^{5}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method	Comments	Construction ${ }^{\text {W }}$				Operation ${ }^{9}$			Crossing Length (feet) ${ }^{11}$
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$	
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	27.21	27.22	AS-M-W001	PFO	BVW	$\begin{array}{r} 42^{\circ} 31^{\prime} \\ 43.171^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 52^{\prime} \\ 15.128^{\prime \prime} \mathrm{W} \end{gathered}$	Ashfield	N/A		0.00	0.03	0.00	0.00	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	27.28	27.32	WPI-1440	PFO	BVW	$\begin{gathered} 42^{\circ} 31^{\prime} \\ 43.895^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 52^{\prime} \\ 9.849^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashfield	II		0.00	0.31	0.00	0.00	0.12	0.00	0.00	173
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	27.50	27.59	AS-M-W004	PFO	BVW	$\begin{array}{r} 42^{\circ} 31^{\prime} \\ 46.647^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 51^{\prime} \\ 55.278^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashfield	II		0.00	0.57	0.00	0.00	0.24	0.00	0.00	363
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	27.86	27.92	AS-M-W005	PFO	BVW	$\begin{array}{r} 42^{\circ} 31^{\prime} \\ 49.675^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 51^{\prime} \\ 29.673^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashfield	II		0.00	0.34	0.00	0.00	0.12	0.00	0.00	178
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	27.92	27.97	AS-M-W005	PFO	BVW	$\begin{array}{r} 42^{\circ} 31^{\prime} \\ 49.9344^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 51^{\prime} \\ 25.805^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashfield	II		0.00	0.45	0.00	0.00	0.18	0.00	0.00	259
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	28.05	28.05	AS-M-W005	PSS	BVW	$\begin{gathered} 42^{\circ} 31^{\prime} \\ 51.476^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 51^{\prime} \\ 16.757^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashfield	II		0.00	0.00	0.04	0.00	0.00	0.01	0.00	23
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	28.15	28.18	AS-M-W006	PFO	BVW	$\begin{gathered} 42^{\circ} 31^{\prime} \\ 52.0899^{\prime \prime} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 51^{\prime} \\ 9.715 " \mathrm{~W} \\ \hline \end{gathered}$	Ashfield	II		0.00	0.06	0.00	0.00	0.03	0.00	0.00	34
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	28.84	28.87	AS-M-W008	PFO	BVW	$\begin{array}{r} 42^{\circ} 31^{\prime} \\ 58.801^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 50^{\prime} \\ 21.7377^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashfield	N/A		0.00	0.06	0.00	0.00	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	28.92	28.95	AS-M-W009	PFO	BVW	$\begin{gathered} 42^{\circ} 32^{\prime} \\ 0.187^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 50^{\prime} \\ 16.485^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashfield	II		0.00	0.14	0.00	0.00	0.07	0.00	0.00	104
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	28.96	28.99	WPI-1446	PFO	BVW	$\begin{gathered} 42^{\circ} 31^{\prime} \\ 59.819^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 50^{\prime} \\ 13.675^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashfield	N/A		0.00	0.07	0.00	0.00	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	28.99	29.00	AS-M-W010	PFO	BVW	$\begin{array}{r} 42^{\circ} 32^{\prime} \\ 0.268^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 50^{\prime} \\ 11.858^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashfield	II		0.00	0.08	0.00	0.00	0.03	0.00	0.00	41
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	29.05	29.06	AS-M-W011	PFO	BVW	$\begin{array}{r} 42^{\circ} 32^{\prime} \\ 0.772^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 50^{\prime} \\ 7.095^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashfield	II		0.00	0.03	0.00	0.00	0.02	0.00	0.00	22
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	29.05	29.06	WPI-1450	PSS/PEM	BVW	$\begin{gathered} 42^{\circ} 32^{\prime} \\ 0.720^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 50^{\prime} \\ 7.097 " \mathrm{~W} \\ \hline \end{gathered}$	Ashfield	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	29.06	29.11	AS-M-W011	PFO	BVW	$\begin{gathered} 42^{\circ} 32^{\prime} \\ 1.022^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 72^{\circ} 50^{\prime} \\ 6.645 " \mathrm{~W} \\ \hline \end{array}$	Ashfield	II		0.00	0.35	0.00	0.00	0.18	0.00	0.00	256
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	29.06	29.11	WPI-1455	PFO	BVW	$\begin{gathered} 42^{\circ} 32^{\prime} \\ 0.879^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 50^{\prime} \\ 6.363^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashfield	N/A		0.00	0.09	0.00	0.00	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	29.06	29.07	WPI-1453	PSS/PEM	BVW	$\begin{gathered} 42^{\circ} 32^{\prime} \\ 1.026^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 72^{\circ} 50^{\prime} \\ 6.605^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Ashfield	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	29.16	29.17	AS-M-W012	PFO	BVW	$\begin{gathered} 42^{\circ} 32^{\prime} \\ 2.006^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 49^{\prime} \\ 59.863^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashfield	II		0.00	0.08	0.00	0.00	0.04	0.00	0.00	60
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	29.16	29.19	WPI-1457	PFO	BVW	$\begin{gathered} 42^{\circ} 32^{\prime} \\ 1.778^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 49^{\prime} \\ 59.378^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashfield	N/A		0.00	0.07	0.00	0.00	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	29.17	29.19	AS-M-W012	PFO	BVW	$\begin{gathered} 42^{\circ} 32^{\prime} \\ 2.566^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 49^{\prime} \\ 59.131^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashfield	II		0.00	0.08	0.00	0.00	0.07	0.00	0.00	103
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	29.17	29.19	WPI-1458	PSS/PEM	BVW	$\begin{gathered} 42^{\circ} 322^{\prime} \\ 1.856^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 49^{\prime} \\ 58.813^{\prime \prime} \mathrm{W} \end{gathered}$	Ashfield	N/A	$\begin{gathered} \hline \text { BioMap2 } \\ \text { Wetland } \\ \text { Core - } 1346 \\ \hline \end{gathered}$	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	29.20	29.21	AS-M-W013	PEM	BVW	$\begin{gathered} 42^{\circ} 32^{\prime} \\ 3.303^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 49^{\prime} \\ 57.018^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashfield	N/A		0.06	0.00	0.00	0.00	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	29.26	29.29	WPI-1459	PSS	BVW	$\begin{array}{r} 42^{\circ} 32^{\prime} \\ 2.676^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 49^{\prime} \\ 52.830^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashfield	II		0.00	0.00	0.16	0.00	0.00	0.03	0.00	114
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	29.28	29.33	WPI-1460	PSS/PEM	BVW	$\begin{array}{r} 42^{\circ} 32^{\prime} \\ 3.644^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 49^{\prime} \\ 51.263^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashfield	II		0.00	0.00	0.30	0.00	0.00	0.04	0.00	192
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	29.49	29.50	AS-M-W014	PEM	BVW	$\begin{array}{r} 42^{\circ} 32^{\prime} \\ 4.910^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 49^{\prime} \\ 36.573^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashfield	II		0.03	0.00	0.00	0.00	0.00	0.00	0.00	8

Table 2.3-7

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\underset{\substack{\text { Wetland } \\ \mathbf{I D}^{3,4}}}{ }$	Wetland Class ${ }^{5}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method	Comments	Construction ${ }^{8}$				Operation ${ }^{9}$			$\begin{aligned} & \text { Crossing } \\ & \text { Length } \\ & \text { (feet) }^{11} \end{aligned}$
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{1}$	
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	29.51	29.52	AS-M-W014	PEM	BVW	$\begin{gathered} 42^{\circ} 32^{\prime} \\ 5.087{ }^{\prime \prime} \end{gathered}$	$\begin{gathered} 72^{\circ} 49^{\prime} \\ 35.294^{\prime} \mathrm{W} \\ \hline \end{gathered}$	Ashfield	II		0.01	0.00	0.00	0.00	0.00	0.00	0.00	1
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	29.53	29.58	AS-M-W014	PFO	BVW	$\begin{gathered} 42^{\circ} 32^{\prime} \\ 5.988^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 49^{\prime} \\ 33.915^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashfield	II		0.00	0.32	0.00	0.00	0.14	0.00	0.00	211
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	29.59	29.70	AS-M-W015	PFO	BVW	$\begin{array}{r} 42^{\circ} 32^{\prime} \\ 6.605^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 49^{\prime} \\ 29.743^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashfield	II		0.00	0.96	0.00	0.00	0.38	0.00	0.00	546
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	29.74	29.77	AS-M-W016	PFO	BVW	$\begin{array}{r} \hline 42^{\circ} 32^{\prime} \\ 7.269^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 49^{\prime} \\ 19.448^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashfield	II		0.00	0.20	0.00	0.00	0.08	0.00	0.00	121
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	29.78	29.79	AS-M-W016	PFO	BVW	$\begin{gathered} 42^{\circ} 32^{\prime} \\ 7.6788^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 49^{\prime} \\ 16.480^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashfield	N/A		0.00	0.02	0.00	0.00	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	29.91	29.94	AS-M-W017	PSS	BVW	$\begin{array}{r} 42^{\circ} 32^{\prime} \\ 8.724^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 49^{\prime} \\ 7.784^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashfield	N/A		0.00	0.00	0.15	0.00	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	31.48	31.51	AS-M-W018	PFO	BVW	$\begin{gathered} \hline 42^{\circ} 32^{\prime} \\ 19.634^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 18.038^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashfield	II		0.00	0.18	0.00	0.00	0.09	0.00	0.00	134
Wright to Dracut Pipeline Segment	Franklin	Ashfield	G	31.71	31.72	AS-M-W021	PEM	BVW	$\begin{gathered} 42^{\circ} 32^{\prime} \\ 20.153^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 1.876^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashfield	II		0.01	0.00	0.00	0.00	0.00	0.00	0.00	6
Wright to Dracut Pipeline Segment	Franklin	Ashfield	H	1.14	1.15	WPI-1481	Other	BVW	$\begin{gathered} 42^{\circ} 32^{\prime} \\ 26.029^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 44^{\prime} \\ 40.536^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Shelburne Falls	N/A		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Franklin	Ashfield	H	1.15	1.15	WPI-1481	Other	BVW	$\begin{gathered} 42^{\circ} 32^{\prime} \\ 26.060^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 44^{\prime} \\ 39.957^{\prime \prime} \mathrm{W} \end{gathered}$	Shelburne Falls	N/A		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Franklin	Ashfield	H	1.34	1.39	NWI-391	PSS	BVW	$\begin{array}{r} 42^{\circ} 32^{\prime} \\ 27.626^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 44^{\prime} \\ 26.664^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Shelburne Falls	II		0.00	0.00	0.23	0.00	0.00	0.03	0.00	149
Wright to Dracut Pipeline Segment	Franklin	Ashfield	H	1.36	1.38	WPI-1483	PEM	BVW	$\begin{gathered} 42^{\circ} 32^{\prime} \\ 26.987^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 44^{\prime} \\ 25.225^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Shelburne Falls	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Franklin	Ashfield	H	1.38	1.38	WPI-1488	PSS	BVW	$\begin{gathered} 42^{\circ} 32^{\prime \prime} \\ 27.073^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 44^{\prime} \\ 23.816^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Shelburne Falls	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Franklin	Conway	H	1.90	1.92	WPI-1492	PSS/PEM	BVW	$\begin{gathered} 42^{\circ} 32^{\prime} \\ 27.792^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 43^{\prime} \\ 48.319^{\prime \prime} \mathrm{W} \end{gathered}$	Shelburne Falls	N/A		0.00	0.00	0.06	0.00	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Franklin	Conway	H	3.25	3.26	WPI-1502	PSS	BVW	$\begin{gathered} 42^{\circ} 32^{\prime} \\ 43.372^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 42^{\prime} \\ 17.826^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Shelburne Falls	II		0.00	0.00	0.02	0.00	0.00	0.01	0.00	9
Wright to Dracut Pipeline Segment	Franklin	Conway	H	3.25	3.27	WPI-1502	PSS	BVW	$\begin{gathered} 42^{\circ} 32^{\prime} \\ 43.453^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 42^{\prime} \\ 17.566^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Shelburne Falls	II		0.00	0.00	0.09	0.00	0.00	0.01	0.00	53
Wright to Dracut Pipeline Segment	Franklin	Conway	H	3.92	3.93	WPI-1504	PFO	BVW	$\begin{array}{r} \hline 42^{\circ} 32^{\prime} \\ 57.019^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 41^{\prime} \\ 34.042^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Shelburne Falls	II		0.00	0.02	0.00	0.00	0.01	0.00	0.00	5
Wright to Dracut Pipeline Segment	Franklin	Conway	H	3.93	3.94	WPI-1508	PFO	BVW	$\begin{gathered} 42^{\circ} 32^{\prime} \\ 57.340^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 41^{\prime} \\ 33.774^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Shelburne Falls	II		0.00	0.07	0.00	0.00	0.02	0.00	0.00	32
Wright to Dracut Pipeline Segment	Franklin	Conway	H	4.18	4.19	$\begin{aligned} & \hline \text { CN-M- } \\ & \text { W002 } \\ & \hline \end{aligned}$	PFO	BVW	$\begin{gathered} 42^{\circ} 32^{\prime} \\ 58.789^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 41^{\prime} \\ 17.435^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Shelburne Falls	II		0.00	0.10	0.00	0.00	0.04	0.00	0.00	57
Wright to Dracut Pipeline Segment	Franklin	Conway	H	4.23	4.24	$\begin{aligned} & \hline \text { CN-M- } \\ & \text { W002 } \\ & \hline \end{aligned}$	PEM	BVW	$\begin{array}{r} 42^{\circ} 33^{\prime} \\ 0.5777^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 41^{\prime} \\ 14.261^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Shelburne Falls	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Franklin	Conway	H	4.39	4.40	$\begin{aligned} & \hline \text { CN-M- } \\ & \text { W003 } \\ & \hline \end{aligned}$	PFO	BVW	$\begin{array}{r} \hline 42^{\circ} 33^{\prime} \\ 3.314^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 72^{\circ} 41^{\prime} \\ 3.902^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Shelburne Falls	II		0.00	0.07	0.00	0.00	0.03	0.00	0.00	51
Wright to Dracut Pipeline Segment	Franklin	Conway	H	4.39	4.40	$\begin{aligned} & \text { CN-M- } \\ & \text { W003 } \\ & \hline \end{aligned}$	PSS	BVW	$\begin{array}{r} 42^{\circ} 33^{\prime} \\ 3.770^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 41^{\prime} \\ 3.968^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Shelburne Falls	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Franklin	Conway	H	4.40	4.41	$\begin{aligned} & \text { CN-M- } \\ & \text { W0003 } \end{aligned}$	PSS	BVW	$\begin{aligned} & 42^{\circ} 33^{\prime} \\ & 3.877^{\prime \prime} \mathrm{N} \end{aligned}$	$\begin{gathered} 72^{\circ} 41^{\prime} \\ 3.200^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Shelburne Falls	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Franklin	Conway	H	4.48	4.52	CN-M-	PFO	BVW	$\begin{array}{r} 42^{\circ} 33^{\prime} \\ 4.893^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 40^{\prime} \\ 57.759^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Shelburne Falls	II		0.00	0.16	0.00	0.00	0.06	0.00	0.00	88

Table 2.3-7

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{aligned} & \text { Wetland } \\ & \mathbf{I D}^{3,4} \end{aligned}$	Wetland Class ${ }^{5}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method ${ }^{7}$	Comments	Wetland Impact (acres)							Crossing Length (feet) ${ }^{11}$	
						Construction ${ }^{8}$								Operation ${ }^{9}$								
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$		
Wright to Dracut Pipeline Segment	Franklin	Conway	H	4.63	4.64		$\begin{aligned} & \hline \text { CN-M- } \\ & \text { W003 } \\ & \hline \end{aligned}$	PFO	BVW	$\begin{array}{r} \hline 42^{\circ} 33^{\prime} \\ 8.130^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 40^{\prime} \\ 48.149^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Shelburne Falls	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Franklin	Deerfield	H	8.75	8.77	WPI-1524	PEM	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 38.136^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 36^{\prime} \\ 23.280^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenfield	II		0.08	0.00	0.00	0.00	0.00	0.00	0.00	27	
Wright to Dracut Pipeline Segment	Franklin	Deerfield	H	9.21	9.23	WPI-1531	PEM	BVW	$\begin{array}{r} 42^{\circ} 33^{\prime} \\ 28.451 " \mathrm{~N} \\ \hline \end{array}$	$\begin{array}{r} 72^{\circ} 35^{\prime} \\ 54.041^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Greenfield	II		0.15	0.00	0.00	0.00	0.00	0.00	0.00	84	
Wright to Dracut Pipeline Segment	Franklin	Deerfield	H	9.23	9.26	WPI-1532	PEM	BVW	$\begin{array}{r} 42^{\circ} 33^{\prime} \\ 28.018^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 35^{\prime} \\ 52.883^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenfield	II		0.22	0.00	0.00	0.00	0.00	0.00	0.00	131	
Wright to Dracut Pipeline Segment	Franklin	Deerfield	H	9.91	9.92	WPI-1535	PFO	BVW	$\begin{array}{r} 42^{\circ} 33^{\prime} \\ 34.806^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 72^{\circ} 35^{\prime} \\ 8.010^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Greenfield	II		0.00	0.10	0.00	0.00	0.03	0.00	0.00	56	
Wright to Dracut Pipeline Segment	Franklin	Deerfield	H	9.91	9.92	WPI-1534	PSS	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 34.964 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{array}{r} 72^{\circ} 35^{\prime} \\ 7.980^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Greenfield	II		0.00	0.00	0.04	0.00	0.00	0.01	0.00	25	
Wright to Dracut Pipeline Segment	Franklin	Deerfield	H	9.92	9.94	WPI-1538	PFO	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 34.4577^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 72^{\circ} 35^{\prime} \\ 6.645 " \mathrm{~W} \\ \hline \end{array}$	Greenfield	II		0.00	0.06	0.00	0.00	0.01	0.00	0.00	8	
Wright to Dracut Pipeline Segment	Franklin	Deerfield	H	9.92	9.93	WPI-1537	PSS	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 35.161^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 35 ' \\ 7.000^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenfield	II		0.00	0.00	0.03	0.00	0.00	0.01	0.00	38	
Wright to Dracut Pipeline Segment	Franklin	Deerfield	H	10.24	10.25	WPI-1543	PSS	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 37.822^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 34^{\prime} \\ 44.584^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenfield	II		0.00	0.00	0.02	0.00	0.00	0.01	0.00	1	
Wright to Dracut Pipeline Segment	Franklin	Deerfield	H	10.25	10.26	WPI-1545	PSS	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 37.829^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 34^{\prime} \\ 44.337^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenfield	II		0.00	0.00	0.09	0.00	0.00	0.01	0.00	53	
Wright to Dracut Pipeline Segment	Franklin	Deerfield	H	10.64	10.65	WPI-1547	PFO	BVW	$\begin{array}{r} 42^{\circ} 33^{\prime \prime} \\ 36.868^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 34^{\prime} \\ 16.660^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenfield	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Franklin	Deerfield	H	10.64	10.65	WPI-1548	PFO	BVW	$\begin{array}{r} 42^{\circ} 33 ' \\ 36.774^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 34^{\prime} \\ 16.344^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenfield	N/A		0.00	0.02	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Franklin	Deerfield	H	10.64	10.64	WPI-1546	PSS	BVW	$\begin{gathered} \hline 42^{\circ} 33^{\prime \prime} \\ 37.129^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 34^{\prime} \\ 16.679^{\prime \prime} \mathrm{W} \end{gathered}$	Greenfield	II		0.00	0.00	0.01	0.00	0.00	0.01	0.00	13	
Wright to Dracut Pipeline Segment	Franklin	Deerfield	H	10.64	10.66	WPI-1551	PSS	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 37.010^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 34^{\prime} \\ 16.446^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenfield	II		0.00	0.00	0.08	0.00	0.00	0.02	0.00	67	
Wright to Dracut Pipeline Segment	Franklin	Deerfield	H	10.66	10.66	WPI-1554	PFO	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 36.561^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 34^{\prime} \\ 15.693^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenfield	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Franklin	Deerfield	H	10.66	10.66	WPI-1553	PSS	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 36.757^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 34^{\prime} \\ 15.639^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenfield	II		0.00	0.00	0.01	0.00	0.00	0.01	0.00	12	
Wright to Dracut Pipeline Segment	Franklin	Deerfield	H	10.95	10.99	WPI-1557	PFO	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 39.102^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 33^{\prime} \\ 55.168^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenfield	II		0.00	0.30	0.00	0.00	0.12	0.00	0.00	183	
Wright to Dracut Pipeline Segment	Franklin	Deerfield	H	10.99	11.02	WPI-1558	PSS	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 39.931^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 33^{\prime} \\ 53.123^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenfield	II		0.00	0.00	0.31	0.00	0.00	0.04	0.00	187	
Wright to Dracut Pipeline Segment	Franklin	Deerfield	H	11.02	11.03	WPI-1559	PFO	BVW	$\begin{array}{r} 42^{\circ} 33^{\prime} \\ 40.030 \mathrm{~N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 33^{\prime} \\ 50.4422^{\prime \prime} \mathrm{C} \\ \hline \end{gathered}$	Greenfield	II		0.00	0.09	0.00	0.00	0.03	0.00	0.00	53	
Wright to Dracut Pipeline Segment	Franklin	Deerfield	H	11.08	11.08	WPI-1561	PFO	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 41.969^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 33^{\prime} \\ 47.173^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenfield	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Franklin	Deerfield	H	11.08	11.08	WPI-1561	PFO	BVW	$\begin{array}{r} 42^{\circ} 33^{\prime} \\ 42.124^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 33^{\prime} \\ 47.259^{\prime} \mathrm{W} \\ \hline \end{gathered}$	Greenfield	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Franklin	Deerfield	H	11.08	11.08	WPI-1561	PFO	BVW	$\begin{gathered} 42^{\circ} 33^{\prime \prime} \\ 43.017^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 33^{\prime} \\ 47.749^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenfield	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Franklin	Deerfield	H	11.08	11.08	WPI-1562	Other	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 42.040^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 33^{\prime} \\ 47.212^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenfield	N/A		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Franklin	Deerfield	H	11.08	11.08	WPI-1563	Other	BVW	$\begin{array}{r} 42^{\circ} 33^{\prime} \\ 42.578^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 72^{\circ} 33^{\prime} \\ 47.507^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Greenfield	N/A		0.00	0.00	0.00	0.02	0.00	0.00	0.00	0	

Table 2.3-7

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{gathered} \text { Wetland } \\ \mathbf{I D}^{3,4} \end{gathered}$	Wetland Class ${ }^{5}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method ${ }^{7}$	Comments	Construction ${ }^{8}{ }^{8}$				Operation ${ }^{\text {a }}$			Crossing Length (feet) ${ }^{11}$
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$	
Wright to Dracut Pipeline Segment	Franklin	Deerfield	H	11.26	11.27	WPI-1565	PFO	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 45.112^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 33^{\prime} \\ 35.409^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenfield	IV		0.00	0.09	0.00	0.00	0.05	0.00	0.00	79
Wright to Dracut Pipeline Segment	Franklin	Deerfield	H	11.28	11.28	WPI-1565	PFO	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 45.638^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 33^{\prime} \\ 34.123 " \mathrm{~W} \\ \hline \end{gathered}$	Greenfield	IV		0.00	0.01	0.00	0.00	0.01	0.00	0.00	8
Wright to Dracut Pipeline Segment	Franklin	Deerfield	H	11.28	11.29	WPI-1566	PFO	BVW	$\begin{array}{r} 42^{\circ} 33^{\prime} \\ 45.673^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 33^{\prime} \\ 34.0055^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenfield	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Franklin	Montague	H	11.57	11.58	WPI-1569	PEM	BVW	$\begin{gathered} 42^{\circ} 33^{\prime \prime} \\ 51.331^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 33^{\prime} \\ 14.885^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenfield	IV		0.01	0.00	0.00	0.00	0.00	0.00	0.00	6
Wright to Dracut Pipeline Segment	Franklin	Montague	H	11.57	11.57	WPI-1568	PFO	BVW	$\begin{array}{r} 42^{\circ} 33^{\prime} \\ 51.016^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 33^{\prime} \\ 14.668 " \mathrm{~W} \\ \hline \end{gathered}$	Greenfield	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Franklin	Montague	H	11.58	11.58	WPI-1571	PEM	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 51.035^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 33^{\prime} \\ 14.383^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenfield	IV		0.03	0.00	0.00	0.00	0.00	0.00	0.00	24
Wright to Dracut Pipeline Segment	Franklin	Montague	H	11.58	11.58	WPI-1570	PFO	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 51.026^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 33^{\prime} \\ 14.381^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenfield	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Franklin	Montague	H	11.65	11.65	WPI-1575	PEM	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 52.464^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 72^{\circ} 33^{\prime} \\ 9.5877^{\prime} \mathrm{W} \\ \hline \end{array}$	Greenfield	IV		0.01	0.00	0.00	0.00	0.00	0.00	0.00	12
Wright to Dracut Pipeline Segment	Franklin	Montague	H	11.65	11.66	WPI-1576	PEM	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 52.484^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 72^{\circ} 33^{\prime} \\ 9.519^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Greenfield	IV		0.02	0.00	0.00	0.00	0.00	0.00	0.00	20
Wright to Dracut Pipeline Segment	Franklin	Montague	H	11.77	11.79	WPI-1577	PSS	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 55.372^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 33^{\prime} \\ 1.667 " \mathrm{~W} \\ \hline \end{gathered}$	Greenfield	IV		0.00	0.00	0.05	0.00	0.00	0.01	0.00	53
Wright to Dracut Pipeline Segment	Franklin	Montague	H	11.90	11.91	WPI-1579	PEM	BVW	$\begin{array}{r} 42^{\circ} 33^{\prime} \\ 57.895^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 32^{\prime} \\ 53.478^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenfield	N/A		0.02	0.00	0.00	0.00	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Franklin	Montague	H	15.34	15.35	WPI-1580	PFO	BVW	$\begin{gathered} 42^{\circ} 34^{\prime} \\ 16.474^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 29^{\prime} \\ 30.941^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Millers Falls	II		0.00	0.03	0.00	0.00	0.01	0.00	0.00	17
Wright to Dracut Pipeline Segment	Franklin	Montague	H	15.34	15.43	WPI-1582	PFO	BVW	$\begin{gathered} \hline 42^{\circ} 34^{\prime} \\ 16.639^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 29^{\prime} \\ 30.718^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Millers Falls	II		0.00	0.65	0.00	0.00	0.23	0.00	0.00	334
Wright to Dracut Pipeline Segment	Franklin	Montague	H	16.05	16.07	WPI-1584	PFO	BVW	$\begin{array}{r} 42^{\circ} 34^{\prime} \\ 43.333^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 28^{\prime} \\ 56.249^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Millers Falls	IV		0.00	0.08	0.00	0.00	0.05	0.00	0.00	75
Wright to Dracut Pipeline Segment	Franklin	Erving	H	16.36	16.40	ER-M-W002	PFO	BVW	$\begin{gathered} 42^{\circ} 34^{\prime} \\ 54.410^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 28^{\prime} \\ 40.347^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Millers Falls	II		0.00	0.46	0.00	0.00	0.10	0.00	0.00	123
Wright to Dracut Pipeline Segment	Franklin	Northfield	H	18.86	18.88	WPI-1588	PFO	BVW	$\begin{array}{r} 42^{\circ} 36^{\prime} \\ 44.048^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 28^{\prime} \\ 17.4577^{\prime} \mathrm{W} \\ \hline \end{gathered}$	Millers Falls	II		0.00	0.11	0.00	0.00	0.05	0.00	0.00	73
Wright to Dracut Pipeline Segment	Franklin	Northfield	H	18.90	18.93	WPI-1588	PFO	BVW	$\begin{gathered} 42^{\circ} 36^{\prime} \\ 46.3433^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} \hline 72^{\circ} 28^{\prime} \\ 17.209{ }^{\prime \prime} \mathrm{W} \end{gathered}$	Millers Falls	II		0.00	0.16	0.00	0.00	0.07	0.00	0.00	99
Wright to Dracut Pipeline Segment	Franklin	Northfield	H	19.08	19.11	WPI-1589	PFO/PSS	BVW	$\begin{gathered} 42^{\circ} 36^{\prime} \\ 54.839^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 28^{\prime} \\ 13.345^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Millers Falls	II		0.00	0.08	0.00	0.00	0.02	0.00	0.00	12
Wright to Dracut Pipeline Segment	Franklin	Erving	H	19.96	19.97	WPI-1591	PSS	BVW	$\begin{gathered} 42^{\circ} 37 \prime \\ 15.352^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 27^{\prime} \\ 20.477^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Millers Falls	II		0.00	0.00	0.02	0.00	0.00	0.01	0.00	3
Wright to Dracut Pipeline Segment	Franklin	Northfield	H	20.29	20.30	WPI-1592	Other	BVW	$\begin{gathered} 42^{\circ} 37^{\prime} \\ 25.281^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 27^{\prime} \\ 1.597^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Millers Falls	II		0.00	0.00	0.00	0.04	0.00	0.00	0.00	58
Wright to Dracut Pipeline Segment	Franklin	Northfield	H	20.30	20.32	WPI-1593	PSS/PEM	BVW	$\begin{gathered} 42^{\circ} 37^{\prime} \\ 25.737^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 27^{\prime} \\ 1.134^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Millers Falls	N/A		0.00	0.00	0.04	0.00	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Franklin	Northfield	H	20.62	20.62	WPI-1595	PSS/PEM	BVW	$\begin{gathered} 42^{\circ} 37^{\prime} \\ 35.643^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 72^{\circ} 26^{\prime} \\ 43.248^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Northfield	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Franklin	Northfield	H	20.76	20.77	WPI-1596	PSS/PEM	BVW	$\begin{array}{r} 42^{\circ} 37^{\prime} \\ 40.105^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 26^{\prime} \\ 34.865^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Northfield	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Franklin	Northfield	H	20.83	20.85	WPI-1598	PSS/PEM	BVW	$\begin{array}{r} 42^{\circ} 37^{\prime} \\ 41.920^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 26^{\prime} \\ 30.999^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Northfield	N/A		0.00	0.00	0.04	0.00	0.00	0.00	0.00	0

Table 2.3-7

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{aligned} & \text { Wetland } \\ & \mathbf{I D}^{3,4} \end{aligned}$	Wetland Class ${ }^{5}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method	Comments	Wetland Impact (acres)							Crossing Length (feet) ${ }^{11}$	
						Construction ${ }^{8}$								Operation ${ }^{9}$								
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$		
Wright to Dracut Pipeline Segment	Franklin	Northfield	H	21.55	21.57		$\begin{aligned} & \hline \text { NO-M- } \\ & \text { W003 } \end{aligned}$	PSS	BVW	$\begin{gathered} 42^{\circ} 38^{\prime} \\ 10.567^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 26^{\prime} \\ 7.076^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Northfield	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Franklin	Northfield	H	21.61	21.63	NO-MW004	PSS	BVW	$\begin{gathered} \hline 42^{\circ} 38^{\prime} \\ 13.778^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 72^{\circ} 26^{\prime} \\ 6.556^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Northfield	N/A		0.00	0.00	0.03	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Franklin	Northfield	H	21.63	21.65	NO-M- W004	PSS	BVW	$\begin{gathered} 42^{\circ} 38^{\prime} \\ 14.872^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 72^{\circ} 26^{\prime} \\ 6.333^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Northfield	II		0.00	0.00	0.08	0.00	0.00	0.01	0.00	34	
Wright to Dracut Pipeline Segment	Franklin	Northfield	H	21.80	21.83	WPI-1602	PEM	BVW	$\begin{gathered} 42^{\circ} 38^{\prime} \\ 23.607 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{array}{r} 72^{\circ} 26^{\prime} \\ 4.4377^{\prime} \mathrm{W} \\ \hline \end{array}$	Northfield	N/A		0.02	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Franklin	Northfield	H	22.27	22.28	WPI-1603	PEM	BVW	$\begin{array}{r} 42^{\circ} 38^{\prime} \\ 47.517^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 72^{\circ} 26^{\prime} \\ 0.472^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Northfield	N/A		0.07	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Franklin	Northfield	H	22.28	22.32	WPI-1604	PEM	BVW	$\begin{gathered} 42^{\circ} 38^{\prime} \\ 48.409^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 25^{\prime} \\ 59.738^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Northfield	N/A		0.14	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Franklin	Northfield	H	22.39	22.42	WPI-1606	PFO	BVW	$\begin{gathered} 42^{\circ} 38^{\prime} \\ 54.192^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 25^{\prime} \\ 59.782^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Northfield	II		0.00	0.15	0.00	0.00	0.09	0.00	0.00	127	
Wright to Dracut Pipeline Segment	Franklin	Northfield	H	22.40	22.43	WPI-1609	PEM	BVW	$\begin{gathered} 42^{\circ} 38^{\prime} \\ 54.360^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 25^{\prime} \\ 58.935^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Northfield	N/A		0.08	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Franklin	Northfield	H	22.57	22.58	WPI-1615	PFO	BVW	$\begin{gathered} \hline 42^{\circ} 39^{\prime} \\ 1.384^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 25^{\prime} \\ 54.376^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Northfield	II		0.00	0.04	0.00	0.00	0.02	0.00	0.00	29	
Wright to Dracut Pipeline Segment	Franklin	Northfield	H	22.57	22.58	WPI-1612	PSS/PEM	BVW	$\begin{gathered} 42^{\circ} 39^{\prime} \\ 1.394^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 25^{\prime} \\ 54.406^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Northfield	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Franklin	Northfield	H	22.58	22.60	WPI-1617	PFO	BVW	$\begin{gathered} 42^{\circ} 39^{\prime} \\ 1.830^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 25^{\prime} \\ 53.882^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Northfield	II		0.00	0.09	0.00	0.00	0.04	0.00	0.00	66	
Wright to Dracut Pipeline Segment	Franklin	Northfield	H	22.58	22.60	WPI-1616	PSS/PEM	BVW	$\begin{gathered} \hline 42^{\circ} 39^{\prime} \\ 1.853^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 25^{\prime} \\ 54.010^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Northfield	N/A		0.00	0.00	0.02	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Franklin	Northfield	H	22.73	22.76	WPI-1618	PSS/PEM	BVW	$\begin{gathered} \hline 42^{\circ} 39^{\prime} \\ 8.546^{\prime \prime} \end{gathered}$	$\begin{gathered} 72^{\circ} 25^{\prime} \\ 48.430^{\prime \prime} \mathrm{W} \end{gathered}$	Northfield	N/A		0.00	0.00	0.05	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Franklin	Northfield	H	22.76	22.80	WPI-1620	PSS/PEM	BVW	$\begin{array}{r} \hline 42^{\circ} 39^{\prime} \\ 9.941^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 25^{\prime} \\ 47.233^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Northfield	N/A		0.00	0.00	0.02	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Franklin	Northfield	H	23.06	23.08	$\begin{aligned} & \hline \text { NO-M- } \\ & \text { W001 } \end{aligned}$	PEM	BVW	$\begin{gathered} 42^{\circ} 39^{\prime} \\ 23.103^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 25^{\prime} \\ 35.463^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Northfield	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Franklin	Northfield	H	23.06	23.08	NO-MW001	PFO	BVW	$\begin{array}{r} 42^{\circ} 39^{\prime} \\ 22.507^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 25^{\prime} \\ 35.107^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Northfield	II		0.00	0.06	0.00	0.00	0.03	0.00	0.00	50	
Wright to Dracut Pipeline Segment	Franklin	Northfield	H	23.22	23.23	$\begin{aligned} & \hline \text { NO-M- } \\ & \text { W002A } \\ & \hline \end{aligned}$	PEM	BVW	$\begin{array}{r} 42^{\circ} 39^{\prime} \\ 29.492^{\prime \prime} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 25^{\prime} \\ 29.294^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Northfield	II		0.11	0.00	0.00	0.00	0.00	0.00	0.00	78	
Wright to Dracut Pipeline Segment	Franklin	Northfield	H	23.28	23.29	WPI-1623	PSS/PEM	BVW	$\begin{gathered} 42^{\circ} 39^{\prime} \\ 32.578^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 25^{\prime} \\ 27.293^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Northfield	N/A		0.00	0.00	0.02	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Franklin	Northfield	H	23.30	23.31	WPI-1624	PSS/PEM	BVW	$\begin{gathered} 42^{\circ} 39^{\prime} \\ 33.595 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 25^{\prime} \\ 26.494^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Northfield	N/A		0.00	0.00	0.02	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Franklin	Northfield	H	23.32	23.34	WPI-1626	PSS/PEM	BVW	$\begin{gathered} 42^{\circ} 39^{\prime} \\ 34.283^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 25^{\prime} \\ 25.958^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Northfield	N/A		0.00	0.00	0.05	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Franklin	Northfield	H	23.35	23.38	WPI-1628	PSS/PEM	BVW	$\begin{gathered} 42^{\circ} 39^{\prime} \\ 35.740^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 25^{\prime} \\ 24.858^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Northfield	N/A		0.00	0.00	0.08	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Franklin	Northfield	H	23.64	23.65	NO-G-W015	PSS	BVW	$\begin{gathered} 42^{\circ} 39^{\prime} \\ 48.572^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 25^{\prime} \\ 14.087{ }^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Northfield	II		0.00	0.00	0.06	0.00	0.00	0.01	0.00	9	
Wright to Dracut Pipeline Segment	Franklin	Northfield	H	23.77	23.77	NO-L-W011	PSS	BVW	$\begin{gathered} 42^{\circ} 39^{\prime} \\ 54.244^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 25^{\prime} \\ 9.010^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Northfield	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Franklin	Northfield	H	23.85	23.87	NO-L-W007	PEM	BVW	$\begin{gathered} 42^{\circ} 39^{\prime} \\ 57.493^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 25^{\prime} \\ 5.199^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Northfield	N/A		0.04	0.00	0.00	0.00	0.00	0.00	0.00	0	

Table 2.3-7

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{aligned} & \text { Wetland } \\ & \mathbf{I D}^{3,4} \end{aligned}$	Wetland Class ${ }^{5}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method	Comments	Wetland Impact (acres)							Crossing Length (feet) ${ }^{11}$	
						Construction ${ }^{8}$								Operation ${ }^{9}$								
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$		
Wright to Dracut Pipeline Segment	Franklin	Northfield	H	23.87	23.87		NO-L-W006	PSS	BVW	$\begin{gathered} 42^{\circ} 39^{\prime} \\ 58.486^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 25^{\prime} \\ 5.336^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Northfield	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Franklin	Northfield	H	23.87	23.88	NO-L-W006	PSS	BVW	$\begin{gathered} 42^{\circ} 39^{\prime} \\ 58.778^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 25^{\prime} \\ 5.133^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Northfield	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Franklin	Northfield	H	23.89	23.90	NO-L-W008	PSS	BVW	$\begin{gathered} 42^{\circ} 39^{\prime} \\ 59.490^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 25^{\prime} \\ 4.642^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Northfield	II		0.00	0.00	0.03	0.00	0.00	0.01	0.00	13	
Wright to Dracut Pipeline Segment	Franklin	Northfield	H	24.28	24.36	WPI-1632	PSS/PEM	BVW	$\begin{gathered} \hline 42^{\circ} 40^{\prime} \\ 15.793^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 24^{\prime} \\ 51.042^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Northfield	N/A		0.00	0.00	0.17	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Franklin	Northfield	H	24.45	24.46	WPI-1633	PSS/PEM	BVW	$\begin{gathered} 42^{\circ} 40^{\prime} \\ 23.336^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 72^{\circ} 24^{\prime} \\ 44.379^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Northfield	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Franklin	Northfield	H	24.85	24.89	WPI-1635	PFO	BVW	$\begin{gathered} 42^{\circ} 40^{\prime} \\ 40.523^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 24^{\prime} \\ 28.567^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Northfield	II		0.00	0.24	0.00	0.00	0.09	0.00	0.00	126	
Wright to Dracut Pipeline Segment	Franklin	Northfield	H	26.95	26.97	WPI-1645	PFO	BVW	$\begin{gathered} 42^{\circ} 42^{\prime} \\ 25.008^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 24^{\prime} \\ 20.366^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Northfield	II		0.00	0.17	0.00	0.00	0.07	0.00	0.00	101	
Wright to Dracut Pipeline Segment	Franklin	Warwick	H	27.75	27.78	WPI-1647	PFO/PSS	BVW	$\begin{array}{r} \hline 42^{\circ} 43^{\prime} \\ 5.371^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 24^{\prime} \\ 21.727^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Northfield	N/A		0.00	0.02	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Franklin	Warwick	H	27.76	27.77	$\begin{aligned} & \hline \text { WK-M- } \\ & \text { W001 } \\ & \hline \end{aligned}$	PFO	BVW	$\begin{array}{r} 42^{\circ} 43^{\prime} \\ 5.441^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 24^{\prime} \\ 20.440^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Northfield	N/A		0.00	0.03	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Franklin	Warwick	H	27.76	27.77	WPI-1648	PFO	BVW	$\begin{gathered} 42^{\circ} 43^{\prime} \\ 5.8477^{\prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 24^{\prime} \\ 21.072^{\prime \prime} \mathrm{W} \end{gathered}$	Northfield	II		0.00	0.03	0.00	0.00	0.02	0.00	0.00	43	
Wright to Dracut Pipeline Segment	Franklin	Warwick	H	27.78	27.79	$\begin{gathered} \text { WK-M- } \\ \text { W001 } \\ \hline \end{gathered}$	PFO	BVW	$\begin{array}{r} 42^{\circ} 43^{\prime} \\ 6.700^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 24^{\prime} \\ 20.490^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Northfield	N/A		0.00	0.02	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Franklin	Warwick	H	28.46	28.48	NWI-1096	PFO	BVW	$\begin{gathered} 42^{\circ} 43^{\prime} \\ 22.608^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 23^{\prime} \\ 39.025^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Northfield	II		0.00	0.11	0.00	0.00	0.04	0.00	0.00	60	
Wright to Dracut Pipeline Segment	Middlesex	Dracut	K	0.07	0.08	WPI-2696	PSS	BVW	$\begin{gathered} 42^{\circ} 42^{\prime} \\ 17.779^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{aligned} & 71^{\circ} 17^{\prime} \\ & 2.811^{\prime \prime} \mathrm{W} \end{aligned}$	Lowell	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Middlesex	Dracut	K	0.26	0.34	WPI-2698	PEM	BVW	$\begin{gathered} 42^{\circ} 42^{\prime} \\ 12.887^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 16^{\prime} \\ 52.868^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	II		0.19	0.00	0.00	0.00	0.00	0.00	0.00	150	
Wright to Dracut Pipeline Segment	Middlesex	Dracut	K	0.26	0.40	WPI-2700	PFO	BVW	$\begin{gathered} 42^{\circ} 42^{\prime} \\ 13.151 \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} \hline 71^{\circ} 16^{\prime} \\ 52.931^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	II		0.00	0.56	0.00	0.00	0.16	0.00	0.00	261	
Wright to Dracut Pipeline Segment	Middlesex	Dracut	K	0.31	0.32	WPI-2699	PSS/PEM	BVW	$\begin{gathered} 42^{\circ} 42^{\prime} \\ 10.2833^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 16^{\prime} \\ 50.949 " \mathrm{~W} \end{gathered}$	Lowell	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Middlesex	Dracut	K	0.32	0.40	WPI-2699	PSS/PEM	BVW	$\begin{array}{r} 42^{\circ} 42^{\prime} \\ 9.975^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 16^{\prime} \\ 50.661^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	II		0.00	0.00	0.35	0.00	0.00	0.08	0.00	326	
Wright to Dracut Pipeline Segment	Middlesex	Dracut	K	0.37	0.38	NWI-1402	PSS/FO	BVW	$\begin{array}{r} 42^{\circ} 42^{\prime} \\ 6.138^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 71^{\circ} 16^{\prime} \\ 52.436^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Lowell	N/A		0.00	0.00	0.08	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Middlesex	Dracut	K	0.68	0.70	WPI-2701	PSS	BVW	$\begin{gathered} 42^{\circ} 41^{\prime} \\ 54.315^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 16^{\prime} \\ 36.1544^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	N/A		0.00	0.00	0.06	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Middlesex	Dracut	K	0.76	0.80	WPI-2702	PSS	BVW	$\begin{gathered} 42^{\circ} 41^{\prime} \\ 51.272^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 16^{\prime} \\ 32.818^{\prime \prime} \mathrm{C} \\ \hline \end{array}$	Lowell	N/A		0.00	0.00	0.10	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Middlesex	Dracut	K	0.96	0.97	DR-N-W011	PFO	BVW	$\begin{gathered} 42^{\circ} 41^{\prime} \\ 42.860^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{10} 16^{\prime} \\ 24.304^{\prime \prime} \mathrm{C} \\ \hline \end{array}$	Lowell	N/A		0.00	0.04	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Middlesex	Dracut	K	1.00	1.02	DR-N-W010	PFO	BVW	$\begin{gathered} 42^{\circ} 41^{\prime} \\ 40.928^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 16^{\prime} \\ 23.409^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	N/A		0.00	0.03	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Middlesex	Dracut	K	1.23	1.24	WPI-2703	PSS	BVW	$\begin{gathered} 42^{\circ} 41^{\prime} \\ 30.9677^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 16^{\prime} \\ 14.177^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Middlesex	Dracut	K	1.24	1.27	WPI-2704	PEM	BVW	$\begin{gathered} 42^{\circ} 41^{\prime} \\ 30.475^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 16^{\prime} \\ 13.777^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0	

Table 2.3-7

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{aligned} & \text { Wetland } \\ & \mathbf{I D}^{3,4} \end{aligned}$	Wetland Class ${ }^{5}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method	Comments	Wetland Impact (acres)							Crossing Length (feet) ${ }^{11}$	
						Construction ${ }^{8}$								Operation ${ }^{9}$								
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$		
Wright to Dracut Pipeline Segment	Middlesex	Dracut	K	1.66	1.67		WPI-2715	PSS	BVW	$\begin{gathered} \hline 42^{\circ} 41^{\prime} \\ 12.269^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 15 ' \\ 57.112^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Middlesex	Dracut	K	1.69	1.69	DR-J-W004	PSS	BVW	$\begin{gathered} 42^{\circ} 41^{\prime} \\ 11.655^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 15 ' \\ 55.120^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	II		0.00	0.00	0.01	0.00	0.00	0.01	0.00	2	
Wright to Dracut Pipeline Segment	Middlesex	Dracut	K	1.69	1.76	DR-J-W004	PEM	BVW	$\begin{gathered} 42^{\circ} 41^{\prime} \\ 11.594^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 15^{\prime} \\ 55.116^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	II		0.57	0.00	0.00	0.00	0.00	0.00	0.00	325	
Wright to Dracut Pipeline Segment	Middlesex	Dracut	K	1.74	1.79	DR-J-W004	PSS	BVW	$\begin{array}{r} 42^{\circ} 41^{\prime} \\ 9.119^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 15 ' \\ 53.519^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	II		0.00	0.00	0.20	0.00	0.00	0.04	0.00	169	
Wright to Dracut Pipeline Segment	Middlesex	Dracut	K	1.78	1.79	DR-J-W003	PFO	BVW	$\begin{gathered} 42^{\circ} 41^{\prime} \\ 7.768^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 15 ' \\ 50.7377^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Middlesex	Dracut	K	2.02	2.19	NWI-1125	PSS/FO	BVW	$\begin{gathered} 42^{\circ} 40^{\prime} \\ 57.339^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 15^{\prime} \\ 42.075^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	II		0.00	0.00	1.47	0.00	0.00	0.19	0.00	821	
Wright to Dracut Pipeline Segment	Middlesex	Dracut	K	2.20	2.23	NWI-1126	PEM	BVW	$\begin{gathered} 42^{\circ} 40^{\prime} \\ 49.343^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 15 ' \\ 34.936^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	N/A		0.13	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline / Maritimes Delivery Line	Middlesex	Dracut	L	0.13	0.18	DR-N-W004	PFO	BVW	$\begin{gathered} 42^{\circ} 41^{\prime} \\ 33.051^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 16^{\prime} \\ 14.559^{\prime \prime} \mathrm{W} \end{gathered}$	Lowell	II		0.00	0.18	0.00	0.00	0.12	0.00	0.00	208	
Wright to Dracut Pipeline / Maritimes Delivery Line	Middlesex	Dracut	L	0.19	0.27	WPI-3137	PFO	BVW	$\begin{gathered} 42^{\circ} 41^{\prime} \\ 31.522^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 16^{\prime} \\ 13.130^{\prime \prime} \mathrm{W} \end{gathered}$	Lowell	II		0.00	0.96	0.00	0.00	0.56	0.00	0.00	890	
$\begin{gathered} \text { Maritimes Delivery } \\ \text { Line } \end{gathered}$	Middlesex	Dracut	L	0.65	0.66	DR-J-W004	PSS	BVW	$\begin{gathered} 42^{\circ} 41^{\prime} \\ 12.269^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 15^{\prime} \\ 54.055^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	II		0.00	0.00	0.02	0.00	0.00	0.01	0.00	12	
Maritimes Delivery Line	Middlesex	Dracut	L	0.66	0.74	DR-J-W004	PEM	BVW	$\begin{array}{r} 42^{\circ} 41^{\prime} \\ 11.480^{\prime \prime} \mathrm{N} \end{array}$	$\begin{gathered} 71^{\circ} 15 ' \\ 54.032^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	II		0.67	0.00	0.00	0.00	0.00	0.00	0.00	406	
Maritimes Delivery Line	Middlesex	Dracut	L	0.68	0.69	WPI-3142	PFO	BVW	$\begin{gathered} 42^{\circ} 41^{\prime} \\ 11.761^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 15 ' \\ 52.048^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Maritimes Delivery Line	Middlesex	Dracut	L	0.69	0.70	WPI-3143	PEM	BVW	$\begin{gathered} 42^{\circ} 41^{\prime} \\ 11.484^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 15^{\prime} \\ 51.699^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	N/A		0.03	0.00	0.00	0.00	0.00	0.00	0.00	0	
Lynnfield Lateral	Middlesex	Dracut	N	0.67	0.68	WPI-2735	PEM	BVW	$\begin{array}{r} 42^{\circ} 40^{\prime} \\ 9.418^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 71^{\circ} 15 ' \\ 5.2455^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Lowell	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0	
Lynnfield Lateral	Middlesex	Dracut	N	0.68	0.69	WPI-2735	PEM	BVW	$\begin{array}{r} 42^{\circ} 40^{\prime} \\ 9.228^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 15 ' \\ 5.053^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0	
Lynnfield Lateral	Middlesex	Dracut	N	0.69	0.70	WPI-2735	PEM	BVW	$\begin{gathered} 42^{\circ} 40^{\prime} \\ 8.730^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 15 ' \\ 4.551^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Lowell	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0	
Lynnfield Lateral	Middlesex	Dracut	N	0.70	0.75	WPI-2736	PEM	BVW	$\begin{array}{r} 42^{\circ} 40^{\prime} \\ 8.376^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 71^{\circ} 15^{\prime} \\ 4.294^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Lowell	N/A		0.06	0.00	0.00	0.00	0.00	0.00	0.00	0	
Lynnfield Lateral	Middlesex	Dracut	N	0.74	0.79	WPI-2738	PFO	BVW	$\begin{array}{r} \hline 42^{\circ} 40^{\prime} \\ 6.433^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 15 ' \\ 2.862^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	II		0.00	0.36	0.00	0.00	0.14	0.00	0.00	212	
Lynnfield Lateral	Middlesex	Dracut	N	0.77	0.78	WPI-2736	PEM	BVW	$\begin{array}{r} 42^{\circ} 40^{\prime} \\ 5.557 " \mathrm{~N} \end{array}$	$\begin{aligned} & 71^{\circ} 15^{\prime} \\ & 1.384^{\prime} \mathrm{W} \end{aligned}$	Lowell	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0	
Lynnfield Lateral	Middlesex	Dracut	N	0.78	0.80	WPI-2736	PEM	BVW	$\begin{array}{r} 42^{\circ} 40^{\prime} \\ 4.800^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 15^{\prime} \\ 0.494^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0	
Lynnfield Lateral	Middlesex	Dracut	N	0.78	0.81	WPI-2739	PFO	BVW	$\begin{array}{r} 42^{\circ} 40^{\prime} \\ 4.798^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 15^{\prime} \\ 0.541^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	II		0.00	0.11	0.00	0.00	0.05	0.00	0.00	70	
Lynnfield Lateral	Middlesex	Dracut	N	0.80	0.81	WPI-2736	PEM	BVW	$\begin{array}{r} 42^{\circ} 40^{\prime} \\ 4.3677^{\prime N} \\ \hline \end{array}$	$\begin{array}{r} 71^{\circ} 15^{\prime} \\ 0.020^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Lawrence	N/A		0.02	0.00	0.00	0.00	0.00	0.00	0.00	0	
Lynnfield Lateral	Middlesex	Dracut	N	0.80	0.81	WPI-2739	PFO	BVW	$\begin{array}{r} 42^{\circ} 40^{\prime} \\ 4.1955^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 71^{\circ} 15^{\prime} \\ 0.020^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Lawrence	II		0.00	0.04	0.00	0.00	0.03	0.00	0.00	49	

Table 2.3-7

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{gathered} \text { Wetland } \\ \mathbf{I D}^{3,4} \end{gathered}$	Wetland Class ${ }^{5}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	CrossingMethod	Comments	Construction ${ }^{8}$				Operation ${ }^{9}$			CrossingLength(feet) ${ }^{11}$
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$	
Lynnfield Lateral	Middlesex	Dracut	N	0.82	0.84	WPI-2736	PEM	BVW	$\begin{aligned} & 42^{\circ} 40^{\prime} \\ & 3.443^{\prime \prime} \mathrm{N} \end{aligned}$	$\begin{gathered} 71^{\circ} 14^{\prime} \\ 59.124^{\prime} \mathrm{W} \end{gathered}$	Lawrence	N/A		0.02	0.00	0.00	0.00	0.00	0.00	0.00	0
Lynnfield Lateral	Middlesex	Dracut	N	0.82	0.84	WPI-2740	PFO	BVW	$\begin{gathered} 42^{\circ} 40^{\prime} \\ 3.044^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 14^{\prime} \\ 59.861^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	II		0.00	0.11	0.00	0.00	0.06	0.00	0.00	93
Lynnfield Lateral	Middlesex	Dracut	N	0.83	1.05	WPI-2745	PFO	BVW	$\begin{array}{r} 42^{\circ} 40^{\prime} \\ 2.515^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 14^{\prime} \\ 59.282^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	II		0.00	2.07	0.00	0.00	0.63	0.00	0.00	961
Lynnfield Lateral	Middlesex	Dracut	N	0.85	0.89	WPI-2736	PEM	BVW	$\begin{gathered} 42^{\circ} 40^{\prime} \\ 2.173^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 14^{\prime} \\ 57.778^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.06	0.00	0.00	0.00	0.00	0.00	0.00	0
Lynnfield Lateral	Middlesex	Dracut	N	0.91	0.95	WPI-2744	PSS	BVW	$\begin{gathered} 42^{\circ} 39^{\prime} \\ 59.816^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 14^{\prime} \\ 55.033^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	II		0.00	0.00	0.07	0.00	0.00	0.01	0.00	25
Lynnfield Lateral	Middlesex	Dracut	N	0.95	0.96	WPI-2736	PEM	BVW	$\begin{gathered} 42^{\circ} 39^{\prime} \\ 58.037 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 14^{\prime} \\ 53.084^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0
Lynnfield Lateral	Middlesex	Dracut	N	1.01	1.06	WPI-2736	PEM	BVW	$\begin{gathered} 42^{\circ} 39^{\prime} \\ 55.722^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 14^{\prime} \\ 50.117^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.16	0.00	0.00	0.00	0.00	0.00	0.00	0
Lynnfield Lateral	Middlesex	Dracut	N	1.08	1.08	WPI-2747	Other	BVW	$\begin{gathered} \hline 42^{\circ} 39^{\prime} \\ 51.605^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 14^{\prime} \\ 49.469^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0
Lynnfield Lateral	Middlesex	Dracut	N	1.11	1.14	WPI-2748	Other	BVW	$\begin{gathered} 42^{\circ} 39^{\prime} \\ 51.125 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 14^{\prime} \\ 46.353 " \mathrm{~W} \\ \hline \end{array}$	Lawrence	N/A		0.00	0.00	0.00	0.05	0.00	0.00	0.00	0
Lynnfield Lateral	Essex	Andover	N	1.78	1.80	WPI-2750	PEM	BVW	$\begin{gathered} 42^{\circ} 39^{\prime} \\ 21.958^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 14^{\prime} \\ 23.203^{\prime \prime} \mathrm{W} \end{gathered}$	Lawrence	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0
Lynnfield Lateral	Essex	Andover	N	1.83	1.84	WPI-2752	PSS	BVW	$\begin{gathered} 42^{\circ} 39^{\prime} \\ 19.352^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 14^{\prime} \\ 22.8355^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.00	0.05	0.00	0.00	0.00	0.00	0
Lynnfield Lateral	Essex	Andover	N	1.94	1.96	WPI-2753	PFO	BVW	$\begin{gathered} 42^{\circ} 39^{\prime} \\ 13.631^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 14^{\prime} \\ 20.927^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	II		0.00	0.20	0.00	0.00	0.08	0.00	0.00	123
Lynnfield Lateral	Essex	Andover	N	2.00	2.01	WPI-2754	PFO	BVW	$\begin{gathered} 42^{\circ} 39 ' \\ 10.527 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 14^{\prime} \\ 20.349^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0
Lynnfield Lateral	Essex	Andover	N	2.21	2.25	WPI-2755	PSS	BVW	$\begin{gathered} 42^{\circ} 38^{\prime} \\ 59.337^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 14^{\prime} \\ 20.788^{\prime \prime} \mathrm{W} \end{gathered}$	Lawrence	II		0.00	0.00	0.13	0.00	0.00	0.01	0.00	49
Lynnfield Lateral	Essex	Andover	N	2.32	2.33	WPI-2757	PEM	BVW	$\begin{gathered} 42^{\circ} 38^{\prime} \\ 54.797^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 14^{\prime} \\ 17.238^{\prime \prime} \mathrm{W} \end{gathered}$	Lawrence	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0
Lynnfield Lateral	Middlesex	Tewksbury	N	2.33	2.34	WPI-2757	PEM	BVW	$\begin{gathered} 42^{\circ} 38^{\prime} \\ 54.539^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 14^{\prime} \\ 17.202^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0
Lynnfield Lateral	Essex	Andover	N	2.88	2.89	WPI-2758	PFO	BVW	$\begin{gathered} 42^{\circ} 38^{\prime} \\ 43.643^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 13^{\prime} \\ 42.592^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.03	0.00	0.00	0.00	0.00	0.00	0
Lynnfield Lateral	Essex	Andover	N	2.98	3.01	AN-K-W002	PFO	BVW	$\begin{gathered} 42^{\circ} 38^{\prime} \\ 40.048^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 13^{\prime} \\ 37.420^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	II		0.00	0.12	0.00	0.00	0.06	0.00	0.00	105
Lynnfield Lateral	Essex	Andover	N	3.10	3.13	AN-K-W003	PFO	BVW	$\begin{gathered} 42^{\circ} 38^{\prime} \\ 36.106^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 13^{\prime} \\ 30.8566^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	II		0.00	0.17	0.00	0.00	0.10	0.00	0.00	171
Lynnfield Lateral	Essex	Andover	N	3.15	3.17	WPI-2761	PFO	BVW	$\begin{gathered} 42^{\circ} 38^{\prime} \\ 33.569^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 13^{\prime} \\ 30.551^{\prime \prime} \mathrm{W} \end{gathered}$	Lawrence	II		0.00	0.21	0.00	0.00	0.08	0.00	0.00	120
Lynnfield Lateral	Essex	Andover	N	3.17	3.22	WPI-2763	PFO	BVW	$\begin{gathered} 42^{\circ} 38^{\prime} \\ 32.259 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 13^{\prime} \\ 30.2544^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	II		0.00	0.34	0.00	0.00	0.16	0.00	0.00	232
Lynnfield Lateral	Middlesex	Tewksbury	N	3.18	3.21	WPI-2763	PFO	BVW	$\begin{gathered} 42^{\circ} 38^{\prime} \\ 31.876^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 13^{\prime} \\ 29.939^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.04	0.00	0.00	0.00	0.00	0.00	0
Lynnfield Lateral	Essex	Andover	N	3.26	3.28	TK-K-W002	PFO	BVW	$\begin{gathered} 42^{\circ} 38^{\prime} \\ 29.689^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 13^{\prime} \\ 24.458^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.02	0.00	0.00	0.00	0.00	0.00	0
Lynnfield Lateral	Middlesex	Tewksbury	N	3.26	3.27	TK-K-W002	PFO	BVW	$\begin{array}{r} 42^{\circ} 38^{\prime} \\ 29.343^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 13^{\prime} \\ 24.657 \mathrm{~W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0

Table 2.3-7

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{aligned} & \text { Wetland } \\ & \mathbf{I D}^{3,4} \end{aligned}$	Wetland Class ${ }^{5}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method	Comments	Wetland Impact (acres)							Crossing Length (feet) ${ }^{11}$	
						Construction ${ }^{8}$								Operation ${ }^{9}$								
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$		
Lynnfield Lateral	Middlesex	Tewksbury	N	3.30	3.34		WPI-2767	PFO	BVW	$\begin{array}{r} 42^{\circ} 38^{\prime} \\ 27.689^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 13^{\prime} \\ 23.669^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.03	0.00	0.00	0.00	0.00	0.00	0
Lynnfield Lateral	Middlesex	Tewksbury	N	3.35	3.36	WPI-2767	PFO	BVW	$\begin{array}{r} 42^{\circ} 38^{\prime} \\ 26.196^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 13^{\prime} \\ 20.560^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Lynnfield Lateral	Middlesex	Tewksbury	N	3.35	3.37	WPI-2765	Other	BVW	$\begin{gathered} 42^{\circ} 38^{\prime} \\ 26.919^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 13^{\prime} \\ 19.856^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.00	0.00	0.03	0.00	0.00	0.00	0	
Lynnfield Lateral	Middlesex	Tewksbury	N	3.37	3.38	WPI-2766	PFO	BVW	$\begin{array}{r} 42^{\circ} 38^{\prime} \\ 26.334^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 13^{\prime} \\ 18.637^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Lynnfield Lateral	Middlesex	Tewksbury	N	3.49	3.52	WPI-2770	PSS	BVW	$\begin{array}{r} 42^{\circ} 38^{\prime} \\ 22.3499^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 13^{\prime} \\ 12.0366^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.00	0.05	0.00	0.00	0.00	0.00	0	
Lynnfield Lateral	Middlesex	Tewksbury	N	3.52	3.59	WPI-2775	PFO	BVW	$\begin{array}{r} 42^{\circ} 38^{\prime} \\ 22.019^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 71^{\circ} 13^{\prime} \\ 9.650^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Lawrence	II		0.00	0.34	0.00	0.00	0.20	0.00	0.00	313	
Lynnfield Lateral	Middlesex	Tewksbury	N	3.52	3.53	WPI-2774	PFO	BVW	$\begin{gathered} 42^{\circ} 38^{\prime} \\ 21.333^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 13^{\prime} \\ 10.232^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Lynnfield Lateral	Middlesex	Tewksbury	N	3.64	3.70	WPI-2776	PFO	BVW	$\begin{gathered} 42^{\circ} 38^{\prime} \\ 18.671^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 13^{\prime} \\ 2.678^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Lawrence	II		0.00	0.53	0.00	0.00	0.21	0.00	0.00	309	
Lynnfield Lateral	Essex	Andover	N	3.69	3.77	WPI-2776	PFO	BVW	$\begin{gathered} 42^{\circ} 38^{\prime} \\ 17.380^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 12^{\prime} \\ 59.717^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	II		0.00	0.51	0.00	0.00	0.23	0.00	0.00	342	
Lynnfield Lateral	Essex	Andover	N	3.80	3.81	WPI-2777	PSS	BVW	$\begin{gathered} 42^{\circ} 38^{\prime} \\ 18.1477^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 12^{\prime} \\ 53.418^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Lynnfield Lateral	Essex	Andover	N	4.02	4.03	WPI-2778	PFO	BVW	$\begin{gathered} 42^{\circ} 38^{\prime} \\ 9.656{ }^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 12^{\prime} \\ 43.103^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.03	0.00	0.00	0.02	0.00	0.00	0	
Lynnfield Lateral	Middlesex	Tewksbury	N	4.02	4.03	WPI-2778	PFO	BVW	$\begin{array}{r} 42^{\circ} 38^{\prime} \\ 9.464^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 71^{\circ} 12^{\prime} \\ 43.217^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Lawrence	II		0.00	0.01	0.00	0.00	0.01	0.00	0.00	48	
Lynnfield Lateral	Essex	Andover	N	4.16	4.17	WPI-2780	PFO	BVW	$\begin{gathered} 42^{\circ} 38^{\prime} \\ 6.013^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 12^{\prime} \\ 34.822^{\prime \prime} \mathrm{W} \end{gathered}$	Lawrence	N/A		0.00	0.08	0.00	0.00	0.02	0.00	0.00	0	
Lynnfield Lateral	Middlesex	Tewksbury	N	4.16	4.17	WPI-2780	PFO	BVW	$\begin{gathered} \hline 42^{\circ} 38^{\prime} \\ 5.475^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 12^{\prime} \\ 34.903^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	II		0.00	0.01	0.00	0.00	0.01	0.00	0.00	47	
Lynnfield Lateral	Essex	Andover	N	4.35	4.40	WPI-2781	PFO	BVW	$\begin{gathered} 42^{\circ} 38^{\prime} \\ 0.210^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 12^{\prime} \\ 23.167^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.14	0.00	0.00	0.00	0.00	0.00	0	
Lynnfield Lateral	Middlesex	Tewksbury	N	4.36	4.40	WPI-2781	PFO	BVW	$\begin{array}{r} 42^{\circ} 37 \prime \\ 59.905^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 12^{\prime} \\ 23.2955^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.07	0.00	0.00	0.03	0.00	0.00	0	
Lynnfield Lateral	Middlesex	Tewksbury	N	4.38	4.40	TK-K-W001	PFO	BVW	$\begin{gathered} 42^{\circ} 37 \prime \\ 59.046^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 12^{\prime} \\ 21.874^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	II		0.00	0.04	0.00	0.00	0.03	0.00	0.00	60	
Lynnfield Lateral	Middlesex	Tewksbury	N	4.39	4.40	TK-K-W001	PFO	BVW	$\begin{gathered} 42^{\circ} 37^{\prime} \\ 58.423^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 12^{\prime} \\ 21.452^{\prime \prime} \mathrm{W} \end{gathered}$	Lawrence	II		0.00	0.01	0.00	0.00	0.01	0.00	0.00	12	
Lynnfield Lateral	Essex	Andover	N	4.40	4.43	WPI-2782	PFO	BVW	$\begin{array}{r} 42^{\circ} 37 \prime \\ 58.649^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 12^{\prime} \\ 20.6799^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.06	0.00	0.00	0.00	0.00	0.00	0	
Lynnfield Lateral	Middlesex	Tewksbury	N	4.40	4.42	WPI-2782	PFO	BVW	$\begin{gathered} 42^{\circ} 37 \prime \\ 58.577^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 12^{\prime} \\ 20.856^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.03	0.00	0.00	0.00	0.00	0.00	0	
Lynnfield Lateral	Middlesex	Tewksbury	N	4.67	4.69	WPI-2784	PFO	BVW	$\begin{array}{r} 42^{\circ} 37 \prime \\ 48.679^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 12^{\prime} \\ 8.866^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Lynnfield Lateral	Middlesex	Tewksbury	N	4.72	4.72	WPI-2784	PFO	BVW	$\begin{array}{r} 42^{\circ} 37 \prime \\ 47.440^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 12^{\prime} \\ 5.978^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Lynnfield Lateral	Middlesex	Tewksbury	N	4.74	4.80	WPI-2785	PSS/PEM	BVW	$\begin{array}{r} 42^{\circ} 37 \prime \\ 46.818^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 71^{10} 12^{\prime} \\ 4.530^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Lawrence	II		0.00	0.00	0.13	0.00	0.00	0.01	0.00	26	
Lynnfield Lateral	Middlesex	Tewksbury	N	4.80	4.85	WPI-2787	PSS/PEM	BVW	$\begin{array}{r} 42^{\circ} 37 \prime \\ 45.225^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 71^{\circ} 12^{\prime} \\ 0.797^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Lawrence	II		0.00	0.00	0.23	0.00	0.00	0.04	0.00	190	

Table 2.3-7

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{aligned} & \text { Wetland } \\ & \mathbf{I D}^{3,4} \end{aligned}$	Wetland Class ${ }^{5}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method	Comments	Construction ${ }^{8}$				Operation ${ }^{9}$			Crossing Length (feet) ${ }^{11}$
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$	
Lynnfield Lateral	Middlesex	Tewksbury	N	4.82	4.85	WPI-2786	PSS/PEM	BVW	$\begin{array}{r} 42^{\circ} 37 \prime \\ 44.573^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 11^{\prime} \\ 59.601^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.00	0.05	0.00	0.00	0.00	0.00	0
Lynnfield Lateral	Middlesex	Tewksbury	N	4.85	4.88	WPI-2789	PFO	BVW	$\begin{gathered} 42^{\circ} 37^{\prime} \\ 44.481^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 11^{\prime} \\ 57.501^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.04	0.00	0.00	0.01	0.00	0.00	0
Lynnfield Lateral	Middlesex	Tewksbury	N	4.85	4.90	WPI-2790	PFO	BVW	$\begin{array}{r} 42^{\circ} 37 \prime \\ 44.203^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 11^{\prime} \\ 57.680^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	II		0.00	0.18	0.00	0.00	0.10	0.00	0.00	156
Lynnfield Lateral	Essex	Andover	N	5.44	5.47	WPI-2791	PFO	BVW	$\begin{array}{r} 42^{\circ} 37 \prime \\ 30.9099^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 11^{\prime} \\ 21.268^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	II		0.00	0.13	0.00	0.00	0.03	0.00	0.00	55
Lynnfield Lateral	Essex	Andover	N	5.46	5.48	WPI-2791	PFO	BVW	$\begin{gathered} 42^{\circ} 37 \prime \\ 30.054^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 11^{\prime} \\ 20.806^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	II		0.00	0.10	0.00	0.00	0.07	0.00	0.00	103
Lynnfield Lateral	Middlesex	Tewksbury	N	5.46	5.48	WPI-2791	PFO	BVW	$\begin{gathered} 42^{\circ} 37^{\prime} \\ 29.905^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 11^{\prime} \\ 20.802^{\prime \prime} \mathrm{W} \end{gathered}$	Wilmington	N/A		0.00	0.02	0.00	0.00	0.00	0.00	0.00	0
Lynnfield Lateral	Essex	Andover	N	5.55	5.59	WPI-2791	PFO	BVW	$\begin{gathered} 42^{\circ} 37 \prime \\ 28.093^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 11^{\prime} \\ 14.989^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	II		0.00	0.24	0.00	0.00	0.09	0.00	0.00	135
Lynnfield Lateral	Essex	Andover	N	5.85	5.92	AN-K-W006	PFO	BVW	$\begin{gathered} 42^{\circ} 37^{\prime} \\ 22.284^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 10^{\prime} \\ 55.954^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	II		0.00	0.30	0.00	0.00	0.14	0.00	0.00	202
Lynnfield Lateral	Essex	Andover	N	5.90	5.92	AN-K-W006	PFO	BVW	$\begin{gathered} 42^{\circ} 37 \prime \\ 19.431^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 10^{\prime} \\ 55.320^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	II		0.00	0.11	0.00	0.00	0.05	0.00	0.00	77
Lynnfield Lateral	Middlesex	Tewksbury	N	5.92	5.95	AN-K-W006	PFO	BVW	$\begin{gathered} 42^{\circ} 37 \prime \\ 18.215^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 10^{\prime} \\ 56.595^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	II		0.00	0.05	0.00	0.00	0.01	0.00	0.00	2
Lynnfield Lateral	Middlesex	Tewksbury	N	6.04	6.12	WPI-2793	PFO	BVW	$\begin{gathered} 42^{\circ} 37 \prime \\ 13.002^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 10^{\prime} \\ 52.630^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Wilmington	II		0.00	0.58	0.00	0.00	0.26	0.00	0.00	380
Lynnfield Lateral	Middlesex	Tewksbury	N	6.12	6.13	TK-K-W004	PFO	BVW	$\begin{gathered} 42^{\circ} 37 \prime \\ 10.059^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 10^{\prime} \\ 48.671^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Wilmington	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0
Lynnfield Lateral	Middlesex	Tewksbury	N	6.16	6.17	TK-K-W004	PFO	BVW	$\begin{gathered} 42^{\circ} 37^{\prime} \\ 8.437{ }^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 10^{\prime} \\ 47.160^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	N/A		0.00	0.04	0.00	0.00	0.01	0.00	0.00	0
Lynnfield Lateral	Middlesex	Tewksbury	N	6.20	6.21	TK-K-W005	PFO	BVW	$\begin{array}{r} 42^{\circ} 37^{\prime} \\ 6.295^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 10^{\prime} \\ 46.996^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	II		0.00	0.04	0.00	0.00	0.03	0.00	0.00	58
Lynnfield Lateral	Middlesex	Tewksbury	N	6.28	6.30	TK-K-W005	PFO	BVW	$\begin{aligned} & 42^{\circ} 37^{\prime} \\ & 3.976^{\prime \prime} \mathrm{N} \end{aligned}$	$\begin{gathered} 71^{\circ} 10^{\prime} \\ 41.999^{\prime \prime} \mathrm{W} \end{gathered}$	Wilmington	II		0.00	0.12	0.00	0.00	0.06	0.00	0.00	80
Lynnfield Lateral	Middlesex	Tewksbury	N	6.31	6.34	TK-K-W005	PFO	BVW	$\begin{array}{r} 42^{\circ} 37 \prime \\ 3.730^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 10^{\prime} \\ 40.517^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	II		0.00	0.18	0.00	0.00	0.05	0.00	0.00	75
Lynnfield Lateral	Middlesex	Tewksbury	N	6.33	6.35	TK-K-W005	PEM	BVW	$\begin{gathered} 42^{\circ} 37^{\prime} \\ 3.567 " \mathrm{~N} \end{gathered}$	$\begin{gathered} 71^{\circ} 10^{\prime} \\ 39.071^{\prime \prime} \mathrm{W} \end{gathered}$	Wilmington	II		0.05	0.00	0.00	0.00	0.00	0.00	0.00	35
Lynnfield Lateral	Middlesex	Tewksbury	N	6.34	6.36	TK-K-W005	PFO	BVW	$\begin{array}{r} 42^{\circ} 37 \prime \\ 3.191^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 10^{\prime} \\ 37.882^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	II		0.00	0.06	0.00	0.00	0.01	0.00	0.00	29
Lynnfield Lateral	Essex	Andover	N	6.64	6.64	WPI-2799	PEM	BVW	$\begin{gathered} 42^{\circ} 36^{\prime} \\ 53.2444^{\prime \prime} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 10^{\prime} \\ 26.958^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0
Lynnfield Lateral	Essex	Andover	N	6.64	6.64	WPI-2799	PEM	BVW	$\begin{array}{r} 42^{\circ} 36^{\prime} \\ 53.320^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 10^{\prime} \\ 26.394^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0
Lynnfield Lateral	Essex	Andover	N	6.64	6.68	WPI-2798	PFO	BVW	$\begin{gathered} 42^{\circ} 36^{\prime} \\ 53.169^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 10^{\prime} \\ 27.486^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	IV		0.00	0.18	0.00	0.00	0.11	0.00	0.00	164
Lynnfield Lateral	Essex	Andover	N	6.64	6.65	WPI-2798	PFO	BVW	$\begin{gathered} 42^{\circ} 36^{\prime} \\ 53.1377^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 10^{\prime} \\ 26.343^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	N/A		0.00	0.02	0.00	0.00	0.00	0.00	0.00	0
Lynnfield Lateral	Essex	Andover	N	6.65	6.70	WPI-2799	PEM	BVW	$\begin{gathered} 42^{\circ} 36^{\prime} \\ 52.620^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 10^{\prime} \\ 26.201^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	N/A		0.08	0.00	0.00	0.00	0.00	0.00	0.00	0
Lynnfield Lateral	Essex	Andover	N	6.66	6.70	WPI-2799	PEM	BVW	$\begin{gathered} 42^{\circ} 36^{\prime} \\ 52.307 \mathrm{\prime} \mathrm{\prime} \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 10^{\prime} \\ 26.551^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	IV		0.14	0.00	0.00	0.00	0.00	0.00	0.00	127

Table 2.3-7

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{gathered} \text { Wetland } \\ \mathbf{I D}^{3,4} \end{gathered}$	Wetland Class ${ }^{5}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method ${ }^{7}$	Comments	Construction ${ }^{8}$				Operation ${ }^{9}$			Crossing Length (feet) ${ }^{11}$
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$	
Lynnfield Lateral	Essex	Andover	N	6.69	6.70	WPI-2800	PFO	BVW	$\begin{array}{r} 42^{\circ} 36^{\prime} \\ 50.826^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 10^{\prime} \\ 26.798^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	IV		0.00	0.02	0.00	0.00	0.01	0.00	0.00	4
Lynnfield Lateral	Essex	Andover	N	6.71	6.73	WPI-2801	Other	BVW	$\begin{gathered} 42^{\circ} 36^{\prime} \\ 49.986^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 10^{\prime} \\ 25.269^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	N/A		0.00	0.00	0.00	0.04	0.00	0.00	0.00	0
Lynnfield Lateral	Essex	Andover	N	6.71	6.73	WPI-2801	Other	BVW	$\begin{array}{r} 42^{\circ} 36^{\prime} \\ 49.776^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 10^{\prime} \\ 25.809 " \mathrm{~W} \\ \hline \end{gathered}$	Wilmington	N/A		0.00	0.00	0.00	0.03	0.00	0.00	0.00	0
Lynnfield Lateral	Essex	Andover	N	7.32	7.32	AN-K-W008	PFO	BVW	$\begin{gathered} 42^{\circ} 36^{\prime} \\ 18.478^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 10^{\prime} \\ 17.258^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0
Lynnfield Lateral	Essex	Andover	N	7.32	7.32	AN-K-W008	PFO	BVW	$\begin{gathered} 42^{\circ} 36^{\prime} \\ 18.354^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 10^{\prime} \\ 17.220^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0
Lynnfield Lateral	Essex	Andover	N	7.49	7.55	WPI-2802	PEM	BVW	$\begin{gathered} 42^{\circ} 36^{\prime} \\ 10.173^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 10^{\prime} \\ 13.728^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	II		0.47	0.00	0.00	0.00	0.00	0.00	0.00	292
Lynnfield Lateral	Essex	Andover	N	7.53	7.54	WPI-2803	PFO	BVW	$\begin{array}{r} 42^{\circ} 36^{\prime} \\ 8.149^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 10^{\prime} \\ 13.208^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0
Lynnfield Lateral	Essex	Andover	N	7.70	7.75	AN-MW001	PEM	BVW	$\begin{gathered} \hline 42^{\circ} 36^{\prime} \\ 2.349^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 10^{\prime} \\ 4.156^{\prime \prime} \mathrm{W} \end{gathered}$	Wilmington	II		0.18	0.00	0.00	0.00	0.00	0.00	0.00	159
Lynnfield Lateral	Essex	Andover	N	7.74	7.77	AN-MW001	PEM	BVW	$\begin{gathered} 42^{\circ} 36^{\prime} \\ 1.375^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 10^{\prime} \\ 2.093^{\prime \prime} \mathrm{W} \end{gathered}$	Wilmington	II		0.19	0.00	0.00	0.00	0.00	0.00	0.00	106
Lynnfield Lateral	Essex	Andover	N	7.87	7.87	AN-K-W011	PEM	BVW	$\begin{gathered} 42^{\circ} 35^{\prime} \\ 55.933^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 9^{\prime} \\ 56.079^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0
Lynnfield Lateral	Essex	Andover	N	7.87	7.87	AN-K-W011	PFO	BVW	$\begin{gathered} 42^{\circ} 35^{\prime} \\ 55.9199^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{c\|} 71^{\circ} 9^{\prime} \\ 56.039^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Wilmington	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0
Lynnfield Lateral	Middlesex	Wilmington	N	8.02	8.07	AN-G-W002	PSS	BVW	$\begin{gathered} 42^{\circ} 35 ' \\ 50.677^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 9^{\prime} \\ 48.622^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	II		0.00	0.00	0.29	0.00	0.00	0.04	0.00	197
Lynnfield Lateral	Middlesex	Wilmington	N	8.15	8.19	WPI-2804	PEM	BVW	$\begin{gathered} 42^{\circ} 35^{\prime} \\ 46.660^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 9^{\prime} \\ 41.455^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	N/A		0.13	0.00	0.00	0.00	0.00	0.00	0.00	0
Lynnfield Lateral	Middlesex	Wilmington	N	8.22	8.24	WPI-2805	PEM	BVW	$\begin{gathered} 42^{\circ} 355^{\prime} \\ 44.271^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 9^{\prime} \\ 37.522^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	II		0.11	0.00	0.00	0.00	0.00	0.00	0.00	41
Lynnfield Lateral	Middlesex	Wilmington	N	8.28	8.32	WL-KW002	PEM	BVW	$\begin{gathered} 42^{\circ} 35^{\prime} \\ 42.974^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 9^{\prime} \\ 34.694^{\prime \prime} \mathrm{W} \end{gathered}$	Wilmington	II		0.22	0.00	0.00	0.00	0.00	0.00	0.00	124
Lynnfield Lateral	Middlesex	Wilmington	N	8.33	8.33	WL-KW002	PEM	BVW	$\begin{gathered} 42^{\circ} 35^{\prime} \\ 41.989^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 9^{\prime} \\ 31.521^{\prime \prime} \mathrm{W} \end{gathered}$	Wilmington	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0
Lynnfield Lateral	Middlesex	Wilmington	N	9.11	9.13	WPI-2808	PEM	BVW	$\begin{gathered} 42^{\circ} 35^{\prime} \\ 20.911^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 8^{\prime} \\ 47.367^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	N/A		0.03	0.00	0.00	0.00	0.00	0.00	0.00	0
Lynnfield Lateral	Middlesex	Wilmington	N	9.15	9.25	WPI-2808	PEM	BVW	$\begin{gathered} 42^{\circ} 35^{\prime} \\ 18.913^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 8^{\prime} \\ 45.876^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	II		0.48	0.00	0.00	0.00	0.00	0.00	0.00	512
Lynnfield Lateral	Middlesex	Wilmington	N	9.32	9.37	WPI-2809	PFO	BVW	$\begin{gathered} 42^{\circ} 35^{\prime} \\ 15.239^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 8^{\prime} \\ 34.854^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	II		0.00	0.36	0.00	0.00	0.13	0.00	0.00	187
Lynnfield Lateral	Middlesex	Wilmington	N	9.41	9.55	WPI-2811	PEM	BVW	$\begin{gathered} 42^{\circ} 35^{\prime} \\ 13.337^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 71^{\circ} 8^{\prime} \\ 28.668^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Wilmington	II		0.93	0.00	0.00	0.00	0.00	0.00	0.00	460
Lynnfield Lateral	Middlesex	Wilmington	N	9.59	9.68	WPI-2811	PEM	BVW	$\begin{gathered} 42^{\circ} 35^{\prime} \\ 12.811^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 71^{\circ} 8^{\prime} \\ 17.920^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Wilmington	II		0.59	0.00	0.00	0.00	0.00	0.00	0.00	267
Lynnfield Lateral	Middlesex	Wilmington	N	9.67	9.71	WPI-2812	PEM	BVW	$\begin{array}{r} 42^{\circ} 35^{\prime} \\ 9.913^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 8^{\prime} \\ 13.473^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	II		0.14	0.00	0.00	0.00	0.00	0.00	0.00	80
Lynnfield Lateral	Middlesex	Wilmington	N	9.73	9.76	WPI-2813	Other	BVW	$\begin{array}{r} 42^{\circ} 35^{\prime} \\ 7.579^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 8^{\prime} \\ 10.866^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	II		0.00	0.00	0.00	0.06	0.00	0.00	0.00	36
Lynnfield Lateral	Middlesex	Wilmington	N	9.81	9.85	WPI-2814	PEM	BVW	$\begin{array}{r} 42^{\circ} 35^{\prime} \\ 3.901^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 8^{\prime \prime} \\ 8.0377^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	N/A		0.12	0.00	0.00	0.00	0.00	0.00	0.00	0

Table 2.3-7

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{gathered} \text { Wetland } \\ \mathbf{I D}^{3,4} \end{gathered}$	Wetland Class ${ }^{5}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method ${ }^{7}$	Comments	Construction ${ }^{8}$				Operation ${ }^{9}$			CrossingLength(feet) ${ }^{11}$
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$	
Lynnfield Lateral	Middlesex	Wilmington	N	10.07	10.11	WPI-2815	PFO	BVW	$\begin{gathered} 42^{\circ} 34^{\prime} \\ 53.621^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 7^{\prime} \\ 55.719^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	II		0.00	0.31	0.00	0.00	0.13	0.00	0.00	194
Lynnfield Lateral	Middlesex	Wilmington	N	10.10	10.12	WPI-2816	PEM	BVW	$\begin{gathered} 42^{\circ} 34^{\prime} \\ 52.246^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 7^{\prime \prime} \\ 54.947^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	II		0.11	0.00	0.00	0.00	0.00	0.00	0.00	59
Lynnfield Lateral	Middlesex	Wilmington	N	10.12	10.17	WPI-2817	Other	BVW	$\begin{gathered} 42^{\circ} 34^{\prime} \\ 51.4644^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 7^{\prime} \\ 54.068^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	II		0.00	0.00	0.00	0.37	0.00	0.00	0.00	201
Lynnfield Lateral	Middlesex	North Reading	N	10.15	10.19	WPI-2817	Other	BVW	$\begin{gathered} 42^{\circ} 34^{\prime} \\ 50.533^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 7^{\prime} \\ 51.719^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	II		0.00	0.00	0.00	0.19	0.00	0.00	0.00	133
Lynnfield Lateral	Middlesex	North Reading	N	10.17	10.20	WPI-2816	PEM	BVW	$\begin{array}{r} 42^{\circ} 34^{\prime} \\ 49.334^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 7^{\prime} \\ 51.645^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	II		0.14	0.00	0.00	0.00	0.00	0.00	0.00	77
Lynnfield Lateral	Middlesex	North Reading	N	10.28	10.31	WPI-2818	PSS	BVW	$\begin{gathered} 42^{\circ} 34^{\prime} \\ 45.1333^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 7^{\prime} \\ 46.959^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	N/A		0.00	0.00	0.05	0.00	0.00	0.00	0.00	0
Lynnfield Lateral	Middlesex	North Reading	N	10.31	10.36	WPI-2819	PEM	BVW	$\begin{gathered} 42^{\circ} 34^{\prime} \\ 44.142^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 7^{\prime} \\ 45.163^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	II		0.43	0.00	0.00	0.00	0.00	0.00	0.00	231
Lynnfield Lateral	Middlesex	North Reading	N	10.44	10.58	WPI-2820	PFO	BVW	$\begin{gathered} 42^{\circ} 34^{\prime} \\ 38.580^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 7^{\prime} \\ 39.335^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	II		0.00	1.09	0.00	0.00	0.43	0.00	0.00	619
Lynnfield Lateral	Middlesex	North Reading	N	10.69	10.82	WPI-2825	PFO	BVW	$\begin{gathered} 42^{\circ} 34^{\prime} \\ 31.693^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 7^{\prime} \\ 24.313^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Reading	N/A		0.00	0.57	0.00	0.00	0.11	0.00	0.00	0
Lynnfield Lateral	Middlesex	North Reading	N	10.69	10.82	WPI-2824	PSS	BVW	$\begin{gathered} 42^{\circ} 34^{\prime} \\ 31.743^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 7^{\prime} \\ 24.4677^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Reading	II		0.00	0.00	0.52	0.00	0.00	0.15	0.00	684
Lynnfield Lateral	Middlesex	North Reading	N	10.83	10.87	WPI-2826	PEM	BVW	$\begin{gathered} 42^{\circ} 34^{\prime} \\ 28.570^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 7^{\prime} \\ 15.384^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Reading	II		0.24	0.00	0.00	0.00	0.00	0.00	0.00	221
Lynnfield Lateral	Middlesex	North Reading	N	10.83	10.83	WPI-2827	PFO	BVW	$\begin{gathered} 42^{\circ} 34^{\prime} \\ 28.1111^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 7^{\prime} \\ 15.562^{\prime \prime} \mathrm{W} \end{gathered}$	Reading	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0
Lynnfield Lateral	Middlesex	North Reading	N	10.84	10.87	WPI-2827	PFO	BVW	$\begin{gathered} 42^{\circ} 34^{\prime} \\ 27.994^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 7^{\prime} \\ 15.243^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Reading	N/A		0.00	0.11	0.00	0.00	0.01	0.00	0.00	0
Lynnfield Lateral	Middlesex	North Reading	N	10.87	10.91	WPI-2828	PEM	BVW	$\begin{gathered} 42^{\circ} 34^{\prime} \\ 27.165^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 7^{\prime} \\ 12.969^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Reading	II		0.10	0.00	0.00	0.00	0.00	0.00	0.00	33
Lynnfield Lateral	Middlesex	North Reading	N	10.87	10.91	WPI-2829	PSS/PEM	BVW	$\begin{gathered} 42^{\circ} 34^{\prime} \\ 27.132^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 7^{\prime} \\ 12.880^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Reading	II		0.00	0.00	0.23	0.00	0.00	0.03	0.00	156
Lynnfield Lateral	Middlesex	North Reading	N	10.91	10.92	WPI-2831	PFO	BVW	$\begin{gathered} 42^{\circ} 34^{\prime} \\ 26.795^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 7^{\prime} \\ 10.368^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Reading	II		0.00	0.03	0.00	0.00	0.01	0.00	0.00	5
Lynnfield Lateral	Middlesex	North Reading	N	11.06	11.11	WPI-2833	PFO	BVW	$\begin{gathered} 42^{\circ} 34^{\prime} \\ 22.981^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 7^{\prime} \\ 1.044^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Reading	II		0.00	0.32	0.00	0.00	0.10	0.00	0.00	260
Lynnfield Lateral	Middlesex	North Reading	N	11.06	11.11	WPI-2832	PSS	BVW	$\begin{gathered} 42^{\circ} 34^{\prime} \\ 23.279^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 7^{\prime} \\ 0.728^{\prime \prime} \mathrm{W} \end{gathered}$	Reading	N/A		0.00	0.00	0.13	0.00	0.00	0.02	0.00	0
Lynnfield Lateral	Middlesex	North Reading	N	11.22	11.24	WPI-2837	PEM	BVW	$\begin{gathered} 42^{\circ} 34^{\prime} \\ 20.217^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 6^{\prime} \\ 50.073 \text { " } \mathrm{W} \\ \hline \end{gathered}$	Reading	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0
Lynnfield Lateral	Middlesex	North Reading	N	11.46	11.57	WPI-2841	PFO	BVW	$\begin{gathered} 42^{\circ} 34^{\prime} \\ 17.592^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 6^{\prime} \\ 34.652^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Reading	II		0.00	0.83	0.00	0.00	0.33	0.00	0.00	498
Lynnfield Lateral	Middlesex	North Reading	N	11.47	11.48	WPI-2838	PEM	BVW	$\begin{gathered} 42^{\circ} 34^{\prime} \\ 16.989^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 6^{\prime} \\ 34.485^{\prime \prime} \mathrm{W} \end{gathered}$	Reading	II		0.04	0.00	0.00	0.00	0.00	0.00	0.00	6
Lynnfield Lateral	Middlesex	North Reading	N	11.48	11.51	WPI-2840	PSS	BVW	$\begin{gathered} 42^{\circ} 34^{\prime} \\ 16.5099^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 6^{\prime} \\ 33.493 \text { " } \mathrm{W} \\ \hline \end{gathered}$	Reading	N/A		0.00	0.00	0.02	0.00	0.00	0.00	0.00	0
Lynnfield Lateral	Middlesex	North Reading	N	11.69	11.75	WPI-2843	PFO	BVW	$\begin{gathered} 42^{\circ} 34^{\prime} \\ 11.157^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 6^{\prime} \\ 20.910^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Reading	II		0.00	0.49	0.00	0.00	0.18	0.00	0.00	260
Lynnfield Lateral	Middlesex	North Reading	N	11.82	11.84	WPI-2846	PSS	BVW	$\begin{array}{r} 42^{\circ} 34^{\prime} \\ 6.565^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 6^{\prime} \\ 14.369^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Reading	II		0.00	0.00	0.09	0.00	0.00	0.01	0.00	62

a Kinder Morgan company

Table 2.3-7

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{aligned} & \text { Wetland } \\ & \mathbf{I D}^{3,4} \end{aligned}$	Wetland Class ${ }^{5}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method	Comments	Wetland Impact (acres)							Crossing Length (feet) ${ }^{11}$	
						Construction ${ }^{8}$								Operation ${ }^{9}$								
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$		
Lynnfield Lateral	Middlesex	North Reading	N	11.83	11.91		WPI-2847	PSS/PEM	BVW	$\begin{array}{r} 42^{\circ} 34^{\prime} \\ 5.769^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} \hline 71^{\circ} 6^{\prime} \\ 15.419^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Reading	II		0.00	0.00	0.69	0.00	0.00	0.09	0.00	379
Lynnfield Lateral	Middlesex	North Reading	N	11.91	11.94	WPI-2849	PEM	BVW	$\begin{gathered} 42^{\circ} 34^{\prime} \\ 4.128^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 6^{\prime} \\ 9.778^{\prime} \mathrm{W} \\ \hline \end{gathered}$	Reading	II		0.12	0.00	0.00	0.00	0.00	0.00	0.00	132	
Lynnfield Lateral	Middlesex	North Reading	N	11.92	11.96	WPI-2848	PFO	BVW	$\begin{array}{r} 42^{\circ} 34^{\prime} \\ 3.656^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 6^{\prime} \\ 9.921 " \mathrm{~W} \\ \hline \end{gathered}$	Reading	N/A		0.00	0.17	0.00	0.00	0.00	0.00	0.00	0	
Lynnfield Lateral	Middlesex	North Reading	N	12.23	12.35	WPI-2850	PFO	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 53.984^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 5^{\prime} \\ 52.737^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Reading	II		0.00	0.99	0.00	0.00	0.38	0.00	0.00	556	
Lynnfield Lateral	Middlesex	North Reading	N	12.41	12.42	WPI-2850	PFO	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 45.737^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 5^{\prime} \\ 45.838^{\prime \prime} \mathrm{W} \end{gathered}$	Reading	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Lynnfield Lateral	Middlesex	North Reading	N	12.44	12.54	WPI-2850	PFO	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 44.9333^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 5^{\prime} \\ 43.833^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Reading	II		0.00	0.84	0.00	0.00	0.33	0.00	0.00	473	
Lynnfield Lateral	Middlesex	North Reading	N	12.61	12.64	WPI-2852	PFO	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 41.198 " \mathrm{~N} \end{gathered}$	$\begin{gathered} 71^{\circ} 5^{\prime} \\ 32.932^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Reading	II		0.00	0.19	0.00	0.00	0.07	0.00	0.00	99	
Lynnfield Lateral	Middlesex	North Reading	N	12.74	12.77	WPI-2853	PFO	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 41.0377^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 5^{\prime} \\ 23.838^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Reading	II		0.00	0.24	0.00	0.00	0.10	0.00	0.00	141	
Lynnfield Lateral	Middlesex	North Reading	N	12.77	12.84	WPI-2855	PEM	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 40.723^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 5^{\prime} \\ 21.8866^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Reading	II		0.46	0.00	0.00	0.00	0.00	0.00	0.00	318	
Lynnfield Lateral	Middlesex	North Reading	N	12.81	12.89	WPI-2856	PFO/PSS	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 39.698^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 5^{\prime} \\ 19.2377^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Reading	II		0.00	0.38	0.00	0.00	0.13	0.00	0.00	245	
Lynnfield Lateral	Middlesex	North Reading	N	12.82	12.85	WPI-2857	PFO	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 40.319^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 5^{\prime} \\ 18.208^{\prime \prime} \mathrm{W} \end{gathered}$	Reading	N/A		0.00	0.02	0.00	0.00	0.01	0.00	0.00	0	
Lynnfield Lateral	Middlesex	North Reading	N	12.86	12.98	WPI-2860	PSS	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 40.026 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} \hline 71^{\circ} 5^{\prime} \\ 16.044^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Reading	II		0.00	0.00	0.35	0.00	0.00	0.06	0.00	201	
Lynnfield Lateral	Middlesex	North Reading	N	12.97	13.00	WPI-2861	PFO	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 36.503^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 5^{\prime} \\ 9.294 " \mathrm{~W} \\ \hline \end{gathered}$	Reading	N/A		0.00	0.09	0.00	0.00	0.00	0.00	0.00	0	
Lynnfield Lateral	Middlesex	North Reading	N	13.11	13.13	WPI-2862	Other	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 33.070^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 5^{\prime} \\ 0.492^{\prime \prime} \mathrm{W} \end{gathered}$	Reading	II		0.00	0.00	0.00	0.14	0.00	0.00	0.00	96	
Lynnfield Lateral	Middlesex	North Reading	N	13.27	13.44	WPI-2864	PFO	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 28.5966^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 4^{\prime} \\ 51.305^{\prime \prime} \mathrm{W} \end{gathered}$	Reading	N/A	$\begin{gathered} \hline \text { BioMap2 } \\ \text { Wetland } \\ \text { Core }-1364 \\ \hline \end{gathered}$	0.00	0.84	0.00	0.00	0.17	0.00	0.00	0	
Lynnfield Lateral	Middlesex	North Reading	N	13.29	13.35	WPI-2863	PEM	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 28.4966^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 4^{\prime} \\ 49.864^{\prime \prime} \mathrm{W} \end{gathered}$	Reading	II	$\begin{gathered} \text { BioMap2 } \\ \text { Wetland } \\ \text { Core - } 1364 \end{gathered}$	0.18	0.00	0.00	0.00	0.00	0.00	0.00	273	
Lynnfield Lateral	Middlesex	North Reading	N	13.34	13.46	WPI-2866	PSS/PEM	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 27.127 " \mathrm{~N} \end{gathered}$	$\begin{gathered} 71^{\circ} 4^{\prime} \\ 46.749^{\prime \prime} \mathrm{W} \end{gathered}$	Reading	II	$\begin{gathered} \text { BioMap2 } \\ \text { Wetland } \\ \text { Core - } 1364 \end{gathered}$	0.00	0.00	0.41	0.00	0.00	0.13	0.00	561	
Lynnfield Lateral	Middlesex	Reading	N	13.42	13.55	WPI-2864	PFO	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 24.560 " \mathrm{~N} \end{gathered}$	$\begin{gathered} 71^{\circ} 4^{\prime} \\ 41.991^{\prime \prime} \mathrm{W} \end{gathered}$	Reading	N/A	$\begin{gathered} \text { BioMap2 } \\ \text { Wetland } \\ \text { Core - } 1364 \end{gathered}$	0.00	0.64	0.00	0.00	0.14	0.00	0.00	0	
Lynnfield Lateral	Middlesex	Reading	N	13.44	13.56	WPI-2866	PSS/PEM	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 24.347{ }^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 4^{\prime} \\ 40.301^{\prime \prime} \mathrm{W} \end{gathered}$	Reading	II	$\begin{gathered} \hline \text { BioMap2 } \\ \text { Wetland } \\ \text { Core }-1364 \\ \hline \end{gathered}$	0.00	0.00	0.39	0.00	0.00	0.12	0.00	582	
Lynnfield Lateral	Middlesex	Reading	N	13.54	13.60	RD-K-W001	PFO	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 21.385 " \mathrm{~N} \end{gathered}$	$\begin{gathered} 71^{\circ} 4^{\prime} \\ 34.656^{\prime \prime} \mathrm{W} \end{gathered}$	Reading	II	$\begin{array}{\|c\|} \hline \text { BioMap2 } \\ \text { Wetland } \\ \text { Core - } 1364 \\ \hline \end{array}$	0.00	0.24	0.00	0.00	0.05	0.00	0.00	71	
Lynnfield Lateral	Middlesex	Reading	N	13.56	13.62	RD-K-W001	PSS	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 21.432^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 4^{\prime} \\ 33.111^{\prime \prime} \mathrm{W} \end{gathered}$	Reading	II	BioMap2 Wetland Core - 1364	0.00	0.00	0.25	0.00	0.00	0.05	0.00	217	

Table 2.3-7

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{aligned} & \text { Wetland } \\ & \mathbf{I D}^{3,4} \end{aligned}$	Wetland Class ${ }^{5}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method	Comments	Wetland Impact (acres)							Crossing Length (feet) ${ }^{11}$	
						Construction ${ }^{8}$								Operation ${ }^{9}$								
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$		
Lynnfield Lateral	Middlesex	Reading	N	13.59	13.83		WPI-2872	PFO	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 20.006{ }^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 4^{\prime} \\ 31.472^{\prime \prime} \mathrm{W} \end{gathered}$	Reading	II	$\begin{gathered} \hline \text { BioMap2 } \\ \text { Wetland } \\ \text { Core - } 1364 \end{gathered}$	0.00	1.32	0.00	0.00	0.34	0.00	0.00	595
Lynnfield Lateral	Middlesex	Reading	N	13.61	13.82	WPI-2871	PSS/PEM	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 19.989 " \mathrm{~N} \end{gathered}$	$\begin{gathered} 71^{\circ} 4^{\prime} \\ 30.346^{\prime \prime} \mathrm{W} \end{gathered}$	Reading	II	$\begin{gathered} \hline \text { BioMap2 } \\ \text { Wetland } \\ \text { Core - } 1364 \\ \hline \end{gathered}$	0.00	0.00	0.67	0.00	0.00	0.16	0.00	556	
Lynnfield Lateral	Middlesex	Reading	N	13.82	13.83	WPI-2873	PEM	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 14.650^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 4^{\prime} \\ 17.494^{\prime \prime} \mathrm{W} \end{gathered}$	Reading	N/A	$\begin{gathered} \text { BioMap2 } \\ \text { Wetland } \\ \text { Core - } 1364 \end{gathered}$	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0	
Lynnfield Lateral	Essex	Lynnfield	N	13.83	13.83	WPI-2873	PEM	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 14.387 " \mathrm{~N} \end{gathered}$	$\begin{gathered} 71^{\circ} 4^{\prime} \\ 16.909^{\prime \prime} \mathrm{W} \end{gathered}$	Reading	II	BioMap2 Wetland Core - 1364	0.01	0.00	0.00	0.00	0.00	0.00	0.00	4	
Lynnfield Lateral	Essex	Lynnfield	N	13.83	13.84	WPI-2872	PFO	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 14.120 " \mathrm{~N} \end{gathered}$	$\begin{gathered} 71^{\circ} 4^{\prime} \\ 16.954^{\prime \prime} \mathrm{W} \end{gathered}$	Reading	II	$\begin{gathered} \text { BioMap2 } \\ \text { Wetland } \\ \text { Core - } 1364 \end{gathered}$	0.00	0.02	0.00	0.00	0.01	0.00	0.00	16	
Lynnfield Lateral	Essex	Lynnfield	N	13.98	14.02	WPI-2874	PFO	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 12.122^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 4^{\prime} \\ 7.3677^{\prime} \mathrm{W} \end{gathered}$	Reading	II	$\begin{gathered} \text { BioMap2 } \\ \text { Wetland } \\ \text { Core - } 1364 \end{gathered}$	0.00	0.30	0.00	0.00	0.12	0.00	0.00	175	
Lynnfield Lateral	Essex	Lynnfield	N	14.11	14.12	LY-D-W002	PFO	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 16.870^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 4^{\prime} \\ 1.462^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Reading	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Lynnfield Lateral	Essex	Lynnfield	N	14.15	14.15	LY-D-W002	PFO	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 17.829^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 4^{\prime} \mathrm{W} \\ 1.237^{\prime} \mathrm{W} \end{gathered}$	Reading	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Lynnfield Lateral	Essex	Lynnfield	N	14.16	14.19	LY-D-W002	PFO	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 14.368^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 4^{\prime} \\ 1.0599^{\prime} \mathrm{W} \\ \hline \end{gathered}$	Reading	N/A		0.00	0.06	0.00	0.00	0.00	0.00	0.00	0	
Peabody Lateral	Essex	Lynnfield	o	0.05	0.06	WPI-2876	PFO	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 10.145 " \mathrm{~N} \end{gathered}$	$\begin{gathered} 71^{\circ} 3^{\prime} \\ 54.050^{\prime \prime} \mathrm{W} \end{gathered}$	Reading	N/A	$\begin{gathered} \hline \text { BioMap2 } \\ \text { Wetland } \\ \text { Core - } 1364 \end{gathered}$	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0	
Peabody Lateral	Essex	Lynnfield	o	0.06	0.08	LY-D-W001	PEM	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 10.1499^{\prime \prime} \end{gathered}$	$\begin{gathered} 71^{\circ} 3^{\prime} \\ 54.822^{\prime \prime} \mathrm{W} \end{gathered}$	Reading	N/A	BioMap2 Wetland Core - 1364	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0	
Peabody Lateral	Essex	Lynnfield	о	0.06	0.06	WPI-2875	PSS/PEM	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 10.3066^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 3^{\prime} \\ 54.644^{\prime \prime} \mathrm{W} \end{gathered}$	Reading	N/A	$\begin{gathered} \hline \text { BioMap2 } \\ \text { Wetland } \\ \text { Core - } 1364 \end{gathered}$	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Peabody Lateral	Essex	Lynnfield	о	0.07	0.10	WPI-2875	PSS/PEM	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 10.2177^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 3^{\prime} \\ 55.620^{\prime \prime} \mathrm{W} \end{gathered}$	Reading	N/A	$\begin{gathered} \text { BioMap2 } \\ \text { Wetland } \\ \text { Core - } 1364 \\ \hline \end{gathered}$	0.00	0.00	0.08	0.00	0.00	0.00	0.00	0	
Peabody Lateral	Essex	Lynnfield	o	0.08	0.09	WPI-2876	PFO	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 9.8644^{\prime \prime} \end{gathered}$	$\begin{gathered} 71^{\circ} 3^{\prime} \\ 56.294^{\prime \prime} \mathrm{W} \end{gathered}$	Reading	N/A	$\begin{gathered} \text { BioMap2 } \\ \text { Wetland } \\ \text { Core - } 1364 \\ \hline \end{gathered}$	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Peabody Lateral	Essex	Lynnfield	о	0.10	0.10	WPI-2876	PFO	BVW	$\begin{aligned} & 42^{\circ} 33^{\prime} \\ & 9.6944^{\prime \prime} \end{aligned}$	$\begin{gathered} 71^{\circ} 3^{\prime} \\ 57.294^{\prime \prime} \mathrm{W} \end{gathered}$	Reading	N/A	$\begin{gathered} \text { BioMap2 } \\ \text { Wetland } \\ \text { Core - } 1364 \\ \hline \end{gathered}$	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Peabody Lateral	Essex	Lynnfield	o	0.10	0.10	LY-P-W001	PFO	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 9.843^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 3^{\prime} \\ 57.813^{\prime \prime} \mathrm{W} \end{gathered}$	Reading	N/A	$\begin{gathered} \text { BioMap2 } \\ \text { Wetland } \\ \text { Core - } 1364 \end{gathered}$	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Peabody Lateral	Essex	Lynnfield	o	0.13	0.15	LY-P-W001	PSS	BVW	$\begin{aligned} & 42^{\circ} 33^{\prime} \\ & 9.902^{\prime \prime} \mathrm{N} \end{aligned}$	$\begin{gathered} 71^{\circ} 4^{\prime} \\ 1.7500^{\prime} \mathrm{W} \end{gathered}$	Reading	N/A	$\begin{aligned} & \text { BioMap2 } \\ & \text { Wetland } \\ & \text { Core - } 1364 \end{aligned}$	0.00	0.00	0.04	0.00	0.00	0.00	0.00	0	

Table 23-7

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{aligned} & \text { Wetland } \\ & \mathbf{I D}^{3,4} \end{aligned}$	Wetland Class ${ }^{5}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing	Comments	Wetland Impact (acres)							Crossing Length (feet) ${ }^{11}$	
						Construction ${ }^{8}$								Operation ${ }^{9}$								
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$		
Peabody Lateral	Essex	Lynnfield	o	0.20	0.30		LY-D-W002	PEM	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 14.790^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 4^{\prime} \\ 0.427^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Reading	II		0.29	0.00	0.00	0.00	0.00	0.00	0.00	513
Peabody Lateral	Essex	Lynnfield	o	0.20	0.22	LY-D-W002	PFO	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 15.020^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 4^{\prime} \\ 0.153 " \mathrm{~W} \\ \hline \end{gathered}$	Reading	N/A		0.00	0.44	0.00	0.00	0.00	0.00	0.00	0	
Peabody Lateral	Essex	Lynnfield	O	0.47	0.49	LY-D-W003	PFO	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 28.4833^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 3^{\prime} \\ 59.535^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Reading	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Peabody Lateral	Essex	Lynnfield	о	0.47	0.55	LY-M- W002	PFO	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 28.441^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 3^{\prime} \\ 59.170^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Reading	II		0.00	0.36	0.00	0.00	0.25	0.00	0.00	360	
Peabody Lateral	Essex	Lynnfield	O	0.49	0.52	LY-D-W003	PFO	BVW	$\begin{array}{r} 42^{\circ} 33^{\prime} \\ 29.355^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 3^{\prime} \\ 58.572^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Reading	N/A		0.00	0.02	0.00	0.00	0.00	0.00	0.00	0	
Peabody Lateral	Essex	Lynnfield	O	0.54	0.55	LY-D-W003	PFO	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 31.231^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 3^{\prime} \\ 55.989^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Reading	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Peabody Lateral	Essex	Lynnfield	O	0.84	0.88	WPI-2877	PFO	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 42.026^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 3^{\prime} \\ 41.461^{\prime \prime} \mathrm{W} \end{gathered}$	Reading	II		0.00	0.22	0.00	0.00	0.11	0.00	0.00	166	
Peabody Lateral	Essex	Lynnfield	о	0.87	0.87	WPI-2879	PFO	BVW	$\begin{array}{r} 42^{\circ} 33^{\prime} \\ 43.232^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 3^{\prime} \\ 40.245^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Reading	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Peabody Lateral	Essex	Lynnfield	о	0.87	0.91	WPI-2879	PFO	BVW	$\begin{array}{r} 42^{\circ} 33^{\prime} \\ 43.557^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 3^{\prime} \\ 40.092^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Reading	II		0.00	0.30	0.00	0.00	0.12	0.00	0.00	181	
Peabody Lateral	Essex	Lynnfield	O	0.91	0.98	WPI-2881	PFO	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 45.189^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 3^{\prime} \\ 38.886^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Reading	II		0.00	0.56	0.00	0.00	0.23	0.00	0.00	335	
Peabody Lateral	Essex	Lynnfield	O	1.14	1.22	WPI-2883	PFO	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 57.280^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 3^{\prime} \\ 38.392^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Reading	II		0.00	0.45	0.00	0.00	0.27	0.00	0.00	388	
Peabody Lateral	Essex	Lynnfield	о	2.37	2.39	WPI-2899	PFO	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 58.771^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 2^{\prime} \\ 11.767^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Reading	N/A		0.00	0.04	0.00	0.00	0.00	0.00	0.00	0	
Peabody Lateral	Essex	Peabody	O	2.91	3.42	WPI-2902	PFO	BVW	$\begin{gathered} 42^{\circ} 34^{\prime} \\ 9.450^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 1^{\prime} \\ 40.8855^{\prime \prime} \mathrm{W} \end{gathered}$	Reading	N/A		0.00	1.49	0.00	0.00	0.00	0.00	0.00	0	
Peabody Lateral	Essex	Peabody	O	3.41	3.43	WPI-2907	PSS	BVW	$\begin{array}{r} \hline 42^{\circ} 34^{\prime} \\ 4.015^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 1^{\prime} \\ 6.184^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Reading	N/A		0.00	0.00	0.07	0.00	0.00	0.00	0.00	0	
Peabody Lateral	Essex	Peabody	о	3.62	3.65	WPI-2910	PSS	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 58.360^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 0^{\prime} \\ 53.424^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Reading	N/A		0.00	0.00	0.07	0.00	0.00	0.00	0.00	0	
Peabody Lateral	Essex	Peabody	о	3.71	3.98	WPI-2911	PFO	BVW	$\begin{array}{r} 42^{\circ} 33^{\prime} \\ 57.0099^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 0^{\prime} \\ 47.501^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Reading	N/A		0.00	0.35	0.00	0.00	0.00	0.00	0.00	0	
Peabody Lateral	Essex	Peabody	O	3.75	3.82	WPI-2910	PSS	BVW	$\begin{array}{r} 42^{\circ} 33^{\prime} \\ 55.102^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 0^{\prime} \\ 45.252^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Reading	II		0.00	0.00	0.27	0.00	0.00	0.04	0.00	176	
Peabody Lateral	Essex	Peabody	O	4.02	4.07	WPI-2917	PSS	BVW	$\begin{array}{r} 42^{\circ} 33^{\prime \prime} \\ 48.8877^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 0^{\prime} \\ 28.507 \mathrm{~W} \\ \hline \end{gathered}$	Reading	II		0.00	0.00	0.22	0.00	0.00	0.04	0.00	174	
Peabody Lateral	Essex	Peabody	O	4.06	4.23	WPI-2922	PSS	BVW	$\begin{array}{r} 42^{\circ} 33^{\prime} \\ 48.483^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 0^{\prime} \\ 25.652^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Reading	II		0.00	0.00	1.50	0.00	0.00	0.20	0.00	885	
Peabody Lateral	Essex	Peabody	о	4.23	4.26	WPI-2924	PEM	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 45.436^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 0^{\prime} \\ 14.451^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Reading	II		0.22	0.00	0.00	0.00	0.00	0.00	0.00	125	
Peabody Lateral	Essex	Peabody	O	4.25	4.26	WPI-2926	PFO	BVW	$\begin{array}{r} 42^{\circ} 33^{\prime} \\ 45.139^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 0^{\prime} \\ 13.076^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Reading	II		0.00	0.05	0.00	0.00	0.02	0.00	0.00	30	
Peabody Lateral	Essex	Peabody	O	4.27	4.42	WPI-2931	PEM	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 44.821^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 0^{\prime} \\ 11.583^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Reading	II		1.37	0.00	0.00	0.00	0.00	0.00	0.00	790	
Peabody Lateral	Essex	Peabody	O	4.38	4.38	NWI-1417	PFO	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 17.253^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 0^{\prime} \\ 14.142^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Reading	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Peabody Lateral	Essex	Peabody	O	4.39	4.40	NWI-1415	PFO	BVW	$\begin{gathered} 42^{\circ} 33^{\prime \prime} \\ 17.7344^{\prime N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 0^{\prime} \\ 13.343^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Reading	N/A		0.00	0.04	0.00	0.00	0.00	0.00	0.00	0	

Table 2.3-7

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{aligned} & \text { Wetland } \\ & \mathbf{I D}^{3,4} \end{aligned}$	Wetland Class ${ }^{5}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method	Comments	Wetland Impact (acres)							Crossing Length (feet) ${ }^{11}$	
						Construction ${ }^{8}$								Operation ${ }^{9}$								
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$		
Peabody Lateral	Essex	Danvers	O	4.70	4.78		WPI-2938	PEM	BVW	$\begin{array}{r} 42^{\circ} 33^{\prime} \\ 41.670^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 70^{\circ} 59^{\prime} \\ 42.176^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Salem	II		0.27	0.00	0.00	0.00	0.00	0.00	0.00	36
Peabody Lateral	Essex	Danvers	о	4.98	5.13	WPI-2940	PFO	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 41.929^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 70^{\circ} 59^{\prime} \\ 23.1955^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Salem	II		0.00	1.02	0.00	0.00	0.44	0.00	0.00	602	
Peabody Lateral	Essex	Danvers	O	5.13	5.14	WPI-2941	Other	BVW	$\begin{array}{r} 42^{\circ} 33^{\prime} \\ 43.773^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 70^{\circ} 59^{\prime} \\ 13.679^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Salem	II		0.00	0.00	0.00	0.12	0.00	0.00	0.00	67	
Peabody Lateral	Essex	Danvers	O	5.24	5.26	WPI-2944	Other	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 45.421^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 70^{\circ} 59^{\prime} \\ 6.460^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Salem	N/A		0.00	0.00	0.00	0.10	0.00	0.00	0.00	0	
Haverhill Lateral	Middlesex	Dracut	P	0.25	0.30	NWI-1134	PSS	BVW	$\begin{gathered} 42^{\circ} 39^{\prime} \\ 51.920^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 16^{\prime} \\ 26.520^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	N/A		0.00	0.00	0.39	0.00	0.00	0.00	0.00	0	
Haverhill Lateral	Middlesex	Dracut	P	0.41	0.45	NWI-1137	Other	BVW	$\begin{gathered} 42^{\circ} 39^{\prime} \\ 57.486^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 16^{\prime} \\ 18.374^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	II		0.00	0.00	0.00	0.26	0.00	0.00	0.00	160	
Haverhill Lateral	Middlesex	Dracut	P	0.44	0.52	NWI-1138	PSS/FO	BVW	$\begin{array}{r} 42^{\circ} 39^{\prime} \\ 58.670^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 16^{\prime} \\ 16.115 " \mathrm{~W} \\ \hline \end{gathered}$	Lowell	N/A		0.00	0.00	0.62	0.00	0.00	0.00	0.00	0	
Haverhill Lateral	Middlesex	Dracut	P	0.60	0.65	NWI-1139	PSS	BVW	$\begin{gathered} 42^{\circ} 40^{\prime} \\ 3.799^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 16^{\prime} \\ 7.744^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Lowell	N/A		0.00	0.00	0.13	0.00	0.00	0.00	0.00	0	
Haverhill Lateral	Middlesex	Dracut	P	0.93	0.96	WPI-2955	PSS	BVW	$\begin{gathered} 42^{\circ} 40^{\prime} \\ 15.626^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 15 ' \\ 50.886^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	N/A		0.00	0.00	0.12	0.00	0.00	0.00	0.00	0	
Haverhill Lateral	Middlesex	Dracut	P	1.67	1.68	NWI-1142	PSS	BVW	$\begin{gathered} 42^{\circ} 40^{\prime} \\ 44.305^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 15^{\prime} \\ 16.753^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	N/A		0.00	0.00	0.03	0.00	0.00	0.00	0.00	0	
Haverhill Lateral	Middlesex	Dracut	P	1.82	1.84	NWI-1145	PSS	BVW	$\begin{gathered} 42^{\circ} 40^{\prime} \\ 50.534^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 15 ' \\ 10.0944^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	N/A		0.00	0.00	0.06	0.00	0.00	0.00	0.00	0	
Haverhill Lateral	Middlesex	Dracut	P	2.07	2.08	NWI-1152	PFO	BVW	$\begin{gathered} 42^{\circ} 41^{\prime} \\ 0.369^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 14^{\prime} \\ 58.379^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.03	0.00	0.00	0.00	0.00	0.00	0	
Haverhill Lateral	Middlesex	Dracut	P	2.09	2.13	NWI-1153	PFO	BVW	$\begin{gathered} 42^{\circ} 41^{\prime} \\ 1.638^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 14^{\prime} \\ 58.305^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.18	0.00	0.00	0.00	0.00	0.00	0	
Haverhill Lateral	Middlesex	Dracut	P	2.49	2.50	NWI-1156	PEM	BVW	$\begin{gathered} 42^{\circ} 41^{\prime} \\ 19.721^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 14^{\prime} \\ 44.961^{\prime \prime} \mathrm{W} \end{gathered}$	Lawrence	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0	
Haverhill Lateral	Middlesex	Dracut	P	2.72	2.75	NWI-1157	PFO	BVW	$\begin{gathered} 42^{\circ} 41^{\prime} \\ 31.056^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 14^{\prime} \\ 39.600^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.16	0.00	0.00	0.00	0.00	0.00	0	
Haverhill Lateral	Essex	Methuen	P	3.46	3.52	NWI-1160	PSS	BVW	$\begin{gathered} 42^{\circ} 42^{\prime} \\ 5.169^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 14^{\prime} \\ 17.977^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	II		0.00	0.00	0.36	0.00	0.00	0.00	0.00	294	
Haverhill Lateral	Essex	Methuen	P	3.50	3.54	NWI-1161	PEM	BVW	$\begin{array}{r} 42^{\circ} 42^{\prime} \\ 6.942^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 14^{\prime} \\ 17.0866^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	II		0.18	0.00	0.00	0.00	0.00	0.00	0.00	72	
Haverhill Lateral	Essex	Methuen	P	3.91	3.94	NWI-1164	PFO	BVW	$\begin{gathered} 42^{\circ} 42^{\prime} \\ 25.278^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 14^{\prime} \\ 4.348^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.10	0.00	0.00	0.00	0.00	0.00	0	
Haverhill Lateral	Essex	Methuen	P	4.25	4.27	NWI-1165	PFO	BVW	$\begin{gathered} 42^{\circ} 42^{\prime} \\ 40.155^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 13^{\prime} \\ 54.0477^{\prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.13	0.00	0.00	0.00	0.00	0.00	0	
Haverhill Lateral	Essex	Methuen	P	4.42	4.47	NWI-1167	PFO	BVW	$\begin{array}{r} 42^{\circ} 42^{\prime} \\ 48.853^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 13^{\prime} \\ 50.750^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.43	0.00	0.00	0.00	0.00	0.00	0	
Haverhill Lateral	Essex	Methuen	P	4.62	4.67	WPI-3028	PFO	BVW	$\begin{gathered} 42^{\circ} 42^{\prime} \\ 59.559^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 13^{\prime} \\ 49.7044^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.11	0.00	0.00	0.00	0.00	0.00	0	
Haverhill Lateral	Essex	Methuen	P	4.63	4.63	NWI-1169	PFO	BVW	$\begin{gathered} 42^{\circ} 42^{\prime} \\ 59.783^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 13^{\prime} \\ 48.938^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Haverhill Lateral	Essex	Methuen	P	4.63	4.67	WPI-3029	PFO	BVW	$\begin{gathered} 42^{\circ} 42^{\prime} \\ 59.850^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 13^{\prime} \\ 48.709^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.05	0.00	0.00	0.00	0.00	0.00	0	
Haverhill Lateral	Essex	Methuen	P	4.76	4.78	ME-P-W004	PEM	BVW	$\begin{gathered} 42^{\circ} 43^{\prime} \\ 6.491 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 13^{\prime} \\ 46.941^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	II		0.05	0.00	0.00	0.00	0.00	0.00	0.00	25	

Table 2.3-7

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{aligned} & \text { Wetland } \\ & \mathbf{I D}^{3,4} \end{aligned}$	Wetland Class ${ }^{5}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method	Comments	Wetland Impact				Operation ${ }^{9}$			Crossing Length (feet) ${ }^{11}$
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$	
Haverhill Lateral	Essex	Methuen	P	4.78	4.78	ME-P-W004	PFO	BVW	$\begin{array}{r} \hline 42^{\circ} 43^{\prime} \\ 7.380 \mathrm{~N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 13^{\prime} \\ 47.078^{\prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0
Haverhill Lateral	Essex	Methuen	P	5.03	5.05	WPI-3039	Other	BVW	$\begin{gathered} \hline 42^{\circ} 43^{\prime} \\ 19.653^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 13^{\prime} \\ 41.828^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.00	0.00	0.03	0.00	0.00	0.00	0
Haverhill Lateral	Essex	Methuen	P	5.14	5.28	WPI-3043	PFO	BVW	$\begin{gathered} 42^{\circ} 43^{\prime} \\ 25.299^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 13^{\prime} \\ 39.775^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.45	0.00	0.00	0.00	0.00	0.00	0
Haverhill Lateral	Essex	Methuen	P	5.41	5.45	WPI-3051	PFO	BVW	$\begin{gathered} 42^{\circ} 43^{\prime} \\ 39.601^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 13^{\prime} \\ 36.732^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.11	0.00	0.00	0.00	0.00	0.00	0
Haverhill Lateral	Essex	Methuen	P	5.44	5.46	ME-P-W005	PSS	BVW	$\begin{gathered} 42^{\circ} 43^{\prime} \\ 40.8533^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 13^{\prime} \\ 36.340^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.00	0.04	0.00	0.00	0.00	0.00	0
Haverhill Lateral	Essex	Methuen	P	5.48	5.51	ME-P-W005	PSS	BVW	$\begin{gathered} 42^{\circ} 43^{\prime} \\ 42.857^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 13^{\prime} \\ 35.725^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.00	0.04	0.00	0.00	0.00	0.00	0
Haverhill Lateral	Essex	Methuen	P	5.51	5.53	ME-P-W005	PSS	BVW	$\begin{array}{r} 42^{\circ} 43^{\prime} \\ 44.415^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 13^{\prime} \\ 35.259^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
Haverhill Lateral	Essex	Methuen	P	5.55	5.59	ME-P-W005	PEM	BVW	$\begin{gathered} 42^{\circ} 43^{\prime} \\ 46.484^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 13^{\prime} \\ 34.634^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	II		0.07	0.00	0.00	0.00	0.00	0.00	0.00	100
Haverhill Lateral	Essex	Methuen	P	5.59	5.60	ME-P-W005	PSS	BVW	$\begin{array}{r} 42^{\circ} 43^{\prime} \\ 48.410^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 13^{\prime} \\ 34.562^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
Haverhill Lateral	Essex	Methuen	P	5.62	5.68	WPI-3055	PEM	BVW	$\begin{gathered} 42^{\circ} 43^{\prime} \\ 50.215^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 13^{\prime} \\ 33.527^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	II		0.25	0.00	0.00	0.00	0.00	0.00	0.00	268
Haverhill Lateral	Essex	Methuen	P	5.64	5.68	WPI-3060	PFO	BVW	$\begin{gathered} 42^{\circ} 43^{\prime} \\ 50.891^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 13^{\prime} \\ 33.729^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.17	0.00	0.00	0.00	0.00	0.00	0
Haverhill Lateral	Essex	Methuen	P	5.65	5.65	ME-P-W005	PFO	BVW	$\begin{gathered} 42^{\circ} 43^{\prime} \\ 51.525^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 13^{\prime} \\ 34.140^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0
Haverhill Lateral	Essex	Methuen	P	5.66	5.66	ME-P-W005	PFO	BVW	$\begin{gathered} 42^{\circ} 43^{\prime} \\ 52.0711^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 13^{\prime} \\ 34.0955^{\prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0
Haverhill Lateral	Essex	Methuen	P	5.84	5.87	WPI-3061	PEM	BVW	$\begin{aligned} & 42^{\circ} 44^{\prime} \\ & 1.488^{\prime \prime} \mathrm{N} \end{aligned}$	$\begin{gathered} 71^{\circ} 13^{\prime} \\ 30.123^{\prime \prime} \mathrm{W} \end{gathered}$	Lawrence	II		0.15	0.00	0.00	0.00	0.00	0.00	0.00	118
Haverhill Lateral	Essex	Methuen	P	5.87	5.94	WPI-3062	PFO	BVW	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 2.619^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 13^{\prime} \\ 29.838^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.18	0.00	0.00	0.00	0.00	0.00	0
Haverhill Lateral	Essex	Methuen	P	6.10	6.15	WPI-3064	PFO	BVW	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 14.620^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 13^{\prime} \\ 27.179^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.51	0.00	0.00	0.00	0.00	0.00	0
Haverhill Lateral	Essex	Methuen	P	6.15	6.18	WPI-3065	PEM	BVW	$\begin{gathered} \hline 42^{\circ} 44^{\prime} \\ 17.310^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 13^{\prime} \\ 25.9744^{\prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	II		0.19	0.00	0.00	0.00	0.00	0.00	0.00	118
Haverhill Lateral	Essex	Methuen	P	6.18	6.18	WPI-3069	PEM	BVW	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 18.286^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 13^{\prime} \\ 24.888^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	II		0.01	0.00	0.00	0.00	0.00	0.00	0.00	10
Haverhill Lateral	Essex	Methuen	P	6.18	6.25	WPI-3067	PEM	BVW	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 18.495^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 13^{\prime} \\ 25.8555^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	II		0.47	0.00	0.00	0.00	0.00	0.00	0.00	239
Haverhill Lateral	Essex	Methuen	P	6.18	6.23	WPI-3070	PFO	BVW	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 18.679^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 13^{\prime} \\ 25.109^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.15	0.00	0.00	0.00	0.00	0.00	0
Haverhill Lateral	Essex	Methuen	P	6.25	6.25	WPI-3070	PFO	BVW	$\begin{array}{r} 42^{\circ} 44^{\prime} \\ 21.990^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 13^{\prime} \\ 23.7766^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0
Haverhill Lateral	Essex	Methuen	P	6.26	6.28	ME-P-W001	PEM	BVW	$\begin{array}{r} 42^{\circ} 44^{\prime} \\ 22.664^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 13^{\prime} \\ 24.197 \mathrm{~W} \\ \hline \end{gathered}$	Lawrence	II		0.12	0.00	0.00	0.00	0.00	0.00	0.00	73
Haverhill Lateral	Essex	Methuen	P	6.28	6.30	WPI-3068	PFO	BVW	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 23.006^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 13^{\prime} \\ 23.040^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.11	0.00	0.00	0.00	0.00	0.00	0
Haverhill Lateral	Essex	Methuen	P	6.30	6.31	ME-P-W001	PEM	BVW	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 23.638^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 13^{\prime} \\ 21.428^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0

Table 23-7

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{aligned} & \text { Wetland } \\ & \mathbf{I D}^{3,4} \end{aligned}$	Wetland Class ${ }^{5}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method	Comments	Wetland Impact (acres)							Crossing Length (feet) ${ }^{11}$	
						Construction ${ }^{8}$								Operation ${ }^{9}$								
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$		
Haverhill Lateral	Essex	Methuen	P	6.30	6.31		ME-P-W001	PEM	BVW	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 24.010^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 13^{\prime} \\ 21.5577^{\prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0
Haverhill Lateral	Essex	Methuen	P	6.32	6.42	ME-P-W001	PEM	BVW	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 24.107^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 13^{\prime} \\ 20.517^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	II		0.79	0.00	0.00	0.00	0.00	0.00	0.00	526	
Haverhill Lateral	Essex	Methuen	P	6.32	6.35	ME-P-W001	PFO	BVW	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 24.458^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 13^{\prime} \\ 20.230^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.03	0.00	0.00	0.00	0.00	0.00	0	
Haverhill Lateral	Essex	Methuen	P	6.46	6.48	WPI-3070	PFO	BVW	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 26.308^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 13^{\prime} \\ 10.551^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	II		0.00	0.16	0.00	0.00	0.00	0.00	0.00	93	
Haverhill Lateral	Essex	Methuen	P	6.49	6.53	ME-P-W001	PEM	BVW	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 26.826^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 13^{\prime} \\ 8.563^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	II		0.07	0.00	0.00	0.00	0.00	0.00	0.00	46	
Haverhill Lateral	Essex	Methuen	P	6.55	6.62	WPI-3072	PFO	BVW	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 27.946^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 13^{\prime} \\ 4.662^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Lawrence	N/A		0.00	0.30	0.00	0.00	0.00	0.00	0.00	0	
Haverhill Lateral	Essex	Methuen	P	6.66	6.69	ME-E-W001	PEM	BVW	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 29.961 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 12^{\prime} \\ 57.318^{\prime \prime} \mathrm{W} \end{gathered}$	Lawrence	II		0.07	0.00	0.00	0.00	0.00	0.00	0.00	89	
Haverhill Lateral	Essex	Methuen	P	6.87	6.88	WPI-3079	PSS	BVW	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 33.407 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 12^{\prime} \\ 42.5944^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.00	0.04	0.00	0.00	0.00	0.00	0	
Haverhill Lateral	Essex	Methuen	P	6.89	6.91	WPI-3079	PSS	BVW	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 36.183 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 12^{\prime} \\ 44.993^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	IV		0.00	0.00	0.14	0.00	0.00	0.02	0.00	70	
Haverhill Lateral	Essex	Methuen	P	6.95	6.96	WPI-3081	PFO	BVW	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 37.643^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 12^{\prime} \\ 40.934^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Lawrence	IV		0.00	0.01	0.00	0.00	0.01	0.00	0.00	18	
Haverhill Lateral	Essex	Methuen	P	6.96	6.97	ME-P-W007	PSS	BVW	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 35.954^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 12 \prime \\ 37.849^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Haverhill Lateral	Essex	Methuen	P	9.14	9.18	ME-E-W004	PFO	BVW	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 53.084^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 10^{\prime} \\ 51.679^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Salem Depot	N/A		0.00	0.17	0.00	0.00	0.00	0.00	0.00	0	
Fitchburg Lateral Extension	Middlesex	Townsend	Q	5.19	5.35	WPI-3241	PFO	BVW	$\begin{gathered} 42^{\circ} 42^{\prime} \\ 21.719^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 45 ' \\ 30.369 " \mathrm{~W} \\ \hline \end{gathered}$	Ashby	II		0.00	1.26	0.00	0.00	0.30	0.00	0.00	688	
Fitchburg Lateral Extension	Middlesex	Townsend	Q	5.74	5.78	WPI-3242	PFO	BVW	$\begin{gathered} 42^{\circ} 41^{\prime} \\ 53.731^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 38.424 " \mathrm{~W} \\ \hline \end{gathered}$	Ashby	II		0.00	0.26	0.00	0.00	0.10	0.00	0.00	149	
Fitchburg Lateral Extension	Middlesex	Townsend	Q	5.78	5.83	WPI-3243	PFO	BVW	$\begin{gathered} 42^{\circ} 41^{\prime} \\ 52.472^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 40.329^{\prime \prime} \mathrm{W} \end{gathered}$	Ashby	II		0.00	0.19	0.00	0.00	0.06	0.00	0.00	83	
Fitchburg Lateral Extension	Middlesex	Townsend	Q	5.95	5.97	WPI-3244	PFO	BVW	$\begin{gathered} 42^{\circ} 41^{\prime} \\ 46.906^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 49.779^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashby	II		0.00	0.11	0.00	0.00	0.05	0.00	0.00	73	
Fitchburg Lateral Extension	Middlesex	Townsend	Q	6.23	6.27	WPI-3250	PFO	BVW	$\begin{gathered} 42^{\circ} 41^{\prime} \\ 34.928^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 54.746^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashby	II		0.00	0.15	0.00	0.00	0.04	0.00	0.00	57	
Fitchburg Lateral Extension	Middlesex	Townsend	Q	6.45	6.48	WPI-3252	PEM	BVW	$\begin{gathered} 42^{\circ} 41^{\prime} \\ 24.179^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 49.440 \mathrm{~W} \end{gathered}$	Ashby	II		0.18	0.00	0.00	0.00	0.00	0.00	0.00	105	
Fitchburg Lateral Extension	Middlesex	Townsend	Q	6.47	6.52	WPI-3254	PSS	BVW	$\begin{gathered} 42^{\circ} 41^{\prime} \\ 23.565^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 48.669^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashby	II		0.00	0.00	0.23	0.00	0.00	0.01	0.00	112	
Fitchburg Lateral Extension	Middlesex	Townsend	Q	6.48	6.49	WPI-3253	Other	BVW	$\begin{gathered} 42^{\circ} 41^{\prime} \\ 22.964^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 48.474^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashby	II		0.00	0.00	0.00	0.02	0.00	0.00	0.00	33	
Fitchburg Lateral Extension	Middlesex	Townsend	Q	6.55	6.57	WPI-3254	PSS	BVW	$\begin{gathered} 42^{\circ} 41^{\prime} \\ 19.844^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 45 ' \\ 46.812^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashby	N/A		0.00	0.00	0.06	0.00	0.00	0.00	0.00	0	
Fitchburg Lateral Extension	Middlesex	Townsend	Q	6.65	6.66	WPI-3257	PEM	BVW	$\begin{gathered} 42^{\circ} 41^{\prime} \\ 14.453^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 45 ' \\ 47.0166^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashby	II		0.04	0.00	0.00	0.00	0.00	0.00	0.00	18	
Fitchburg Lateral Extension	Middlesex	Townsend	Q	6.83	6.85	WPI-3259	PFO/PSS	BVW	$\begin{array}{r} 42^{\circ} 41^{\prime} \\ 5.432^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 48.671^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashby	N/A		0.00	0.06	0.00	0.00	0.00	0.00	0.00	0	
Fitchburg Lateral Extension	Middlesex	Townsend	Q	7.17	7.26	WPI-3260	PFO	BVW	$\begin{gathered} 42^{\circ} 40^{\prime} \\ 48.047^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 45.376^{\prime \prime} \mathrm{W} \end{gathered}$	Ashby	II		0.00	0.62	0.00	0.00	0.26	0.00	0.00	374	

Table 2.3-7

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{gathered} \text { Wettand } \\ \mathbf{I D}^{3,4} \end{gathered}$	Wetland Class ${ }^{5}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method ${ }^{7}$	Comments	Wetland Impact (acres)				Operation ${ }^{9}$			Crossing Length (feet) ${ }^{11}$	
						Construction ${ }^{8}$																
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$		
Fitchburg Lateral Extension	Middlesex	Townsend	Q	7.25	7.30		WPI-3261	PFO	BVW	$\begin{gathered} 42^{\circ} 40^{\prime} \\ 44.2655^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 43.407 " \mathrm{~W} \\ \hline \end{gathered}$	Ashby	II		0.00	0.27	0.00	0.00	0.10	0.00	0.00	147
Fitchburg Lateral Extension	Middlesex	Townsend	Q	7.32	7.34	WPI-3264	PEM	BVW	$\begin{gathered} 42^{\circ} 40^{\prime} \\ 41.132^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 40.670^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashby	II		0.05	0.00	0.00	0.00	0.00	0.00	0.00	66	
Fitchburg Lateral Extension	Middlesex	Townsend	Q	7.32	7.33	WPI-3263	PFO	BVW	$\begin{array}{r} 42^{\circ} 40^{\prime} \\ 41.146^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 40.957 " \mathrm{~W} \\ \hline \end{gathered}$	Ashby	II		0.00	0.06	0.00	0.00	0.02	0.00	0.00	14	
Fitchburg Lateral Extension	Middlesex	Townsend	Q	7.42	7.46	WPI-3265	PFO	BVW	$\begin{gathered} 42^{\circ} 40^{\prime} \\ 36.690^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 37.125^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashby	II		0.00	0.29	0.00	0.00	0.03	0.00	0.00	143	
Fitchburg Lateral Extension	Middlesex	Townsend	Q	7.82	7.88	WPI-3269	PEM	BVW	$\begin{array}{r} 42^{\circ} 40^{\prime} \\ 18.343^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 25.874^{\prime \prime} \mathrm{W} \end{gathered}$	Ashby	II		0.35	0.00	0.00	0.00	0.00	0.00	0.00	246	
Fitchburg Lateral Extension	Middlesex	Townsend	Q	7.82	7.84	WPI-3266	PFO	BVW	$\begin{gathered} 42^{\circ} 40^{\prime} \\ 18.192^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 26.314^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashby	N/A		0.00	0.06	0.00	0.00	0.00	0.00	0.00	0	
Fitchburg Lateral Extension	Middlesex	Townsend	Q	7.86	7.90	WPI-3270	PFO	BVW	$\begin{gathered} 42^{\circ} 40^{\prime} \\ 18.230^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 23.410^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashby	II		0.00	0.14	0.00	0.00	0.09	0.00	0.00	131	
Fitchburg Lateral Extension	Middlesex	Townsend	Q	7.88	7.90	WPI-3271	PSS	BVW	$\begin{gathered} 42^{\circ} 40^{\prime} \\ 17.144^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 22.096^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashby	N/A		0.00	0.00	0.03	0.00	0.00	0.00	0.00	0	
Fitchburg Lateral Extension	Middlesex	Townsend	Q	8.15	8.17	WPI-3272	PFO/PSS	BVW	$\begin{array}{r} 42^{\circ} 40^{\prime} \\ 6.717^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 10.946^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashby	II		0.00	0.11	0.00	0.00	0.03	0.00	0.00	43	
Fitchburg Lateral Extension	Middlesex	Townsend	Q	8.42	8.46	WPI-3274	PFO	BVW	$\begin{gathered} 42^{\circ} 39 ' \\ 52.830^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 7.907^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashby	II		0.00	0.19	0.00	0.00	0.03	0.00	0.00	113	
Fitchburg Lateral Extension	Middlesex	Townsend	Q	8.46	8.50	WPI-3277	PSS	BVW	$\begin{array}{r} 42^{\circ} 39^{\prime} \\ 51.193^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 7.524^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashby	II		0.00	0.00	0.23	0.00	0.00	0.04	0.00	169	
Fitchburg Lateral Extension	Middlesex	Townsend	Q	8.47	8.49	WPI-3276	PFO	BVW	$\begin{gathered} 42^{\circ} 39^{\prime} \\ 50.438^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 45 ' \\ 6.380^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Ashby	N/A		0.00	0.02	0.00	0.00	0.01	0.00	0.00	0	
Fitchburg Lateral Extension	Middlesex	Townsend	Q	8.80	8.92	WPI-3284	PSS	BVW	$\begin{gathered} 42^{\circ} 39 \prime \\ 33.420^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 3.247{ }^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashby	N/A		0.00	0.00	0.30	0.00	0.00	0.00	0.00	0	
Fitchburg Lateral Extension	Middlesex	Townsend	Q	8.81	8.85	WPI-3282	PFO	BVW	$\begin{array}{r} 42^{\circ} 39^{\prime} \\ 32.913^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 71^{\circ} 45^{\prime} \\ 2.949 " \mathrm{~W} \\ \hline \end{array}$	Ashby	II		0.00	0.17	0.00	0.00	0.11	0.00	0.00	154	
Fitchburg Lateral Extension	Middlesex	Townsend	Q	8.81	8.82	WPI-3281	Other	BVW	$\begin{gathered} 42^{\circ} 39^{\prime} \\ 32.996^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 3.498^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashby	N/A		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0	
Fitchburg Lateral Extension	Middlesex	Townsend	Q	8.84	8.96	WPI-3285	PFO	BVW	$\begin{gathered} 42^{\circ} 39 ' \\ 31.445^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 45^{\prime} \\ 3.168^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Ashby	II		0.00	0.69	0.00	0.00	0.42	0.00	0.00	610	
Fitchburg Lateral Extension	Middlesex	Townsend	Q	9.36	9.73	WPI-3287	PSS	BVW	$\begin{aligned} \hline 42^{\circ} 39^{\prime} \\ 4.356^{\prime \prime} \mathrm{N} \\ \hline \end{aligned}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 1.575^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashby	N/A		0.00	0.00	1.45	0.00	0.00	0.00	0.00	0	
Fitchburg Lateral Extension	Middlesex	Townsend	Q	9.71	9.73	WPI-3294	PFO	BVW	$\begin{gathered} 42^{\circ} 38^{\prime} \\ 46.046^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 59.625^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Townsend	II		0.00	0.04	0.00	0.00	0.02	0.00	0.00	47	
Fitchburg Lateral Extension	Middlesex	Townsend	Q	9.72	9.74	WPI-3295	PEM	BVW	$\begin{gathered} 42^{\circ} 38^{\prime} \\ 45.671^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 0.099^{\prime} \mathrm{W} \end{gathered}$	Ashby	N/A	BioMap2 Wetland Core - 1533	0.09	0.00	0.00	0.00	0.00	0.00	0.00	0	
Fitchburg Lateral Extension	Middlesex	Townsend	Q	9.72	9.73	WPI-3294	PFO	BVW	$\begin{array}{r} 42^{\circ} 38^{\prime} \\ 45.693^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 71^{4} 45^{\prime} \\ 0.003^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Ashby	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Fitchburg Lateral Extension	Middlesex	Townsend	Q	9.73	9.74	WPI-3295	PEM	BVW	$\begin{gathered} 42^{\circ} 38^{\prime} \\ 45.296 " \mathrm{~N} \end{gathered}$	$\begin{array}{r} 71^{\circ} 45^{\prime} \mathrm{K} \\ 0.003^{\prime \prime} \mathrm{W} \end{array}$	Townsend	N/A	$\begin{gathered} \hline \text { BioMap2 } \\ \text { Wetland } \\ \text { Core - } 1533 \\ \hline \end{gathered}$	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0	
Fitchburg Lateral Extension	Middlesex	Townsend	Q	9.73	9.80	WPI-3298	PFO	BVW	$\begin{gathered} 42^{\circ} 38^{\prime} \\ 45.187 " \mathrm{~N} \end{gathered}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 59.552^{\prime \prime} \mathrm{W} \end{gathered}$	Townsend	II	$\begin{gathered} \text { BioMap2 } \\ \text { Wetland } \\ \text { Core - } 1533 \end{gathered}$	0.00	0.30	0.00	0.00	0.21	0.00	0.00	301	

Table 2.3-7

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{gathered} \text { Wetland } \\ \mathbf{I D}^{3,4} \end{gathered}$	Wetland Class ${ }^{5}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	CrossingMethod	Comments	Construction ${ }^{8}$				Operation ${ }^{9}$			CrossingLength(feet) 11
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$	
Fitchburg Lateral Extension	Middlesex	Townsend	Q	9.74	9.77	WPI-3296	PSS	BVW	$\begin{gathered} 42^{\circ} 38^{\prime} \\ 44.840^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 44^{\prime} \mathrm{W} \\ 59.786^{\prime \prime} \end{gathered}$	Townsend	II	$\begin{gathered} \hline \text { BioMap2 } \\ \text { Wetland } \\ \text { Core - } 1533 \end{gathered}$	0.00	0.00	0.02	0.00	0.00	0.01	0.00	21
Fitchburg Lateral Extension Extension	Middlesex	Townsend	Q	9.74	9.77	WPI-3296	PSS	BVW	$\begin{gathered} 42^{\circ} 38^{\prime} \\ 44.674^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 455^{\prime} \\ 0.003 " \mathrm{~W} \end{gathered}$	Ashby	N/A	$\begin{gathered} \hline \text { BioMap2 } \\ \text { Wetland } \\ \text { Core - } 1533 \end{gathered}$	0.00	0.00	0.09	0.00	0.00	0.00	0.00	0
Fitchburg Lateral Extension	Middlesex	Townsend	Q	9.75	9.75	WPI-3295	PEM	BVW	$\begin{gathered} 42^{\circ} 38^{\prime} \\ 44.402^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 0.4911^{\prime} \mathrm{W} \end{gathered}$	Ashby	N/A	$\begin{gathered} \hline \text { BioMap2 } \\ \text { Wetland } \\ \text { Core - } 1533 \end{gathered}$	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0
Fitchburg Lateral Extension	Middlesex	Townsend	Q	9.76	9.91	WPI-3301	PSS	BVW	$\begin{gathered} 42^{\circ} 38^{\prime} \\ 43.438^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 0.419 " \mathrm{~W} \end{gathered}$	Ashby	N/A	$\begin{gathered} \text { BioMap2 } \\ \text { Wetland } \\ \text { Core - } 1533 \end{gathered}$	0.00	0.00	0.25	0.00	0.00	0.00	0.00	0
Fitchburg Lateral Extension	Middlesex	Townsend	Q	9.77	9.77	WPI-3298	PFO	BVW	$\begin{gathered} 42^{\circ} 38^{\prime} \\ 43.375 " \mathrm{~N} \end{gathered}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 0.003^{\prime \prime} \mathrm{W} \end{gathered}$	Ashby	N/A	BioMap2 Wetland Core - 1533	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0
Fitchburg Lateral Extension Extension	Middlesex	Townsend	Q	9.77	10.37	WPI-3301	PSS	BVW	$\begin{gathered} 42^{\circ} 38^{\prime} \\ 43.154 " \mathrm{~N} \end{gathered}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 0.003^{\prime \prime} \mathrm{W} \end{gathered}$	Townsend	N/A	$\begin{gathered} \text { BioMap2 } \\ \text { Wetland } \\ \text { Core - } 1533 \end{gathered}$	0.00	0.00	2.25	0.00	0.00	0.00	0.00	0
Fitchburg Lateral Extension	Middlesex	Townsend	Q	9.96	10.00	WPI-3299	PFO	BVW	$\begin{gathered} 42^{\circ} 38^{\prime} \\ 33.027^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 59.3755^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Townsend	II		0.00	0.13	0.00	0.00	0.10	0.00	0.00	159
$\begin{gathered} \hline \text { Fitchburg Lateral } \\ \text { Extension } \\ \hline \end{gathered}$	Middlesex	Townsend	Q	10.10	10.11	WPI-3302	PFO	BVW	$\begin{gathered} 42^{\circ} 38^{\prime} \\ 25.797 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 58.4955^{\prime} \mathrm{W} \\ \hline \end{gathered}$	Townsend	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0
Fitchburg Lateral Extension	Middlesex	Townsend	Q	10.20	10.21	WPI-3303	Other	BVW	$\begin{gathered} 42^{\circ} 38^{\prime} \\ 20.770^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 59.138^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Townsend	N/A		0.00	0.00	0.00	0.02	0.00	0.00	0.00	0
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	10.37	10.49	WPI-3301	PSS	BVW	$\begin{gathered} 42^{\circ} 38^{\prime} \\ 11.991^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 58.869^{\prime \prime} \mathrm{W} \end{gathered}$	Townsend	N/A	$\begin{gathered} \hline \text { BioMap2 } \\ \text { Wetland } \\ \text { Core }-1533 \\ \hline \end{gathered}$	0.00	0.00	0.31	0.00	0.00	0.00	0.00	0
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	10.57	10.60	WPI-3306	PSS	BVW	$\begin{gathered} 42^{\circ} 38^{\prime} \\ 1.697^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 59.716^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Townsend	N/A		0.00	0.00	0.03	0.00	0.00	0.00	0.00	0
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	10.59	10.62	WPI-3307	PSS	BVW	$\begin{gathered} 42^{\circ} 38^{\prime} \\ 0.5777^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 59.816^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Townsend	N/A		0.00	0.00	0.05	0.00	0.00	0.00	0.00	0
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	10.66	10.67	WPI-3311	PSS	BVW	$\begin{gathered} 42^{\circ} 37^{\prime} \\ 56.665^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 45^{\prime} \\ 0.181 " \mathrm{~W} \\ \hline \end{array}$	Ashby	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	10.67	10.67	WPI-3311	PSS	BVW	$\begin{gathered} 42^{\circ} 37 \prime \\ 56.4977^{\prime \prime} \\ \hline \end{gathered}$	$\begin{aligned} & 71^{\circ} 45^{\prime} \\ & 0.0011^{\prime} \mathrm{W} \\ & \hline \end{aligned}$	Townsend	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	10.67	10.68	WPI-3310	PSS	BVW	$\begin{gathered} 42^{\circ} 37^{\prime} \\ 56.223^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 0.222^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashby	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	10.67	10.68	WPI-3310	PSS	BVW	$\begin{gathered} 42^{\circ} 37^{\prime} \\ 56.185^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 59.754^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Townsend	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	10.80	10.83	WPI-3312	PFO	BVW	$\begin{gathered} 42^{\circ} 37 \prime \\ 49.356^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 45^{\prime} \\ 0.071^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Ashby	II		0.00	0.05	0.00	0.00	0.04	0.00	0.00	70
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	10.80	10.82	WPI-3312	PFO	BVW	$\begin{gathered} 42^{\circ} 37 \prime \\ 49.350^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 45 ' \\ 0.001^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Townsend	N/A		0.00	0.02	0.00	0.00	0.00	0.00	0.00	0
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	10.80	10.85	WPI-3313	PSS	BVW	$\begin{gathered} 42^{\circ} 37^{\prime} \\ 49.287^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{array}{r} 77^{\circ} 45^{\prime} \\ 0.231^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Ashby	II		0.00	0.00	0.26	0.00	0.00	0.03	0.00	93
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	11.01	11.09	WPI-3315	PFO	BVW	$\begin{gathered} 42^{\circ} 37^{\prime} \\ 38.636^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{array}{r} 71^{\circ} 45^{\prime} \\ 2.2588^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Ashby	II		0.00	0.65	0.00	0.00	0.25	0.00	0.00	369
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	11.32	11.38	WPI-3317	PFO	BVW	$\begin{gathered} 42^{\circ} 37 \prime \\ 22.453^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} \hline 71^{\circ} 45^{\prime} \\ 5.061^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Fitchburg	II		0.00	0.22	0.00	0.00	0.06	0.00	0.00	88

Table 2.3-7

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{gathered} \text { Wetland } \\ \mathbf{I D}^{3,4} \end{gathered}$	Wetland Class ${ }^{5}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method ${ }^{7}$	Comments	Wetland Impact (acres)							Crossing Length (feet) ${ }^{11}$	
						Construction ${ }^{8}$								Operation ${ }^{9}$								
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$		
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	11.37	11.38		WPI-3319	PFO	BVW	$\begin{gathered} 42^{\circ} 37^{\prime} \\ 20.326^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 5.896^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Fitchburg	N/A		0.00	0.02	0.00	0.00	0.00	0.00	0.00	0
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	11.37	11.40	WPI-3321	PSS	BVW	$\begin{gathered} 42^{\circ} 37 \prime \\ 20.269^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 5.855^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Fitchburg	II		0.00	0.00	0.17	0.00	0.00	0.02	0.00	98	
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	11.39	11.42	WPI-3322	PFO	BVW	$\begin{gathered} 42^{\circ} 37^{\prime} \\ 19.155^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 45^{\prime} \\ 6.279^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Fitchburg	II		0.00	0.20	0.00	0.00	0.09	0.00	0.00	139	
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	11.43	11.44	WPI-3324	PFO	BVW	$\begin{gathered} 42^{\circ} 37^{\prime} \\ 17.447^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 45^{\prime} \\ 6.801 " \mathrm{~W} \\ \hline \end{array}$	Fitchburg	II		0.00	0.02	0.00	0.00	0.01	0.00	0.00	17	
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	11.43	11.49	WPI-3323	PFO	BVW	$\begin{gathered} 42^{\circ} 37 \prime \\ 17.642^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 7.405^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Fitchburg	II		0.00	0.42	0.00	0.00	0.13	0.00	0.00	196	
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	11.46	11.49	WPI-3324	PFO	BVW	$\begin{gathered} 42^{\circ} 37 \prime \\ 15.989^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 45 ' \\ 7.626 " \mathrm{~W} \\ \hline \end{gathered}$	Fitchburg	II		0.00	0.13	0.00	0.00	0.08	0.00	0.00	109	
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	11.49	11.54	WPI-3325	PFO	BVW	$\begin{gathered} 42^{\circ} 37 \prime \\ 14.500^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 7.964^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Fitchburg	II		0.00	0.45	0.00	0.00	0.19	0.00	0.00	271	
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	11.54	11.60	WPI-3329	PFO	BVW	$\begin{array}{r} 42^{\circ} 37^{\prime} \\ 11.837^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 45 ' \\ 9.510^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Fitchburg	II		0.00	0.37	0.00	0.00	0.19	0.00	0.00	286	
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	11.56	11.61	WPI-3328	PEM	BVW	$\begin{gathered} 42^{\circ} 37 \prime \\ 10.733^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 45^{\prime} \\ 9.616^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Fitchburg	II		0.17	0.00	0.00	0.00	0.00	0.00	0.00	42	
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	11.61	11.62	WPI-3329	PFO	BVW	$\begin{gathered} 42^{\circ} 37^{\prime} \\ 8.413^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 9.213^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Fitchburg	II		0.00	0.03	0.00	0.00	0.01	0.00	0.00	16	
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	11.71	11.72	WPI-3330	Other	BVW	$\begin{array}{r} 42^{\circ} 37^{\prime} \\ 3.043^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 9.818^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Fitchburg	N/A		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0	
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	11.78	11.79	NWI-1175	PFO	BVW	$\begin{gathered} 42^{\circ} 36^{\prime} \\ 59.367{ }^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 10.134^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Fitchburg	II		0.00	0.03	0.00	0.00	0.02	0.00	0.00	19	
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	11.79	11.80	WPI-3331	PFO	BVW	$\begin{gathered} 42^{\circ} 36^{\prime} \\ 59.093^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 10.973^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Fitchburg	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	11.79	11.89	NWI-987	PFO	BVW	$\begin{gathered} 42^{\circ} 36^{\prime} \\ 58.786^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 10.568^{\prime \prime} \mathrm{W} \end{gathered}$	Fitchburg	II		0.00	0.84	0.00	0.00	0.36	0.00	0.00	523	
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	11.88	11.92	NWI-988	PFO	BVW	$\begin{gathered} 42^{\circ} 36^{\prime} \\ 54.207^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 11.582^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Fitchburg	II		0.00	0.28	0.00	0.00	0.10	0.00	0.00	143	
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	12.27	12.28	WPI-3336	Other	BVW	$\begin{array}{r} 42^{\circ} 36^{\prime} \\ 34.3777^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 18.081^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Fitchburg	N/A		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0	
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	12.35	12.40	WPI-3342	PFO	BVW	$\begin{array}{r} 42^{\circ} 36^{\prime} \\ 30.665^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 19.006^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Fitchburg	II		0.00	0.43	0.00	0.00	0.17	0.00	0.00	252	
Fitchburg Lateral	Worcester	Lunenburg	Q	12.39	12.40	WPI-3344	PFO	BVW	$\begin{gathered} 42^{\circ} 36^{\prime} \\ 28.4099^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 18.662^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Fitchburg	II		0.00	0.02	0.00	0.00	0.01	0.00	0.00	19	
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	12.41	12.46	WPI-3345	PFO	BVW	$\begin{array}{r} 42^{\circ} 36^{\prime} \\ 27.585^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 19.011^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Fitchburg	II		0.00	0.28	0.00	0.00	0.13	0.00	0.00	180	
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	12.43	12.48	WPI-3345	PFO	BVW	$\begin{gathered} 42^{\circ} 36^{\prime} \\ 26.508^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 19.381^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Fitchburg	II		0.00	0.24	0.00	0.00	0.07	0.00	0.00	97	
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	12.46	12.47	WPI-3346	PEM	BVW	$\begin{array}{r} 42^{\circ} 36^{\prime} \\ 24.673^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 18.677^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Fitchburg	N/A		0.02	0.00	0.00	0.00	0.00	0.00	0.00	0	
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	12.98	12.99	WPI-3347	Other	BVW	$\begin{array}{r} 42^{\circ} 35^{\prime} \\ 58.125^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 20.528^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Fitchburg	N/A		0.00	0.00	0.00	0.02	0.00	0.00	0.00	0	
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	13.08	13.23	WPI-3348	PFO	BVW	$\begin{array}{r} 42^{\circ} 35^{\prime} \\ 53.343^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 21.913^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Fitchburg	II		0.00	0.89	0.00	0.00	0.38	0.00	0.00	558	
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	13.16	13.22	WPI-3349	PFO	BVW	$\begin{array}{r} 42^{\circ} 35^{\prime} \\ 48.740 \mathrm{~N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 22.523 \text { " } \mathrm{W} \\ \hline \end{gathered}$	Fitchburg	N/A		0.00	0.29	0.00	0.00	0.00	0.00	0.00	0	

Table 2.3-7

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{aligned} & \text { Wetland } \\ & \mathbf{I D}^{3,4} \end{aligned}$	Wetland Class ${ }^{5}$	State Wetland	Latitude	Longitude	Quadrangle	Crossing	Comments	Construction ${ }^{8}$				Operation ${ }^{9}$			Crossing $\begin{aligned} & \text { Length } \\ & \text { (feet) }\end{aligned}{ }^{11}$ (feet) ${ }^{11}$
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$	
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	13.29	13.36	WPI-3350	PSS	BVW	$\begin{array}{r} 42^{\circ} 35^{\prime} \\ 42.375^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 21.845^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Fitchburg	II		0.00	0.00	0.28	0.00	0.00	0.07	0.00	308
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	13.39	13.40	LK-K-W001	PEM	BVW	$\begin{gathered} 42^{\circ} 35^{\prime} \\ 36.896^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 21.700^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Fitchburg	N/A		0.02	0.00	0.00	0.00	0.00	0.00	0.00	0
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	13.39	13.40	LK-K- W0001	PFO	BVW	$\begin{array}{r} 42^{\circ} 35^{\prime} \\ 36.895^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 21.213^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Fitchburg	II		0.00	0.02	0.00	0.00	0.01	0.00	0.00	6
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	13.39	13.39	LK-K-W001	PSS	BVW	$\begin{gathered} \hline 42^{\circ} 35^{\prime} \\ 37.024^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 21.404^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Fitchburg	II		0.00	0.00	0.01	0.00	0.00	0.01	0.00	17
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	13.69	13.70	LU-D-W001	PSS	BVW	$\begin{array}{r} 42^{\circ} 35^{\prime} \\ 22.766^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 18.667 " \mathrm{~W} \\ \hline \end{gathered}$	Fitchburg	IV		0.00	0.00	0.02	0.00	0.00	0.01	0.00	18
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	13.70	13.73	LU-D-W001	PSS	BVW	$\begin{array}{r} \hline 42^{\circ} 35^{\prime} \\ 22.3477^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 18.896^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Fitchburg	IV		0.00	0.00	0.07	0.00	0.00	0.02	0.00	99
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	13.72	13.74	LU-D-W001	PSS	BVW	$\begin{gathered} 42^{\circ} 35^{\prime} \\ 21.517^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 18.891^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Fitchburg	IV		0.00	0.00	0.04	0.00	0.00	0.01	0.00	23
Fitchburg Lateral Extension	Worcester	Lunenburg	Q	13.86	13.88	LU-D-W001	PFO	BVW	$\begin{gathered} 42^{\circ} 35^{\prime} \\ 15.171^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 24.297 " \mathrm{~W} \\ \hline \end{gathered}$	Fitchburg	N/A		0.00	0.08	0.00	0.00	0.01	0.00	0.00	0
Pipeline Subtotal														16.73	59.64	28.80	1.66	20.05	3.12	0.00	53,788

Aboveground Facilities																			
Market Path Mid Station 2	Berkshire	Windsor	G	17.09	$\begin{aligned} & \text { WR-M- } \\ & \text { W023 } \end{aligned}$	PEM	BVW	$\begin{gathered} 42^{\circ} 28^{\prime} \\ 49.788^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 73^{\circ} 2^{\prime} \\ 44.093^{\prime \prime} \mathrm{W} \end{gathered}$	Peru	N/A	0.01	0.00	0.00	0.00	0.00	0.00	0.00	N/A
Market Path Mid Station 3	Franklin	Northfield	H	23.98	NO-L-W002	PFO	BVW	$\begin{gathered} 42^{\circ} 39^{\prime} \\ 52.710^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 25^{\prime} \\ 14.284^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Northfield	N/A	0.00	0.01	0.00	0.00	0.00	0.00	0.00	N/A
$\begin{aligned} & \text { Market Path Mid } \\ & \text { Station } 3 \end{aligned}$	Franklin	Northfield	H	23.98	NO-L-W007	PEM	BVW	$\begin{gathered} 42^{\circ} 39^{\prime} \\ 57.591^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 24^{\prime} \\ 59.529^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Northfield	N/A	0.02	0.00	0.00	0.00	0.00	0.00	0.00	N/A
Market Path Mid Station 3	Franklin	Northfield	H	23.98	NO-L-W016	PFO	BVW	$\begin{gathered} 42^{\circ} 39^{\prime} \\ 52.345^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 25^{\prime} \\ 5.758^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Northfield	N/A	0.00	0.01	0.00	0.00	0.00	0.00	0.00	N/A
Market Path Tail Station	Middlesex	Dracut	K	1.05	DR-N-W003	PFO	BVW	$\begin{gathered} 42^{\circ} 41^{\prime} \\ 38.639^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 16^{\prime} \\ 14.122^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	N/A	0.00	0.02	0.00	0.00	0.02	0.00	0.00	N/A
Market Path Tail Station	Middlesex	Dracut	K	1.05	DR-N-W004	PFO	BVW	$\begin{gathered} 42^{\circ} 41^{\prime} \\ 44.701^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 16^{\prime} \\ 23.1544^{\prime \prime} \mathrm{W} \end{gathered}$	Lowell	N/A	0.00	0.08	0.00	0.00	0.08	0.00	0.00	N/A
Market Path Tail Station	Middlesex	Dracut	K	1.05	DR-N-W004	PFO	BVW	$\begin{array}{r} 42^{\circ} 41^{\prime} \\ 40.492^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 16^{\prime} \\ 19.760^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	N/A	0.00	0.16	0.00	0.00	0.16	0.00	0.00	N/A
Market Path Tail	Middlesex	Dracut	K	1.05	DR-N-W004	PFO	BVW	$\begin{gathered} 42^{\circ} 41^{\prime} \\ 39.993^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 16^{\prime} \\ 17.216^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	N/A	0.00	0.01	0.00	0.00	0.01	0.00	0.00	N/A
Market Path Tail Station	Middlesex	Dracut	K	1.05	DR-N-W004	PFO	BVW	$\begin{gathered} 42^{\circ} 41^{\prime} \\ 38.406^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 16^{\prime} \\ 15.942^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	N/A	0.00	0.12	0.00	0.00	0.12	0.00	0.00	N/A
Market Path Tail Station	Middlesex	Dracut	K	1.05	DR-N-W005	PFO	BVW	$\begin{gathered} 42^{\circ} 41^{\prime} \\ 34.469^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 16^{\prime} \\ 8.845^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	N/A	0.00	0.01	0.00	0.00	0.01	0.00	0.00	N/A
Market Path Tail Station	Middlesex	Dracut	K	1.05	DR-N-W009	PFO	BVW	$\begin{array}{r} 42^{\circ} 41^{\prime} \\ 45.174^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 16^{\prime} \\ 18.986^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	N/A	0.00	0.07	0.00	0.00	0.07	0.00	0.00	N/A
Market Path Tail	Middlesex	Dracut	K	1.05	DR-N-W010	PFO	BVW	$\begin{gathered} 42^{\circ} 41^{\prime} \\ 40.928^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 16^{\prime} \\ 23.409^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	II	0.00	0.07	0.00	0.00	0.07	0.00	0.00	48
$\begin{gathered} \hline \text { Market Path Tail } \\ \text { Station } \\ \hline \end{gathered}$	Middlesex	Dracut	K	1.05	DR-N-W011	PFO	BVW	$\begin{array}{r} 42^{\circ} 41^{\prime} \\ 42.860^{\prime N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 16^{\prime} \\ 24.304^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	N/A	0.00	0.01	0.00	0.00	0.01	0.00	0.00	N/A
Maritimes	Middlesex	Dracut	L	0.75	DR-J-W004	PEM	BVW	$\begin{gathered} 42^{\circ} 41^{\prime} \\ 11.480^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 15 \prime \\ 54.032^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	II	0.01	0.00	0.00	0.00	0.00	0.00	0.00	7
Maritimes	Middlesex	Dracut	L	0.75	DR-J-W004	PSS	BVW	$\begin{gathered} 42^{\circ} 41^{\prime} \\ 10.246^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 15 ' \\ 49.158^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	II	0.00	0.00	0.06	0.00	0.00	0.06	0.00	29

Company, L.L.C.

Table 23-7

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$	$\begin{gathered} \text { Wetland } \\ \mathbf{I D}^{3,4} \end{gathered}$	Wetland Class ${ }^{5}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method	Comments	Wetland Impact (acres)							$\begin{gathered} \text { Crossing } \\ \text { Length } \\ \text { (feet) }^{11} \\ \hline \end{gathered}$
													Construction ${ }^{8}$				Operation ${ }^{9}$			
				Begin ${ }^{\text {End }}$									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$	
200-1 Check	Essex	Lynnfield	N	14.28	LY-D-W002	PEM	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 19.445^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 4^{\prime} \\ 0.857{ }^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Reading	II		0.01	0.00	0.00	0.00	0.00	0.00	0.00	17
Aboveground Facilities Subtotal													0.05	0.57	0.06	0.00	0.55	0.06	0.00	101
Contractor Yards																				
NED-G-0100	Berkshire	Hancock	G	1.50	NWI-1094	PEM	BVW	$\begin{gathered} 42^{\circ} 34^{\prime} \\ 2.732^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 18^{\prime} \\ 9.7733^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Hancock	v		0.24	0.00	0.00	0.00	0.00	0.00	0.00	N/A
NED-G-0200	Berkshire	Hancock	G	1.61	NWI-1016	PSS	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 14.447^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 18^{\prime} \\ 18.939^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Hancock	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	N/A
NED-G-0301	Berkshire	Lanesborough	G	5.89	NWI-1017	PEM	BVW	$\begin{gathered} 42^{\circ} 31^{\prime} \\ 35.752^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 73^{\circ} 13^{\prime} \\ 51.998^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Cheshire	V		0.55	0.00	0.00	0.00	0.00	0.00	0.00	N/A
NED-G-0301	Berkshire	Lanesborough	G	5.89	WPI-1267	PEM	BVW	$\begin{gathered} 42^{\circ} 31^{\prime} \\ 31.209^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 13^{\prime} \\ 51.547{ }^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Cheshire	V		0.44	0.00	0.00	0.00	0.00	0.00	0.00	N/A
NED-G-0301	Berkshire	Lanesborough	G	5.89	WPI-1265	PSS	BVW	$\begin{gathered} 42^{\circ} 31^{\prime} \\ 31.217^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 13^{\prime} \\ 51.623^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Cheshire	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	N/A
NED-G-0301	Berkshire	Lanesborough	G	5.89	WPI-1266	PSS/PEM	BVW	$\begin{gathered} 42^{\circ} 31^{\prime} \\ 30.335 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 13^{\prime} \\ 51.550^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Cheshire	v		0.00	0.00	0.01	0.00	0.00	0.00	0.00	N/A
NED-G-0301	Berkshire	Lanesborough	G	5.89	WPI-1265	PSS	BVW	$\begin{gathered} 42^{\circ} 31^{\prime} \\ 30.168^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 73^{\circ} 13^{\prime} \\ 51.536^{\prime \prime} \mathrm{W} \end{gathered}$	Cheshire	v		0.00	0.00	0.01	0.00	0.00	0.00	0.00	N/A
NED-G-0301	Berkshire	Lanesborough	G	5.89	WPI-1266	PSS/PEM	BVW	$\begin{gathered} \hline 42^{\circ} 31^{\prime} \\ 30.135^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 13^{\prime} \\ 50.634^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Cheshire	V		0.00	0.00	0.03	0.00	0.00	0.00	0.00	N/A
NED-G-0301	Berkshire	Lanesborough	G	5.89	NWI-1018	PEM	BVW	$\begin{gathered} 42^{\circ} 31^{\prime} \\ 36.738^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 13^{\prime} \\ 48.618^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Cheshire	V		0.07	0.00	0.00	0.00	0.00	0.00	0.00	N/A
NED-G-0305	Berkshire	Dalton	G	11.99	WPI-1316	PEM	BVW	$\begin{gathered} 42^{\circ} 29^{\prime} \\ 28.962^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 7 \\ 36.779^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Pittsfield East	V		0.05	0.00	0.00	0.00	0.00	0.00	0.00	N/A
NED-G-0305	Berkshire	Dalton	G	11.99	WPI-1317	PSS	BVW	$\begin{gathered} 42^{\circ} 29^{\prime} \\ 29.317{ }^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 7^{\prime} \\ 36.729^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Pittsfield East	V		0.00	0.00	0.09	0.00	0.00	0.00	0.00	N/A
NED-G-0500	Berkshire	Windsor	G	16.97	NWI-1020	PSS	BVW	$\begin{gathered} 42^{\circ} 28^{\prime} \\ 52.070^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 3^{\prime} \\ 1.904^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	N/A
NED-G-0700	Berkshire	Windsor	G	17.19	NWI-1021	PFO	BVW	$\begin{gathered} 42^{\circ} 28^{\prime} \\ 52.991 " \mathrm{~N} \end{gathered}$	$\begin{gathered} 73^{\circ} 2^{\prime} \\ 43.073^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	v		0.00	0.05	0.00	0.00	0.00	0.00	0.00	N/A
NED-G-0700	Berkshire	Windsor	G	17.19	WR-MW011	PEM	BVW	$\begin{gathered} 42^{\circ} 28^{\prime} \\ 50.866^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 2^{\prime} \\ 41.380^{\prime \prime} \mathrm{W} \end{gathered}$	Peru	V		0.64	0.00	0.00	0.00	0.00	0.00	0.00	N/A
NED-G-0700	Berkshire	Windsor	G	17.19	WR-MW011	PEM	BVW	$\begin{gathered} 42^{\circ} 28^{\prime} \\ 49.611^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 2^{\prime} \\ 37.047^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	V		0.10	0.00	0.00	0.00	0.00	0.00	0.00	N/A
NED-G-0701	Berkshire	Windsor	G	18.73	NWI-1022	PEM	BVW	$\begin{gathered} 42^{\circ} 29^{\prime} \\ 33.315^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 1^{\prime} \\ 22.655^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	v		0.17	0.00	0.00	0.00	0.00	0.00	0.00	N/A
NED-G-0704	Franklin	Ashfield	G	30.57	NWI-1023	PEM	BVW	$\begin{gathered} 42^{\circ} 31^{\prime} \\ 35.003 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 48^{\prime} \\ 6.147 " \mathrm{~W} \\ \hline \end{gathered}$	Ashfield	V		0.13	0.00	0.00	0.00	0.00	0.00	0.00	N/A
NED-K-0100	Middlesex	Dracut	K	1.48	DR-D-W002	PFO	BVW	$\begin{gathered} 42^{\circ} 41^{\prime} \\ 0.532^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 16^{\prime} \\ 53.831^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	V		0.00	0.11	0.00	0.00	0.00	0.00	0.00	N/A
NED-K-0100	Middlesex	Dracut	K	1.48	DR-A-W001	PFO	BVW	$\begin{gathered} 42^{\circ} 40^{\prime} \\ 48.807 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 17^{\prime} \\ 14.071^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	V		0.00	0.16	0.00	0.00	0.00	0.00	0.00	N/A
NED-K-0100	Middlesex	Dracut	K	1.48	DR-A-W001	PFO	BVW	$\begin{gathered} 42^{\circ} 40^{\prime} \\ 50.226 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 17^{\prime} \\ 10.993^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	V		0.00	0.34	0.00	0.00	0.00	0.00	0.00	N/A
NED-K-0100	Middlesex	Dracut	K	1.48	DR-A-W001	PFO	BVW	$\begin{gathered} 42^{\circ} 40^{\prime} \\ 51.304^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 17^{\prime} \\ 8.654^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Lowell	V		0.00	0.31	0.00	0.00	0.00	0.00	0.00	N/A
NED-K-0100	Middlesex	Dracut	K	1.48	DR-D-W003	PFO	BVW	$\begin{gathered} 42^{\circ} 41^{\prime} \\ 0.519^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 16^{\prime} \\ 50.342^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	V		0.00	0.27	0.00	0.00	0.00	0.00	0.00	N/A

Table 23-7

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$	$\begin{gathered} \text { Wetland } \\ \mathbf{I D}^{3,4} \end{gathered}$	Wetland Class ${ }^{5}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method ${ }^{7}$	Comments	Wetland Impact (acres)				Operation ${ }^{9}$			Crossing Length (feet) ${ }^{11}$
													Construction ${ }^{8}$							
				Begin ${ }^{\text {a }}$ End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$	
NED-K-0100	Middlesex	Dracut	K	1.48	DR-A-W001	PFO	BVW	$\begin{gathered} 42^{\circ} 40^{\prime} \\ 49.344^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 17^{\prime} \\ 11.472^{\prime \prime} \mathrm{W} \end{gathered}$	Lowell	V		0.00	0.62	0.00	0.00	0.00	0.00	0.00	N/A
NED-K-0100	Middlesex	Dracut	K	1.48	DR-D-W004	PFO	BVW	$\begin{gathered} 42^{\circ} 40^{\prime} \\ 57.773^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 16^{\prime} \\ 52.146^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	V		0.00	0.14	0.00	0.00	0.00	0.00	0.00	N/A
NED-K-0100	Middlesex	Dracut	K	1.48	DR-D-W005	PFO	BVW	$\begin{gathered} 42^{\circ} 40^{\prime} \\ 57.937 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 16^{\prime} \\ 50.824^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	V		0.00	0.15	0.00	0.00	0.00	0.00	0.00	N/A
NED-K-0100	Middlesex	Dracut	K	1.48	DR-A-W001	PFO	BVW	$\begin{gathered} 42^{\circ} 40^{\prime} \\ 49.762^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 17^{\prime} \\ 6.688^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	v		0.00	0.02	0.00	0.00	0.00	0.00	0.00	N/A
NED-K-0100	Middlesex	Dracut	K	1.48	DR-G-W001	PFO	BVW	$\begin{gathered} 42^{\circ} 40^{\prime} \\ 53.339^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 16^{\prime} \\ 57.542^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	V		0.00	0.04	0.00	0.00	0.00	0.00	0.00	N/A
NED-K-0100	Middlesex	Dracut	K	1.48	WPI-3161	PFO	BVW	$\begin{gathered} 42^{\circ} 40^{\prime} \\ 53.052^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 16^{\prime} \\ 57.921^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	v		0.00	0.24	0.00	0.00	0.00	0.00	0.00	N/A
NED-K-0100	Middlesex	Dracut	K	1.48	WPI-3160	PFO	BVW	$\begin{gathered} 42^{\circ} 40^{\prime} \\ 50.786^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 17^{\prime} \\ 0.933^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	V		0.00	0.01	0.00	0.00	0.00	0.00	0.00	N/A
NED-K-0100	Middlesex	Dracut	K	1.48	DR-G-W003	PFO	BVW	$\begin{gathered} 42^{\circ} 40^{\prime} \\ 51.538^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 16^{\prime} \\ 58.1244^{\prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	V		0.00	0.29	0.00	0.00	0.00	0.00	0.00	N/A
NED-K-0100	Middlesex	Dracut	K	1.48	DR-A-W001	PFO	BVW	$\begin{gathered} 42^{\circ} 40^{\prime} \\ 47.901 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 17^{\prime} \\ 5.223^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Lowell	V		0.00	0.21	0.00	0.00	0.00	0.00	0.00	N/A
NED-K-0100	Middlesex	Dracut	K	1.48	DR-A-W001	PFO	BVW	$\begin{gathered} 42^{\circ} 40^{\prime} \\ 45.198^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 17^{\prime} \\ 10.623^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	v		0.00	0.02	0.00	0.00	0.00	0.00	0.00	N/A
NED-K-0100	Middlesex	Dracut	K	1.48	DR-G-W005	PFO	BVW	$\begin{gathered} 42^{\circ} 40^{\prime} \\ 53.317^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 16^{\prime} \\ 51.293^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	V		0.00	0.03	0.00	0.00	0.00	0.00	0.00	N/A
NED-K-0100	Middlesex	Dracut	K	1.48	DR-G-W005	PFO	BVW	$\begin{gathered} 42^{\circ} 40^{\prime} \\ 52.260^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 16^{\prime} \\ 52.044^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	V		0.00	0.01	0.00	0.00	0.00	0.00	0.00	N/A
NED-N-0200	Middlesex	Dracut	N	1.05	NWI-1041	PEM	BVW	$\begin{aligned} & 42^{\circ} 40^{\prime} \\ & 2.401^{\prime \prime} \mathrm{N} \\ & \hline \end{aligned}$	$\begin{gathered} 71^{\circ} 14^{\prime} \\ 53.217^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	V		0.51	0.00	0.00	0.00	0.00	0.00	0.00	N/A
NED-N-0200	Middlesex	Dracut	N	1.05	NWI-1042	PSS	BVW	$\begin{array}{r} 42^{\circ} 40^{\prime} \\ 2.120^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 14^{\prime} \\ 52.913^{\prime \prime} \mathrm{W} \end{gathered}$	Lawrence	V		0.00	0.00	0.08	0.00	0.00	0.00	0.00	N/A
NED-N-0200	Middlesex	Dracut	N	1.05	NWI-1043	PSS	BVW	$\begin{aligned} & 42^{\circ} 40^{\prime} \\ & 0.494^{\prime \prime} \mathrm{N} \end{aligned}$	$\begin{gathered} 71^{\circ} 14^{\prime} \\ 51.150^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	N/A
NED-N-0200	Middlesex	Dracut	N	1.05	NWI-1044	Other	BVW	$\begin{array}{r} 42^{\circ} 40^{\prime} \\ 4.521^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 14^{\prime} \\ 43.459^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	v		0.00	0.00	0.00	0.16	0.00	0.00	0.00	N/A
NED-N-0200	Middlesex	Dracut	N	1.05	NWI-1045	PSS	BVW	$\begin{array}{r} 42^{\circ} 40^{\prime} \\ 5.648^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 14^{\prime} \\ 38.847^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	V		0.00	0.00	0.34	0.00	0.00	0.00	0.00	N/A
NED-N-0200	Middlesex	Dracut	N	1.05	NWI-1046	Other	BVW	$\begin{gathered} 42^{\circ} 39^{\prime} \\ 49.507 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 15^{\prime} \\ 1.071^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	V		0.00	0.00	0.00	0.11	0.00	0.00	0.00	N/A
NED-N-0200	Middlesex	Dracut	N	1.05	NWI-1046	Other	BVW	$\begin{gathered} 42^{\circ} 39^{\prime} \\ 49.679^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 77^{\circ} 15^{\prime} \\ 0.019^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Lawrence	V		0.00	0.00	0.00	0.02	0.00	0.00	0.00	N/A
NED-N-0200	Middlesex	Dracut	N	1.05	NWI-1048	PFO	BVW	$\begin{gathered} 42^{\circ} 39^{\prime} \\ 52.675^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 14^{\prime} \\ 53.871^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	V		0.00	0.59	0.00	0.00	0.00	0.00	0.00	N/A
NED-N-0200	Middlesex	Dracut	N	1.05	NWI-1049	Other	BVW	$\begin{gathered} 42^{\circ} 39^{\prime} \\ 47.221^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 14^{\prime} \\ 59.556^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	V		0.00	0.00	0.00	0.14	0.00	0.00	0.00	N/A
NED-N-0400	Essex	Andover	N	6.60	NWI-1050	PEM	BVW	$\begin{gathered} 42^{\circ} 36^{\prime} \\ 58.523^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 10^{\prime} \\ 1.807^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	V		0.46	0.00	0.00	0.00	0.00	0.00	0.00	N/A
NED-N-0500	Middlesex	Wilmington	N	9.57	NWI-1052	PFO	BVW	$\begin{gathered} 42^{\circ} 35^{\prime} \\ 26.140 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 8^{\prime} \\ 41.994^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	V		0.00	1.06	0.00	0.00	0.00	0.00	0.00	N/A
NED-N-0500	Middlesex	Wilmington	N	9.57	NWI-1051	PFO	BVW	$\begin{gathered} 42^{\circ} 35^{\prime} \\ 36.717^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 8^{\prime} \\ 35.087^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	V		0.00	0.09	0.00	0.00	0.00	0.00	0.00	N/A

Table 2.3-7

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$	$\underset{\substack{\text { Wetland } \\ \mathbf{I D}^{3,4}}}{ }$	Wetland Class ${ }^{5}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method ${ }^{\text {² }}$	Comments	Wetland Impact (acres)							Crossing Length (feet) ${ }^{11}$
													Construction ${ }^{8}$				Operation ${ }^{9}$			
				Begin ${ }^{\text {E }}$ End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$	
NED-N-0500	Middlesex	Wilmington	N	9.57	WPI-2808	PEM	BVW	$\begin{array}{r} \hline 42^{\circ} 35^{\prime} \\ 19.801^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 8^{\prime} \\ 42.541^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	V		1.79	0.00	0.00	0.00	0.00	0.00	0.00	N/A
NED-N-0500	Middlesex	Wilmington	N	9.57	NWI-1053	PFO	BVW	$\begin{gathered} 42^{\circ} 35^{\prime} \\ 26.083 " \mathrm{~N} \end{gathered}$	$\begin{gathered} \hline 71^{\circ} 8^{\prime} \\ 38.616^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	V		0.00	1.00	0.00	0.00	0.00	0.00	0.00	N/A
NED-N-0500	Middlesex	Wilmington	N	9.57	NWI-1054	Other	BVW	$\begin{gathered} 42^{\circ} 35^{\prime} \\ 28.611^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 8^{\prime} \\ 29.199^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	V		0.00	0.00	0.00	0.15	0.00	0.00	0.00	N/A
NED-N-0500	Middlesex	Wilmington	N	9.57	NWI-1058	PFO	BVW	$\begin{gathered} 42^{\circ} 35^{\prime} \\ 30.558^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 8^{\prime} \\ 27.794^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	V		0.00	5.49	0.00	0.00	0.00	0.00	0.00	N/A
NED-N-0500	Middlesex	Wilmington	N	9.57	WPI-2809	PFO	BVW	$\begin{gathered} 42^{\circ} 35^{\prime} \\ 15.713^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 8^{\prime} \\ 34.3677^{\prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	V		0.00	0.10	0.00	0.00	0.00	0.00	0.00	N/A
NED-N-0500	Middlesex	Wilmington	N	9.57	NWI-1057	PSS	BVW	$\begin{gathered} 42^{\circ} 35^{\prime} \\ 18.059^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 8^{\prime} \\ 11.703^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	V		0.00	0.00	0.23	0.00	0.00	0.00	0.00	N/A
NED-N-0500	Middlesex	Wilmington	N	9.57	NWI-1061	PFO	BVW	$\begin{gathered} 42^{\circ} 35^{\prime} \\ 20.503^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 8^{\prime} \\ 5.407{ }^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	V		0.00	1.09	0.00	0.00	0.00	0.00	0.00	N/A
NED-N-0500	Middlesex	Wilmington	N	9.57	NWI-1062	PSS	BVW	$\begin{gathered} 42^{\circ} 35^{\prime} \\ 13.514^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 8^{\prime} \\ 13.550^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	V		0.00	0.00	0.19	0.00	0.00	0.00	0.00	N/A
NED-N-0500	Middlesex	Wilmington	N	9.57	NWI-896	PEM	BVW	$\begin{gathered} 42^{\circ} 35^{\prime} \\ 4.787^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 8^{\prime} \\ 4.725 " \mathrm{~W} \end{gathered}$	Wilmington	V		0.01	0.00	0.00	0.00	0.00	0.00	0.00	N/A
NED-N-0500	Middlesex	Wilmington	N	9.57	NWI-896	PEM	BVW	$\begin{gathered} 42^{\circ} 35 ' \\ 4.622^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 8^{\prime} \\ 3.927 " \mathrm{~W} \\ \hline \end{gathered}$	Wilmington	V		0.03	0.00	0.00	0.00	0.00	0.00	0.00	N/A
NED-K-0100	Middlesex	Dracut	P	1.48	WPI-3183	PEM	BVW	$\begin{gathered} 42^{\circ} 40^{\prime} \\ 42.4033^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 17^{\prime} \\ 17.518^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	V		0.09	0.00	0.00	0.00	0.00	0.00	0.00	N/A
NED-K-0100	Middlesex	Dracut	P	1.48	DR-A-W001	PFO	BVW	$\begin{gathered} 42^{\circ} 40^{\prime} \\ 43.609^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 17^{\prime} \\ 10.9299^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	v		0.00	0.03	0.00	0.00	0.00	0.00	0.00	N/A
NED-K-0100	Middlesex	Dracut	P	1.48	DR-A-W001	PFO	BVW	$\begin{gathered} 42^{\circ} 40^{\prime} \\ 44.406^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 17^{\prime} \\ 10.773^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	V		0.00	0.15	0.00	0.00	0.00	0.00	0.00	N/A
NED-K-0100	Middlesex	Dracut	P	1.48	DR-A-W001	PFO	BVW	$\begin{array}{r} 42^{\circ} 40^{\prime} \\ 43.787^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 71^{\circ} 17^{\prime} \\ 9.954 " \mathrm{~W} \\ \hline \end{array}$	Lowell	V		0.00	0.66	0.00	0.00	0.00	0.00	0.00	N/A
NED-N-0100	Middlesex	Dracut	P	0.29	NWI-1144	PFO	BVW	$\begin{gathered} 42^{\circ} 40^{\prime} \\ 41.320^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 14^{\prime} \\ 56.762^{\prime \prime} \mathrm{W} \end{gathered}$	Lawrence	V		0.00	0.01	0.00	0.00	0.00	0.00	0.00	N/A
NED-N-0100	Middlesex	Dracut	P	0.29	NWI-1150	PFO	BVW	$\begin{array}{r} 42^{\circ} 40^{\prime} \\ 38.135^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 14^{\prime} \\ 33.2355^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	V		0.00	0.12	0.00	0.00	0.00	0.00	0.00	N/A
NED-N-0100	Middlesex	Dracut	P	0.29	NWI-1151	Other	BVW	$\begin{gathered} 42^{\circ} 40^{\prime} \\ 41.957^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 14^{\prime} \\ 25.807^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	v		0.00	0.00	0.00	0.09	0.00	0.00	0.00	N/A
NED-N-0100	Essex	Methuen	P	0.29	NWI-1154	PSS	BVW	$\begin{gathered} 42^{\circ} 40^{\prime} \\ 48.642^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 14^{\prime} \\ 25.095^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	v		0.00	0.00	0.63	0.00	0.00	0.00	0.00	N/A
NED-Q-0100	Middlesex	Townsend	Q	6.03	WPI-3245	PSS	BVW	$\begin{array}{r} 42^{\circ} 41^{\prime} \\ 45.925^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 45 ' \\ 57.989^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashby	v		0.00	0.00	0.08	0.00	0.00	0.00	0.00	N/A
Contractor Yards Subtotal													5.28	13.41	1.73	0.67	0.00	0.00	0.00	0
Access Roads																				
NED-TAR-G-0300	Berkshire	Lanesborough	G	2.61	WPI-1235	PSS	BVW	$\begin{gathered} 42^{\circ} 31^{\prime} \\ 57.136^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 17 \prime \\ 24.679^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Hancock	V		0.00	0.00	0.02	0.00	0.00	0.00	0.00	0
NED-TAR-G-0300	Berkshire	Lanesborough	G	2.61	WPI-1235	PSS	BVW	$\begin{array}{r} 42^{\circ} 31^{\prime} \\ 55.975^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 73^{\circ} 17^{\prime} \\ 23.949^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Hancock	V		0.00	0.00	0.02	0.00	0.00	0.00	0.00	5
NED-TAR-G-1000	Berkshire	Cheshire	G	8.65	WPI-1286	Other	BVW	$\begin{gathered} 42^{\circ} 30^{\prime} \\ 58.061^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 73^{\circ} 10^{\prime} \\ 6.970^{\prime \prime} \mathrm{W} \end{array}$	Cheshire	V		0.00	0.00	0.00	0.02	0.00	0.00	0.00	56
NED-TAR-G-1000	Berkshire	Cheshire	G	8.65	WPI-1288	PSS	BVW	$\begin{array}{r} 42^{\circ} 30^{\prime} \\ 56.387^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 73^{\circ} 10^{\prime} \\ 3.308^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Cheshire	V		0.00	0.00	0.04	0.00	0.00	0.00	0.00	0

Table 2.3-7

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$	$\underset{\substack{\text { Wetland } \\ \mathbf{I D}^{3,4}}}{\substack{\text { W }}}$	Wetland Class ${ }^{5}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method	Comments	Wetland Impact (acres)							Crossing Length (feet) ${ }^{11}$
													Construction ${ }^{8}$				Operation ${ }^{9}$			
				Begin ${ }^{\text {E }}$ End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$	
NED-TAR-G-1000	Berkshire	Cheshire	G	8.65	WPI-1287	Other	BVW	$\begin{gathered} 42^{\circ} 30^{\prime} \\ 56.181^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 73^{\circ} 10^{\prime} \\ 3.227^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Cheshire	V		0.00	0.00	0.00	0.04	0.00	0.00	0.00	104
NED-TAR-G-1100	Berkshire	Dalton	G	9.39	WPI-1290	PSS/PEM	BVW	$\begin{gathered} 42^{\circ} 30^{\prime} \\ 52.566^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 9^{\prime} \\ 47.247^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Cheshire	V		0.00	0.00	0.04	0.00	0.00	0.00	0.00	77
NED-TAR-G-1100	Berkshire	Dalton	G	9.39	WPI-1291	PSS/PEM	BVW	$\begin{gathered} 42^{\circ} 30^{\prime} \\ 51.881^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 9^{\prime} \\ 43.615^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Cheshire	V		0.00	0.00	0.05	0.00	0.00	0.00	0.00	80
NED-TAR-G-1100	Berkshire	Dalton	G	9.39	WPI-1292	PSS/PEM	BVW	$\begin{array}{r} 42^{\circ} 30^{\prime} \\ 49.394^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 73^{\circ} 9^{\prime} \\ 31.812^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Cheshire	V		0.00	0.00	0.06	0.00	0.00	0.00	0.00	88
NED-TAR-G-1100	Berkshire	Dalton	G	9.39	WPI-1295	PSS/PEM	BVW	$\begin{array}{r} 42^{\circ} 30^{\prime} \\ 48.192^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 73^{\circ} 9^{\prime} \\ 26.019^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Cheshire	V		0.00	0.00	0.22	0.00	0.00	0.00	0.00	338
NED-TAR-G-1100	Berkshire	Dalton	G	9.39	WPI-1298	PSS/PEM	BVW	$\begin{array}{r} 42^{\circ} 30^{\prime} \\ 33.898^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 73^{\circ} 8^{\prime} \\ 59.040^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Cheshire	v		0.00	0.00	0.17	0.00	0.00	0.00	0.00	201
NED-TAR-G-1100	Berkshire	Dalton	G	9.39	WPI-1298	PSS/PEM	BVW	$\begin{gathered} 42^{\circ} 30^{\prime} \\ 30.716^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 8^{\prime} \\ 55.202^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Cheshire	V		0.00	0.00	0.10	0.00	0.00	0.00	0.00	175
NED-TAR-G-1100	Berkshire	Dalton	G	9.39	WPI-1299	PSS/PEM	BVW	$\begin{array}{r} 42^{\circ} 30^{\prime} \\ 27.615^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 73^{\circ} 8^{\prime \prime} \\ 51.849^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Cheshire	V		0.00	0.00	0.06	0.00	0.00	0.00	0.00	85
NED-TAR-G-1100	Berkshire	Dalton	G	9.39	WPI-1300	PSS/PEM	BVW	$\begin{array}{r} 42^{\circ} 30^{\prime} \\ 25.975^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 73^{\circ} 8^{\prime} \\ 49.505^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Cheshire	V		0.00	0.00	0.12	0.00	0.00	0.00	0.00	181
NED-TAR-G-1100	Berkshire	Dalton	G	9.39	WPI-1301	PSS	BVW	$\begin{gathered} 42^{\circ} 30^{\prime} \\ 17.386^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 73^{\circ} 8^{\prime} \\ 38.095^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Cheshire	V		0.00	0.00	0.07	0.00	0.00	0.00	0.00	95
NED-TAR-G-1100	Berkshire	Dalton	G	9.39	WPI-1302	PSS/PEM	BVW	$\begin{gathered} 42^{\circ} 30^{\prime} \\ 15.363^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 8^{\prime} \\ 35.166^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Cheshire	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
NED-TAR-G-1100	Berkshire	Dalton	G	9.39	WPI-1304	PSS/PEM	BVW	$\begin{gathered} 42^{\circ} 30^{\prime} \\ 14.652^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 8^{\prime} \\ 33.778^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Cheshire	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	19
NED-TAR-G-1100	Berkshire	Dalton	G	9.39	WPI-1305	PSS/PEM	BVW	$\begin{gathered} 42^{\circ} 30^{\prime} \\ 14.315^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 8^{\prime} \\ 33.896^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Cheshire	V		0.00	0.00	0.08	0.00	0.00	0.00	0.00	113
NED-TAR-G-1100	Berkshire	Dalton	G	9.39	WPI-1307	PSS	BVW	$\begin{gathered} 42^{\circ} 30^{\prime} \\ 13.636^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 73^{\circ} 8^{\prime} \\ 32.957 " \mathrm{~W} \end{gathered}$	Cheshire	v		0.00	0.00	0.01	0.00	0.00	0.00	0.00	11
NED-TAR-G-1100	Berkshire	Dalton	G	9.39	WPI-1308	PEM	BVW	$\begin{gathered} 42^{\circ} 30^{\prime} \\ 11.663^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 8^{\prime} \\ 29.982^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Cheshire	V		0.03	0.00	0.00	0.00	0.00	0.00	0.00	37
NED-TAR-G-1100	Berkshire	Dalton	G	9.39	WPI-1309	PSS	BVW	$\begin{array}{r} 42^{\circ} 30^{\prime} \\ 5.074^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 73^{\circ} 8^{\prime} \\ 23.009^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Cheshire	v		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
NED-TAR-G-1100	Berkshire	Dalton	G	9.39	WPI-1310	PSS	BVW	$\begin{gathered} 42^{\circ} 29^{\prime} \\ 53.509^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 8^{\prime} \\ 7.280^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Pittsfield East	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	10
NED-TAR-G-1300	Berkshire	Hinsdale	G	13.57	NWI-1379	PFO	BVW	$\begin{gathered} 42^{\circ} 28^{\prime} \\ 31.878^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 6^{\prime} \\ 33.298^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	V		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0
NED-TAR-G-1300	Berkshire	Hinsdale	G	13.57	$\begin{aligned} & \hline \text { HN-M- } \\ & \text { W002 } \\ & \hline \end{aligned}$	PFO	BVW	$\begin{gathered} 42^{\circ} 28^{\prime} \\ 25.186^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 6^{\prime} \\ 34.646^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	v		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0
NED-TAR-G-1300	Berkshire	Hinsdale	G	13.57	$\begin{aligned} & \hline \text { HN-M- } \\ & \text { W002 } \\ & \hline \end{aligned}$	PEM	BVW	$\begin{gathered} 42^{\circ} 28^{\prime} \\ 21.082^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 6^{\prime} \\ 30.997 " \mathrm{~W} \\ \hline \end{gathered}$	Peru	V		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0
NED-TAR-G-1300	Berkshire	Hinsdale	G	13.57	$\begin{aligned} & \hline \text { HN-M- } \\ & \text { W004 } \\ & \hline \end{aligned}$	PSS	BVW	$\begin{gathered} 42^{\circ} 28^{\prime \prime} \\ 13.988^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 6^{\prime} \\ 15.861^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	5
NED-TAR-G-1300	Berkshire	Hinsdale	G	13.57	NWI-1380	PEM	BVW	$\begin{gathered} \hline 42^{\circ} 28^{\prime} \\ 1.9077^{\prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 5^{\prime} \\ 48.695^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	V		0.14	0.00	0.00	0.00	0.00	0.00	0.00	208
NED-TAR-G-1300	Berkshire	Hinsdale	G	13.57	NWI-1441	PEM	BVW	$\begin{gathered} 42^{\circ} 28^{\prime} \\ 6.512^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 73^{\circ} 5^{\prime} \\ 23.665 " \mathrm{~W} \end{gathered}$	Peru	V		0.09	0.00	0.00	0.00	0.00	0.00	0.00	122
NED-TAR-G-1300	Berkshire	Hinsdale	G	13.57	NWI-1381	PEM	BVW	$\begin{gathered} 42^{\circ} 28^{\prime} \\ 10.769^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 5^{\prime} \\ 6.125^{\prime \prime} \mathrm{W} \end{gathered}$	Peru	v		0.03	0.00	0.00	0.00	0.00	0.00	0.00	50

Table 2.3-7

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$	$\begin{aligned} & \text { Wetland } \\ & \mathbf{I D}^{3,4} \end{aligned}$	Wetland Class ${ }^{5}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method	Comments	Wetland Impact (acres)							Crossing Length (feet) ${ }^{11}$
													Construction ${ }^{8}$				Operation ${ }^{9}$			
				Begin ${ }^{\text {End }}$									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$	
NED-TAR-G-1300	Berkshire	Hinsdale	G	13.57	NWI-1443	PSS	BVW	$\begin{array}{r} 42^{\circ} 28^{\prime \prime} \\ 29.0444^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 73^{\circ} 4^{\prime} \\ 37.688^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	V		0.00	0.00	0.05	0.00	0.00	0.00	0.00	91
NED-TAR-G-1300	Berkshire	Hinsdale	G	13.57	NWI-1442	PEM	BVW	$\begin{gathered} 42^{\circ} 28^{\prime} \\ 33.904^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 4^{\prime} \\ 35.641^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	v		0.05	0.00	0.00	0.00	0.00	0.00	0.00	109
NED-TAR-G-1300	Berkshire	Hinsdale	G	13.57	HN-M- W011	PFO	BVW	$\begin{array}{r} 42^{\circ} 28^{\prime} \\ 24.239^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 73^{\circ} 4^{\prime} \\ 26.367^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	v		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0
NED-TAR-G-1300	Berkshire	Hinsdale	G	13.57	HN-MW011	PFO	BVW	$\begin{array}{r} 42^{\circ} 28^{\prime} \\ 23.656^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 73^{\circ} 4^{\prime} \\ 25.880^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	v		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0
NED-TAR-G-1300	Berkshire	Hinsdale	G	13.57	HN-MW010	PSS	BVW	$\begin{array}{r} 42^{\circ} 28^{\prime \prime} \\ 21.835^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 73^{\circ} 4^{\prime} \\ 24.839^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	V		0.00	0.00	0.07	0.00	0.00	0.00	0.00	110
NED-TAR-G-1300	Berkshire	Hinsdale	G	13.57	HN-MW010	PSS	BVW	$\begin{array}{r} 42^{\circ} 28^{\prime} \\ 22.641^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 73^{\circ} 4^{\prime} \\ 24.981 " \mathrm{~W} \\ \hline \end{gathered}$	Peru	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
NED-TAR-G-1300	Berkshire	Peru	G	13.57	NWI-1444	PSS	BVW	$\begin{gathered} 42^{\circ} 28^{\prime} \\ 1.488^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 3^{\prime} \\ 55.966^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
NED-TAR-G-1300	Berkshire	Peru	G	13.57	WPI-1344	PEM	BVW	$\begin{gathered} 42^{\circ} 28^{\prime} \\ 31.649^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 3^{\prime} \\ 42.544^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	V		0.03	0.00	0.00	0.00	0.00	0.00	0.00	20
NED-TAR-G-1300	Berkshire	Peru	G	13.57	NWI-1382	PEM	BVW	$\begin{gathered} 42^{\circ} 28^{\prime} \\ 31.119^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 3^{\prime} \\ 41.755^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	V		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0
NED-TAR-G-1300	Berkshire	Peru	G	13.57	WPI-1342	PFO	BVW	$\begin{array}{r} 42^{\circ} 28^{\prime} \\ 32.433^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 73^{\circ} 3^{\prime} \\ 42.319^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	v		0.00	0.01	0.00	0.00	0.00	0.00	0.00	5
NED-TAR-G-1300	Berkshire	Peru	G	13.57	NWI-1383	PEM	BVW	$\begin{array}{r} 42^{\circ} 28^{\prime} \\ 31.368^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 73^{\circ} 3^{\prime} \\ 40.594^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	V		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0
NED-TAR-G-1300	Berkshire	Peru	G	13.57	NWI-1384	PEM	BVW	$\begin{gathered} 42^{\circ} 28^{\prime} \\ 31.7022^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 73^{\circ} 3^{\prime} \\ 39.039^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	V		0.02	0.00	0.00	0.00	0.00	0.00	0.00	0
NED-TAR-G-1300	Berkshire	Windsor	G	13.57	WPI-1350	PSS	BVW	$\begin{gathered} 42^{\circ} 28^{\prime} \\ 41.391^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 73^{\circ} 3^{\prime \prime} \\ 2.422^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	V		0.00	0.00	0.23	0.00	0.00	0.00	0.00	340
NED-TAR-G-1300	Berkshire	Windsor	G	13.57	WPI-1351	Other	BVW	$\begin{array}{r} 42^{\circ} 28^{\prime} \\ 42.432^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 73^{\circ} 2^{\prime} \\ 59.425^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	v		0.00	0.00	0.00	0.02	0.00	0.00	0.00	0
NED-TAR-G-1400	Berkshire	Windsor	G	17.32	WPI-1355	PSS	BVW	$\begin{gathered} 42^{\circ} 28^{\prime} \\ 51.321^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 2^{\prime} \\ 21.6611 \mathrm{~W} \\ \hline \end{gathered}$	Peru	V		0.00	0.00	0.10	0.00	0.00	0.00	0.00	137
NED-TAR-G-1400	Berkshire	Windsor	G	17.32	WPI-1355	PSS	BVW	$\begin{array}{r} 42^{\circ} 28^{\prime} \\ 52.503^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 73^{\circ} 2^{\prime} \\ 18.753^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	v		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
NED-TAR-G-1400	Berkshire	Windsor	G	17.32	$\begin{aligned} & \hline \text { WR-M- } \\ & \text { W002 } \\ & \hline \end{aligned}$	PEM	BVW	$\begin{gathered} \hline 42^{\circ} 28^{\prime} \\ 54.982^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 2^{\prime} \\ 5.374 " \mathrm{~W} \\ \hline \end{gathered}$	Peru	v		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0
NED-TAR-G-1400	Berkshire	Windsor	G	17.32	$\begin{aligned} & \text { WR-M- } \\ & \text { W002 } \end{aligned}$	PEM	BVW	$\begin{gathered} 42^{\circ} 28^{\prime} \\ 55.689^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 2^{\prime} \\ 2.396^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	v		0.12	0.00	0.00	0.00	0.00	0.00	0.00	179
NED-TAR-G-1400	Berkshire	Windsor	G	17.32	WR-MW002	PEM	BVW	$\begin{gathered} 42^{\circ} 28^{\prime} \\ 56.138^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 73^{\circ} 1^{\prime} \\ 59.774^{\prime \prime} \mathrm{W} \end{gathered}$	Peru	v		0.03	0.00	0.00	0.00	0.00	0.00	0.00	0
NED-TAR-G-1400	Berkshire	Windsor	G	17.32	NWI-1385	PEM	BVW	$\begin{gathered} 42^{\circ} 28^{\prime \prime} \\ 59.829^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 1^{\prime} \\ 43.972^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	V		0.08	0.00	0.00	0.00	0.00	0.00	0.00	75
NED-TAR-G-1400	Berkshire	Windsor	G	17.32	WPI-1359	PEM	BVW	$\begin{gathered} 42^{\circ} 29^{\prime} \\ 1.278^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 1^{\prime} \\ 39.901^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	V		0.06	0.00	0.00	0.00	0.00	0.00	0.00	90
NED-TAR-G-1400	Berkshire	Windsor	G	17.32	WPI-1359	PEM	BVW	$\begin{gathered} 42^{\circ} 29^{\prime} \\ 1.967^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 73^{\circ} 1^{\prime} \\ 37.942^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peru	v		0.02	0.00	0.00	0.00	0.00	0.00	0.00	0
NED-TAR-G-1800	Hampshire	Plainfield	G	21.57	PL-M-W004	PEM	BVW	$\begin{aligned} & 42^{\circ} 30^{\prime} \\ & 31.916^{\prime \prime} \mathrm{N} \end{aligned}$	$\begin{gathered} 72^{\circ} 57^{\prime} \\ 54.390^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Plainfield	V		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0
NED-TAR-G-1800	Hampshire	Plainfield	G	21.57	PL-M-W004	PEM	BVW	$\begin{array}{r} 42^{\circ} 30^{\prime} \\ 31.965^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 57^{\prime} \\ 54.226^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Plainfield	V		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0

Table 2.3-7

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$	$\begin{gathered} \text { Wetland } \\ \mathbf{I D}^{3,4} \end{gathered}$	Wetland Class ${ }^{5}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method	Comments	Wetland Impact (acres)							Crossing Length (feet) ${ }^{11}$
													Construction ${ }^{8}$				Operation ${ }^{9}$			
				Begin ${ }^{\text {End }}$									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$	
NED-TAR-G-1800	Hampshire	Plainfield	G	21.57	NWI-1386	PEM	BVW	$\begin{array}{r} 42^{\circ} 30^{\prime} \\ 31.977^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 57^{\prime} \\ 54.194^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Plainfield	v		0.03	0.00	0.00	0.00	0.00	0.00	0.00	47
NED-TAR-G-1800	Hampshire	Plainfield	G	21.57	PL-E-W001	PFO	BVW	$\begin{gathered} 42^{\circ} 30^{\prime} \\ 33.307 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 57^{\prime} \\ 53.034^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Plainfield	V		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0
NED-TAR-G-2000	Hampshire	Plainfield	G	25.34	PL-E-W002	PFO	BVW	$\begin{array}{r} 42^{\circ} 31^{\prime} \\ 25.755^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 54^{\prime} \\ 14.886^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Plainfield	v		0.00	0.10	0.00	0.00	0.00	0.00	0.00	145
NED-TAR-G-2000	Hampshire	Plainfield	G	25.34	PL-E-W002	PFO	BVW	$\begin{gathered} 42^{\circ} 31^{\prime} \\ 26.332^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{aligned} & 72^{\circ} 54^{\prime} \\ & 12.889^{\prime \prime} \mathrm{W} \end{aligned}$	Plainfield	V		0.00	0.16	0.00	0.00	0.00	0.00	0.00	235
NED-TAR-G-2300	Franklin	Ashfield	G	27.23	NWI-1387	PEM	BVW	$\begin{gathered} 42^{\circ} 31^{\prime} \\ 41.925^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 52^{\prime} \\ 11.984^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashfield	V		0.03	0.00	0.00	0.00	0.00	0.00	0.00	75
NED-TAR-G-2300	Franklin	Ashfield	G	27.23	AS-M-W002	PSS	BVW	$\begin{gathered} 42^{\circ} 31^{\prime} \\ 42.084^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 52^{\prime} \\ 10.902^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashfield	V		0.00	0.00	0.15	0.00	0.00	0.00	0.00	230
NED-TAR-G-2300	Franklin	Ashfield	G	27.23	WPI-1438	PSS	BVW	$\begin{gathered} 42^{\circ} 31^{\prime} \\ 42.256^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 52^{\prime} \\ 10.810^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashfield	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
NED-TAR-G-2300	Franklin	Ashfield	G	27.23	NWI-1387	PEM	BVW	$\begin{array}{r} 42^{\circ} 31^{\prime} \\ 42.145^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 52^{\prime} \\ 10.474^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashfield	V		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0
NED-TAR-G-2300	Franklin	Ashfield	G	27.23	WPI-1441	PSS	BVW	$\begin{array}{r} 42^{\circ} 31^{\prime} \\ 42.675^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 52^{\prime} \\ 7.756^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashfield	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
NED-TAR-G-2300	Franklin	Ashfield	G	27.23	AS-M-W002	PSS	BVW	$\begin{gathered} 42^{\circ} 31^{\prime} \\ 42.792^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 52^{\prime} \\ 6.825^{\prime \prime} \mathrm{W} \end{gathered}$	Ashfield	V		0.00	0.00	0.02	0.00	0.00	0.00	0.00	5
NED-TAR-G-2300	Franklin	Ashfield	G	27.23	AS-M-W003	PSS	BVW	$\begin{array}{r} 42^{\circ} 31^{\prime} \\ 43.816^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 52^{\prime} \\ 0.674^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashfield	V		0.00	0.00	0.02	0.00	0.00	0.00	0.00	0
NED-TAR-G-2300	Franklin	Ashfield	G	27.23	NWI-1388	PEM	BVW	$\begin{gathered} 42^{\circ} 31^{\prime} \\ 44.2855^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 51^{\prime} \\ 52.725^{\prime \prime} \mathrm{W} \end{gathered}$	Ashfield	V		0.10	0.00	0.00	0.00	0.00	0.00	0.00	92
NED-TAR-G-2500	Franklin	Ashfield	G	28.56	NWI-1389	PEM	BVW	$\begin{gathered} 42^{\circ} 31^{\prime} \\ 55.033^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{aligned} & 72^{\circ} 50^{\prime} \\ & 31.187{ }^{\prime \prime} \mathrm{W} \end{aligned}$	Ashfield	v		0.10	0.00	0.00	0.00	0.00	0.00	0.00	150
NED-TAR-G-2600	Franklin	Ashfield	G	29.41	AS-M-W014	PEM	BVW	$\begin{array}{r} 42^{\circ} 32^{\prime} \\ 3.748^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 49^{\prime} \\ 36.451^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashfield	V		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0
NED-TAR-G-2600	Franklin	Ashfield	G	29.41	NWI-1390	PEM	BVW	$\begin{aligned} & 42^{\circ} 32^{\prime} \\ & 3.452^{\prime \prime} \mathrm{N} \\ & \hline \end{aligned}$	$\begin{gathered} 72^{\circ} 49^{\prime} \\ 36.187^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashfield	V		0.07	0.00	0.00	0.00	0.00	0.00	0.00	100
NED-TAR-G-2600	Franklin	Ashfield	G	29.41	AS-M-W014	PEM	BVW	$\begin{gathered} 42^{\circ} 32^{\prime} \\ 3.658^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 49^{\prime} \\ 35.163^{\prime \prime} \mathrm{W} \end{gathered}$	Ashfield	v		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0
NED-TAR-G-2600	Franklin	Ashfield	G	29.41	AS-M-W014	PSS	BVW	$\begin{gathered} 42^{\circ} 32^{\prime} \\ 3.704^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 49^{\prime} \\ 34.128^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashfield	v		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
NED-TAR-G-2600	Franklin	Ashfield	G	29.41	AS-M-W014	PSS	BVW	$\begin{gathered} 42^{\circ} 32^{\prime} \\ 3.832^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 72^{\circ} 49^{\prime} \\ 33.384^{\prime} \mathrm{W} \\ \hline \end{array}$	Ashfield	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
NED-TAR-G-2600	Franklin	Ashfield	G	29.41	AS-M-W015	PEM	BVW	$\begin{array}{r} 42^{\circ} 32^{\prime} \\ 4.663^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 49^{\prime} \\ 28.480^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashfield	V		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0
NED-TAR-G-2600	Franklin	Ashfield	G	29.41	WPI-1464	PEM	BVW	$\begin{array}{r} 42^{\circ} 32^{\prime} \\ 4.685^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 49^{\prime} \\ 28.205^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashfield	V		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0
NED-TAR-G-2600	Franklin	Ashfield	G	29.41	AS-M-W015	PEM	BVW	$\begin{array}{r} 42^{\circ} 32^{\prime} \\ 5.021^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 49^{\prime} \\ 26.787^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashfield	V		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0
NED-TAR-H-0200	Franklin	Ashfield	H	1.23	WPI-1486	PSS/PEM	BVW	$\begin{gathered} 42^{\circ} 32^{\prime} \\ 26.414^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 44^{\prime} \\ 24.910^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Shelburne Falls	V		0.00	0.00	0.10	0.00	0.00	0.00	0.00	201
NED-TAR-H-0200	Franklin	Ashfield	H	1.23	WPI-1484	PSS	BVW	$\begin{array}{r} 42^{\circ} 32^{\prime} \\ 26.4455^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 44^{\prime} \\ 24.400^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Shelburne Falls	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
NED-TAR-H-0200	Franklin	Ashfield	H	1.23	WPI-1485	PEM	BVW	$\begin{array}{r} 42^{\circ} 32^{\prime} \\ 26.227^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 44^{\prime} \\ 23.650^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Shelburne Falls	V		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0

Table 2.3-7

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$	$\begin{gathered} \text { Wetland } \\ \mathbf{I D}^{3,4} \end{gathered}$	Wetland Class ${ }^{5}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method	Comments	Wetland Impact (acres)							Crossing Length (feet) ${ }^{11}$
													Construction ${ }^{8}$				Operation ${ }^{9}$			
				Begin ${ }^{\text {End }}$									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$	
NED-TAR-H-0200	Franklin	Ashfield	H	1.23	WPI-1489	PSS	BVW	$\begin{array}{r} 42^{\circ} 32^{\prime} \\ 26.250^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 44^{\prime} \\ 23.3933^{\prime} \mathrm{W} \\ \hline \end{gathered}$	Shelburne Falls	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
NED-TAR-H-0200	Franklin	Ashfield	H	1.23	WPI-1487	Other	BVW	$\begin{gathered} 42^{\circ} 32^{\prime} \\ 26.394^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 44^{\prime} \\ 23.848^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Shelburne Falls	v		0.00	0.00	0.00	0.01	0.00	0.00	0.00	15
NED-TAR-H-0200	Franklin	Ashfield	H	1.23	WPI-1488	PSS	BVW	$\begin{gathered} 42^{\circ} 32^{\prime} \\ 26.579^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 44^{\prime} \\ 23.041^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Shelburne Falls	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
NED-TAR-H-0200	Franklin	Conway	H	1.23	WPI-1493	PSS/PEM	BVW	$\begin{gathered} 42^{\circ} 32^{\prime} \\ 27.876^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 72^{\circ} 43^{\prime} \\ 43.222^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Shelburne Falls	v		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
NED-TAR-H-0300	Franklin	Conway	H	2.29	CN-M- W001	PFO	BVW	$\begin{array}{r} 42^{\circ} 32^{\prime} \\ 28.696^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 43^{\prime} \\ 20.198^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Shelburne Falls	v		0.00	0.04	0.00	0.00	0.00	0.00	0.00	0
NED-TAR-H-0300	Franklin	Conway	H	2.29	WPI-1499	PSS	BVW	$\begin{gathered} 42^{\circ} 32^{\prime} \\ 29.153^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 43^{\prime} \\ 20.783^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Shelburne Falls	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
NED-TAR-H-0300	Franklin	Conway	H	2.29	WPI-1497	PSS	BVW	$\begin{gathered} 42^{\circ} 32^{\prime} \\ 28.798^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 43^{\prime} \\ 20.743^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Shelburne Falls	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
NED-TAR-H-0300	Franklin	Conway	H	2.29	WPI-1499	PSS	BVW	$\begin{gathered} 42^{\circ} 32^{\prime} \\ 29.085^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 43^{\prime} \\ 20.617 \mathrm{~W} \\ \hline \end{gathered}$	Shelburne Falls	V		0.00	0.00	0.20	0.00	0.00	0.00	0.00	341
NED-TAR-H-0300	Franklin	Conway	H	2.29	WPI-1497	PSS	BVW	$\begin{gathered} 42^{\circ} 32^{\prime} \\ 28.741^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 43^{\prime} \\ 20.475^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Shelburne Falls	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
NED-TAR-H-0300	Franklin	Conway	H	2.29	WPI-1498	PSS/PEM	BVW	$\begin{gathered} 42^{\circ} 32^{\prime} \\ 28.789^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 43^{\prime} \\ 20.202^{\prime \prime} \mathrm{W} \end{gathered}$	Shelburne Falls	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
NED-TAR-H-0300	Franklin	Conway	H	2.29	WPI-1501	PSS	BVW	$\begin{gathered} 42^{\circ} 32^{\prime} \\ 41.854^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 42^{\prime} \\ 17.952^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Shelburne Falls	v		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
NED-TAR-H-0300	Franklin	Conway	H	2.29	WPI-1502	PSS	BVW	$\begin{gathered} 42^{\circ} 32^{\prime} \\ 42.181^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 42^{\prime} \\ 18.075^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Shelburne Falls	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
NED-TAR-H-0300	Franklin	Conway	H	2.29	WPI-1503	PSS/PEM	BVW	$\begin{gathered} 42^{\circ} 32^{\prime} \\ 55.831^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 41^{\prime} \\ 33.473^{\prime \prime} \mathrm{W} \end{gathered}$	Shelburne Falls	v		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
NED-TAR-H-0300	Franklin	Conway	H	2.29	WPI-1507	PSS	BVW	$\begin{gathered} 42^{\circ} 32^{\prime} \\ 56.129^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 41^{\prime} \\ 33.442^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Shelburne Falls	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
NED-TAR-H-0300	Franklin	Conway	H	2.29	WPI-1507	PSS	BVW	$\begin{gathered} 42^{\circ} 32^{\prime} \\ 56.123^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 41^{\prime} \\ 33.314^{\prime \prime} \mathrm{W} \end{gathered}$	Shelburne Falls	v		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
NED-TAR-H-0500	Franklin	Conway	H	4.14	WPI-1509	PSS	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 1.864^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 41^{\prime} \\ 14.248^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Shelburne Falls	v		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
NED-TAR-H-0500	Franklin	Conway	H	4.14	WPI-1514	PSS/PEM	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 4.098^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 72^{\circ} 41^{\prime} \\ 4.5044^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Shelburne Falls	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
NED-TAR-H-0500	Franklin	Conway	H	4.14	$\begin{aligned} & \hline \text { CN-M- } \\ & \text { W003 } \\ & \hline \end{aligned}$	PSS	BVW	$\begin{array}{r} 42^{\circ} 33^{\prime} \\ 4.056^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 41^{\prime} \\ 4.146^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Shelburne Falls	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
NED-TAR-H-0500	Franklin	Conway	H	4.14	WPI-1516	PSS	BVW	$\begin{array}{r} 42^{\circ} 33^{\prime} \\ 4.404^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 41^{\prime} \\ 3.869^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Shelburne Falls	v		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
NED-TAR-H-0500	Franklin	Conway	H	4.14	WPI-1517	PSS	BVW	$\begin{array}{r} 42^{\circ} 33^{\prime} \\ 4.776^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 41^{\prime} \\ 3.759^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Shelburne Falls	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
NED-TAR-H-1100	Franklin	Montague	H	11.57	WPI-1569	PEM	BVW	$\begin{array}{r} 42^{\circ} 33^{\prime} \\ 52.002^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 33^{\prime} \\ 14.946^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenfield	v		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0
NED-TAR-H-1100	Franklin	Montague	H	11.57	WPI-1571	PEM	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 51.939^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 33^{\prime} \\ 14.564^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenfield	V		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0
NED-TAR-H-1100	Franklin	Montague	H	11.57	WPI-1572	PFO	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 52.220^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 33^{\prime} \\ 14.724^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenfield	V		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0
NED-TAR-H-1100	Franklin	Montague	H	11.57	WPI-1575	PEM	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 53.451^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 72^{\circ} 33 ' \\ 9.7011^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Greenfield	v		0.01	0.00	0.00	0.00	0.00	0.00	0.00	5

Table 2.3-7

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$	$\begin{gathered} \text { Wetland } \\ \mathbf{I D}^{3,4} \end{gathered}$	Wetland Class ${ }^{5}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method	Comments	Wetland Impact (acres)							Crossing Length (feet) ${ }^{11}$
													Construction ${ }^{8}$				Operation ${ }^{9}$			
				Begin ${ }^{\text {End }}$									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$	
NED-TAR-H-1100	Franklin	Montague	H	11.57	WPI-1576	PEM	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 53.454^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 33^{\prime} \\ 9.648^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenfield	V		0.01	0.00	0.00	0.00	0.00	0.00	0.00	3
NED-TAR-H-1600	Franklin	Erving	H	16.59	WPI-1586	PSS	BVW	$\begin{gathered} 42^{\circ} 35^{\prime} \\ 50.904^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 27^{\prime} \\ 56.435^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Millers Falls	v		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
NED-TAR-H-1600	Franklin	Northfield	H	16.59	WPI-1590	PSS	BVW	$\begin{array}{r} 42^{\circ} 37^{\prime} \\ 6.817^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 27^{\prime} \\ 53.818^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Millers Falls	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
NED-TAR-H-1700	Franklin	Northfield	H	20.43	WPI-1595	PSS/PEM	BVW	$\begin{gathered} 42^{\circ} 37^{\prime} \\ 35.626^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 26^{\prime} \\ 43.424^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Northfield	v		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
NED-TAR-H-1700	Franklin	Northfield	H	20.43	WPI-1596	PSS/PEM	BVW	$\begin{gathered} 42^{\circ} 37^{\prime} \\ 40.413^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 26^{\prime} \\ 35.337^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Northfield	v		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
NED-TAR-H-1700	Franklin	Northfield	H	20.43	WPI-1597	PSS/PEM	BVW	$\begin{gathered} 42^{\circ} 37^{\prime} \\ 40.671^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 26^{\prime} \\ 35.528^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Northfield	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
NED-TAR-H-1700	Franklin	Northfield	H	20.43	WPI-1598	PSS/PEM	BVW	$\begin{array}{r} 42^{\circ} 37^{\prime \prime} \\ 42.905^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 26^{\prime} \\ 31.200^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Northfield	V		0.00	0.00	0.03	0.00	0.00	0.00	0.00	50
NED-TAR-H-1700	Franklin	Northfield	H	20.43	WPI-1599	PSS/PEM	BVW	$\begin{gathered} 42^{\circ} 37^{\prime} \\ 52.087^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 26^{\prime} \\ 14.094^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Northfield	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
NED-TAR-H-1800	Franklin	Northfield	H	22.91	NO-M- W002A	PEM	BVW	$\begin{gathered} 42^{\circ} 39^{\prime} \\ 30.132^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 25 ' \\ 29.814^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Northfield	V		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0
NED-TAR-H-1800	Franklin	Northfield	H	22.91	$\begin{aligned} & \text { NO-M- } \\ & \text { W002 } \end{aligned}$	PEM	BVW	$\begin{gathered} 42^{\circ} 39^{\prime} \\ 30.362^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 25 ' \\ 30.042^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Northfield	V		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0
NED-TAR-H-1800	Franklin	Northfield	H	22.91	WPI-1623	PSS/PEM	BVW	$\begin{gathered} 42^{\circ} 39^{\prime} \\ 33.005^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 25^{\prime} \\ 28.390^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Northfield	v		0.00	0.00	0.05	0.00	0.00	0.00	0.00	37
NED-TAR-H-1800	Franklin	Northfield	H	22.91	WPI-1624	PSS/PEM	BVW	$\begin{gathered} 42^{\circ} 39^{\prime} \\ 34.289^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 25 ' \\ 26.915 " \mathrm{~W} \\ \hline \end{gathered}$	Northfield	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
NED-TAR-H-1800	Franklin	Northfield	H	22.91	WPI-1625	Other	BVW	$\begin{gathered} 42^{\circ} 39^{\prime} \\ 34.328^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 25^{\prime} \\ 26.844^{\prime \prime} \mathrm{W} \end{gathered}$	Northfield	v		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0
NED-TAR-H-1800	Franklin	Northfield	H	22.91	WPI-1626	PSS/PEM	BVW	$\begin{gathered} 42^{\circ} 39^{\prime} \\ 35.032^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{array}{r} 72^{\circ} 25^{\prime} \\ 25.938^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Northfield	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
NED-TAR-H-1800	Franklin	Northfield	H	22.91	WPI-1627	PSS/PEM	BVW	$\begin{gathered} 42^{\circ} 39^{\prime} \\ 35.739^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 25 \prime \\ 25.838^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Northfield	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
NED-TAR-H-1800	Franklin	Northfield	H	22.91	WPI-1628	PSS/PEM	BVW	$\begin{gathered} 42^{\circ} 39^{\prime} \\ 36.189^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 25^{\prime} \\ 25.036^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Northfield	v		0.00	0.00	0.04	0.00	0.00	0.00	0.00	5
NED-TAR-H-1800	Franklin	Northfield	H	22.91	WPI-1629	PSS/PEM	BVW	$\begin{gathered} \hline 42^{\circ} 39^{\prime} \\ 37.529^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 25^{\prime} \\ 24.507 \mathrm{~W} \\ \hline \end{gathered}$	Northfield	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
NED-TAR-H-1800	Franklin	Northfield	H	22.91	WPI-1630	PSS/PEM	BVW	$\begin{gathered} 42^{\circ} 39^{\prime} \\ 39.4677^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 25^{\prime} \\ 22.385^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Northfield	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
NED-TAR-H-2000	Franklin	Northfield	H	24.62	WPI-1634	PSS/PEM	BVW	$\begin{gathered} \hline 42^{\circ} 40^{\prime} \\ 42.010^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 24^{\prime} \\ 29.980^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Northfield	V		0.00	0.00	0.02	0.00	0.00	0.00	0.00	22
NED-TAR-H-2000	Franklin	Northfield	H	24.62	WPI-1642	PEM	BVW	$\begin{gathered} 42^{\circ} 41^{\prime} \\ 53.868^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 24^{\prime} \\ 14.240^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Northfield	v		0.02	0.00	0.00	0.00	0.00	0.00	0.00	0
NED-TAR-H-2000	Franklin	Northfield	H	24.62	WPI-1643	Other	BVW	$\begin{gathered} 42^{\circ} 41^{\prime} \\ 55.271^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 24^{\prime} \\ 13.528^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Northfield	v		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0
NED-TAR-H-2000	Franklin	Northfield	H	24.62	WPI-1644	PEM	BVW	$\begin{gathered} 42^{\circ} 41^{\prime} \\ 56.099^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 24^{\prime} \\ 13.740^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Northfield	V		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0
NED-TAR-H-2101	Franklin	Warwick	H	0.32	NWI-1399	PFO	BVW	$\begin{gathered} 42^{\circ} 43^{\prime} \\ 10.215^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 23^{\prime} \\ 28.173^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Northfield	V		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0
NED-TAR-H-2101	Franklin	Warwick	H	0.32	NWI-1392	PEM	BVW	$\begin{array}{r} 42^{\circ} 43^{\prime} \\ 13.058^{\prime \prime} \mathrm{N} \end{array}$	$\begin{gathered} 72^{\circ} 23^{\prime} \\ 21.427^{\prime \prime} \mathrm{W} \end{gathered}$	Northfield	v		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0

Table 2.3-7

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$	$\begin{aligned} & \text { Wetland } \\ & \mathbf{I D}^{3,4} \end{aligned}$	Wetland Class ${ }^{5}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method	Comments	Wetland Impact (acres)							Crossing Length (feet) ${ }^{11}$
													Construction ${ }^{8}$				Operation ${ }^{9}$			
				Begin ${ }^{\text {a }}$ End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$	
NED-TAR-K-0100	Middlesex	Dracut	K	0.10	NWI-1402	PSS/FO	BVW	$\begin{array}{r} 42^{\circ} 42^{\prime} \\ 6.260^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 16^{\prime} \\ 51.750^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	v		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
NED-TAR-K-0100	Middlesex	Dracut	K	0.10	WPI-2702	PSS	BVW	$\begin{gathered} 42^{\circ} 41^{\prime} \\ 49.802^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 16^{\prime} \\ 34.141^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	v		0.00	0.00	0.02	0.00	0.00	0.00	0.00	0
NED-TAR-K-0100	Middlesex	Dracut	K	0.10	DR-D-W008	PSS	BVW	$\begin{array}{r} 42^{\circ} 41^{\prime} \\ 36.402^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 16^{\prime} \\ 21.445^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	V		0.00	0.00	0.06	0.00	0.00	0.00	0.00	95
NED-TAR-K-0100	Middlesex	Dracut	K	0.10	WPI-2704	PEM	BVW	$\begin{gathered} 42^{\circ} 41^{\prime} \\ 30.707{ }^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 16^{\prime} \\ 14.670^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	v		0.05	0.00	0.00	0.00	0.00	0.00	0.00	0
NED-TAR-N-0200	Essex	Andover	N	1.37	WPI-2749	PSS	BVW	$\begin{gathered} 42^{\circ} 39 ' \\ 21.673^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 14^{\prime} \\ 24.983^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
NED-TAR-N-0200	Essex	Andover	N	1.37	WPI-2750	PEM	BVW	$\begin{array}{r} 42^{\circ} 39^{\prime} \\ 21.472^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 14^{\prime} \\ 25.373^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	V		0.07	0.00	0.00	0.00	0.00	0.00	0.00	115
NED-TAR-N-0200	Essex	Andover	N	1.37	WPI-2751	PSS	BVW	$\begin{gathered} 42^{\circ} 39^{\prime} \\ 20.578^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 14^{\prime} \\ 24.920^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
NED-TAR-N-0200	Essex	Andover	N	1.37	WPI-2752	PSS	BVW	$\begin{gathered} 42^{\circ} 39^{\prime} \\ 19.428^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 14^{\prime} \\ 24.956^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	V		0.00	0.00	0.02	0.00	0.00	0.00	0.00	25
NED-TAR-N-0200	Essex	Andover	N	1.37	WPI-2753	PFO	BVW	$\begin{gathered} 42^{\circ} 39^{\prime} \\ 12.598^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 14^{\prime} \\ 22.581^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	v		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0
NED-TAR-N-0500	Middlesex	Tewksbury	N	2.51	NWI-1403	PSS	BVW	$\begin{gathered} 42^{\circ} 38^{\prime} \\ 40.198^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 14^{\prime} \\ 19.398^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	V		0.00	0.00	0.03	0.00	0.00	0.00	0.00	35
NED-TAR-N-0500	Middlesex	Tewksbury	N	2.51	NWI-1404	PSS	BVW	$\begin{array}{r} 42^{\circ} 38^{\prime} \\ 41.277^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 14^{\prime} \\ 17.406^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	12
NED-TAR-N-1000	Middlesex	Wilmington	N	8.53	WL-P-W003	PSS	BVW	$\begin{array}{r} 42^{\circ} 35^{\prime} \\ 26.701 \mathrm{~N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 9^{\prime} \\ 9.014^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	v		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
NED-TAR-N-1100	Middlesex	Wilmington	N	9.30	WPI-2811	PEM	BVW	$\begin{gathered} 42^{\circ} 35^{\prime} \\ 13.100^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 8^{\prime} \\ 24.971^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	V		0.07	0.00	0.00	0.00	0.00	0.00	0.00	0
NED-TAR-N-1100	Middlesex	Wilmington	N	9.30	WPI-2810	Other	BVW	$\begin{gathered} 42^{\circ} 35^{\prime} \\ 13.286^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 8^{\prime} \\ 24.590^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	V		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0
NED-TAR-N-1200	Middlesex	Wilmington	N	9.98	WPI-2816	PEM	BVW	$\begin{gathered} 42^{\circ} 34^{\prime} \\ 52.318^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 7^{\prime} \\ 55.415^{\prime \prime} \mathrm{W} \end{gathered}$	Wilmington	V		0.25	0.00	0.00	0.00	0.00	0.00	0.00	350
NED-TAR-N-1200	Middlesex	Wilmington	N	9.98	WPI-2815	PFO	BVW	$\begin{gathered} 42^{\circ} 34^{\prime} \\ 52.418^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 7^{\prime} \\ 55.183^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	v		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0
NED-TAR-N-1200	Middlesex	North Reading	N	9.98	WPI-2816	PEM	BVW	$\begin{gathered} 42^{\circ} 34^{\prime} \\ 48.695^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 7^{\prime} \\ 52.104^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	V		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0
NED-TAR-N-1200	Middlesex	North Reading	N	9.98	NWI-1407	Other	BVW	$\begin{gathered} 42^{\circ} 34^{\prime} \\ 40.980^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 7^{\prime} \\ 49.527^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	v		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0
NED-TAR-N-1200	Middlesex	North Reading	N	9.98	WPI-2819	PEM	BVW	$\begin{array}{r} 42^{\circ} 34^{\prime} \\ 42.632^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 7^{\prime \prime} \\ 46.189^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	V		0.02	0.00	0.00	0.00	0.00	0.00	0.00	31
NED-TAR-N-1200	Middlesex	North Reading	N	9.98	WPI-2820	PFO	BVW	$\begin{gathered} 42^{\circ} 34^{\prime} \\ 39.555^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 7^{\prime} \\ 43.312^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	v		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0
NED-TAR-N-1200	Middlesex	North Reading	N	9.98	WPI-2821	PSS	BVW	$\begin{gathered} 42^{\circ} 34^{\prime} \\ 37.463^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 7^{\prime} \\ 32.706^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
NED-TAR-N-1200	Middlesex	North Reading	N	9.98	WPI-2821	PSS	BVW	$\begin{array}{r} 42^{\circ} 34^{\prime} \\ 36.322^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 7^{\prime} \\ 30.322^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Wilmington	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
NED-TAR-N-1400	Middlesex	North Reading	N	12.66	NWI-1411	PFO	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 35.074^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 5^{\prime} \\ 23.850^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Reading	V		0.00	0.03	0.00	0.00	0.00	0.00	0.00	5
NED-TAR-N-1400	Middlesex	North Reading	N	12.66	WPI-2861	PFO	BVW	$\begin{array}{r} 42^{\circ} 33^{\prime} \\ 35.465 "^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 5^{\prime} \\ 10.920^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Reading	V		0.00	0.17	0.00	0.00	0.00	0.00	0.00	383

Table 2.3-7

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$	$\begin{gathered} \text { Wetland } \\ \mathbf{I D}^{3,4} \end{gathered}$	Wetland Class ${ }^{5}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method	Comments	Construction ${ }^{8}$				Operation ${ }^{9}$			Crossing Length (feet) ${ }^{11}$
				Begin ${ }^{\text {End }}$									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$	
NED-TAR-N-1400	Middlesex	North Reading	N	12.66	NWI-1413	PFO	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 35.400^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 5^{\prime} \mathrm{W} \\ 10.772^{\prime \prime} \mathrm{C} \\ \hline \end{gathered}$	Reading	V		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0
NED-TAR-O-0101	Essex	Peabody	O	4.05	NWI-1416	PFO	BVW	$\begin{gathered} 42^{\circ} 33^{\prime} \\ 23.021 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} \hline 71^{\circ} 0^{\prime} \\ 14.311^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Reading	V		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0
NED-TAR-Q-0100	Middlesex	Townsend	Q	6.58	WPI-3257	PEM	BVW	$\begin{gathered} 42^{\circ} 41^{\prime} \\ 13.6566^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 45 ' \\ 49.5677^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashby	v		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0
NED-TAR-Q-0600	Middlesex	Townsend	Q	9.34	WPI-3287	PSS	BVW	$\begin{array}{r} 42^{\circ} 39^{\prime} \\ 4.119^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 1.928^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashby	V		0.00	0.00	1.31	0.00	0.00	0.00	0.00	1,867
NED-TAR-Q-0600	Middlesex	Townsend	Q	9.34	WPI-3295	PEM	BVW	$\begin{gathered} 42^{\circ} 38^{\prime} \\ 45.439^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 1.042^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashby	V		0.09	0.00	0.00	0.00	0.00	0.00	0.00	138
NED-TAR-Q-0600	Middlesex	Townsend	Q	9.34	WPI-3296	PSS	BVW	$\begin{gathered} 42^{\circ} 38^{\prime} \\ 44.477^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 45 ' \\ 0.991^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashby	V		0.00	0.00	0.04	0.00	0.00	0.00	0.00	42
NED-TAR-Q-0600	Middlesex	Townsend	Q	9.34	WPI-3301	PSS	BVW	$\begin{array}{r} 42^{\circ} 38^{\prime} \\ 43.683 " \mathrm{~N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 45 ' \\ 0.8375^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashby	V		0.00	0.00	1.53	0.00	0.00	0.00	0.00	2,370
NED-TAR-Q-0600	Middlesex	Townsend	Q	9.34	WPI-3300	PFO	BVW	$\begin{gathered} 42^{\circ} 38^{\prime} \\ 36.376^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 1.4566^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashby	V		0.00	0.01	0.00	0.00	0.00	0.00	0.00	25
NED-TAR-Q-0600	Middlesex	Townsend	Q	9.34	WPI-3300	PFO	BVW	$\begin{gathered} 42^{\circ} 38^{\prime} \\ 34.770^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 1.3855^{\prime} \mathrm{W} \\ \hline \end{gathered}$	Ashby	V		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0
NED-TAR-Q-0600	Middlesex	Townsend	Q	9.34	WPI-3301	PSS	BVW	$\begin{gathered} 42^{\circ} 38^{\prime} \\ 22.3355^{\prime \prime} \end{gathered}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 0.002^{\prime \prime} \mathrm{W} \end{gathered}$	Townsend	V		0.00	0.00	0.67	0.00	0.00	0.00	0.00	1,510
NED-TAR-Q-0600	Middlesex	Townsend	Q	9.34	WPI-3303	Other	BVW	$\begin{gathered} 42^{\circ} 38^{\prime} \\ 20.786^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 59.214^{\prime \prime} \mathrm{W} \end{gathered}$	Townsend	V		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0
NED-TAR-Q-0600	Worcester	Lunenburg	Q	9.34	WPI-3301	PSS	BVW	$\begin{gathered} 42^{\circ} 38^{\prime} \\ 12.238^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 59.726^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Townsend	V		0.00	0.00	0.47	0.00	0.00	0.00	0.00	0
NED-TAR-Q-0600	Worcester	Lunenburg	Q	9.34	WPI-3306	PSS	BVW	$\begin{aligned} & 42^{\circ} 38^{\prime} \\ & 1.926^{\prime \prime} \mathrm{N} \end{aligned}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 0.000^{\prime \prime} \mathrm{W} \end{gathered}$	Townsend	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
NED-TAR-Q-0600	Worcester	Lunenburg	Q	9.34	WPI-3306	PSS	BVW	$\begin{array}{r} 42^{\circ} 38^{\prime} \\ 1.910 \\ \hline \end{array}$	$\begin{array}{r} 71^{\circ} 45^{\prime} \\ 0.001 " \mathrm{~W} \\ \hline \end{array}$	Ashby	v		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
NED-TAR-Q-0600	Worcester	Lunenburg	Q	9.34	WPI-3307	PSS	BVW	$\begin{gathered} 42^{\circ} 38^{\prime} \\ 1.523^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{aligned} & 77^{\circ} 45^{\prime} \\ & 0.130^{\prime \prime} \mathrm{W} \\ & \hline \end{aligned}$	Ashby	v		0.00	0.00	0.02	0.00	0.00	0.00	0.00	0
NED-TAR-Q-0600	Worcester	Lunenburg	Q	9.34	WPI-3307	PSS	BVW	$\begin{array}{r} 42^{\circ} 38^{\prime} \\ 1.261^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 71^{\circ} 45^{\prime} \\ 0.001{ }^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Townsend	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	20
NED-TAR-Q-0600	Worcester	Lunenburg	Q	9.34	WPI-3311	PSS	BVW	$\begin{gathered} 42^{\circ} 37 \prime \\ 57.778^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{aligned} & 71^{\circ} 45^{\prime} \\ & 0.532^{\prime \prime} \mathrm{W} \\ & \hline \end{aligned}$	Ashby	V		0.00	0.00	0.05	0.00	0.00	0.00	0.00	70
NED-TAR-Q-0600	Worcester	Lunenburg	Q	9.34	WPI-3310	PSS	BVW	$\begin{gathered} 42^{\circ} 37 \prime \\ 56.4577^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 45^{\prime} \\ 0.622^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Ashby	v		0.00	0.00	0.02	0.00	0.00	0.00	0.00	15
NED-TAR-Q-0600	Worcester	Lunenburg	Q	9.34	WPI-3313	PSS	BVW	$\begin{gathered} 42^{\circ} 37 \prime \\ 48.694 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 45^{\prime} \\ 1.033^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Ashby	V		0.00	0.00	0.13	0.00	0.00	0.00	0.00	215
Access Roads Subtotal													1.82	0.65	7.02	0.15	0.00	0.00	0.00	12,297
Massachusetts Total ${ }^{12}$													23.88	74.27	37.61	2.48	20.60	3.18	0.00	66,186

Table 2.3-7

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{aligned} & \text { Wetland } \\ & \mathbf{I D}^{3,4} \end{aligned}$	Wetland Class ${ }^{5}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method ${ }^{7}$	Comments	Wetland Impact (acres)							Crossing Length (feet) ${ }^{11}$
						Construction ${ }^{8}$								Operation ${ }^{9}$							
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$	

 available data was used where there was no parcel access and no photo interpreted aerial coverage. The publically available data is from the USFWS - NWI (2014).
1 Each segment is associated with its own set of mileposts beginning at MP 0.00 .
Mileposts for Contractor Yards and Access Roads are given as nearest MP, which indicates the point at which the Access Road or Contractor Yard connects with the pipeline construction ROW, or closest MP to the construction ROW if there is no direct connection.
3 Wetland ID in the form of NWI-XXX are USFWS-NWI wetlands and wetland ID in the form WPI-XXX are photo interp
5 Wetland classification is in accordance with Cowardin et al 1979: PEM = Palustrine Emergent Wetland; PSS = Palustrine Scrub-Shrub; PFO = Palustrine Forested Wetland; PUB = Palustrine Unconsolidated Bottom; Other = accommodates all other wetland class types.
6 Massachusetts classifies wetlands by the MADEP under the Massachusetts Wetlands Protection Act ("WPA") (Massachusetts General Law ["MGL"] Chapter 131 Section 40 . BVW = bordering vegetated wetlands

 specific ECP.

 easement and does not include overlap with TGP's existing pipelines. The existing permanent easement for TGP's existing pipelines are not included in the operational wetland impacts.
10 Wetland type not classified by NWI as PEM, PSS, or PFO
1 Crossing length of 0 feet indicates that a wetland is impacted by only workspace (not the pipeline centerline).
2 The totals shown in this table may not equal the sum of addends due to rounding.

Table 2.3-8

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\underset{\substack{\text { Wetland } \\ \mathbf{I D}^{3,4}}}{ }$	Wetland Class ${ }^{5}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method	Comments			Wetl	dimpact	(acres)			Crossing Length (feet) ${ }^{11}$	
						Construction ${ }^{8}$								Operation ${ }^{9}$								
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$		
Pipeline Facilities																						
Wright to Dracut Pipeline Segment	Cheshire	Winchester	I	0.19	0.23		NWI-1097	PFO	N/A	$\begin{gathered} 42^{\circ} 43^{\prime} \\ 37.361 \mathrm{~N} \end{gathered}$	$\begin{gathered} 72^{\circ} 23^{\prime} \\ 26.260^{\prime \prime} \mathrm{W} \end{gathered}$	Northfield	II		0.00	0.23	0.00	0.00	0.14	0.00	0.00	198
Wright to Dracut Pipeline Segment	Cheshire	Winchester	I	0.75	0.80	NWI-1098	PFO	N/A	$\begin{array}{r} 42^{\circ} 44^{\prime} \\ 2.307^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 23^{\prime} \\ 6.319^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Northfield	II		0.00	0.35	0.00	0.00	0.14	0.00	0.00	198	
Wright to Dracut Pipeline Segment	Cheshire	Winchester	I	1.92	1.99	NWI-1099	PFO	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 9.469^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 21^{\prime} \\ 44.425^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Mount Grace	II		0.00	0.65	0.00	0.00	0.25	0.00	0.00	367	
Wright to Dracut Pipeline Segment	Cheshire	Winchester	I	1.98	2.04	NWI-1100	PSS	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 10.022^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 21^{\prime} \\ 39.593^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Mount Grace	II		0.00	0.00	0.47	0.00	0.00	0.06	0.00	282	
Wright to Dracut Pipeline Segment	Cheshire	Winchester	I	3.89	3.96	WC-X-W004	PFO	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 17.284^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 72^{\circ} 20^{\prime} \\ 49.289^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	West Swanzey	II		0.00	0.41	0.00	0.00	0.15	0.00	0.00	248	
Wright to Dracut Pipeline Segment	Cheshire	Winchester	I	3.96	3.97	WC-X-W004	PFO	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 20.328^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 72^{\circ} 20^{\prime} \\ 46.892^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	West Swanzey	II		0.00	0.05	0.00	0.00	0.02	0.00	0.00	29	
Wright to Dracut Pipeline Segment	Cheshire	Winchester	I	3.97	3.98	WC-X-W004	PFO	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 21.438^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 20^{\prime} \\ 46.884^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	West Swanzey	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Winchester	I	3.99	4.01	WC-X-W004	PFO	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 22.102 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{array}{r} 72^{\circ} 20^{\prime} \\ 46.380^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	West Swanzey	II		0.00	0.09	0.00	0.00	0.03	0.00	0.00	50	
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	6.48	6.49	WPI-1674	Other	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 53.613^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 19^{\prime} \\ 8.490^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	West Swanzey	II		0.00	0.00	0.00	0.03	0.00	0.00	0.00	11	
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	6.49	6.52	WPI-1675	PEM	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 53.866^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 72^{\circ} 19^{\prime} \\ 8.259 " \mathrm{~W} \\ \hline \end{array}$	West Swanzey	II		0.24	0.00	0.00	0.00	0.00	0.00	0.00	130	
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	7.01	7.03	WPI-1680	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 55.071 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 18^{\prime} \\ 30.960^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	West Swanzey	II		0.00	0.14	0.00	0.00	0.06	0.00	0.00	84	
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	7.02	7.02	WPI-1679	PEM	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 55.794^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 18^{\prime} \\ 30.889^{\prime \prime} \mathrm{W} \end{gathered}$	West Swanzey	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	7.15	7.16	WPI-1683	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 55.867 " \mathrm{~N} \end{gathered}$	$\begin{gathered} 72^{\circ} 18^{\prime} \\ 21.389 " \mathrm{~W} \end{gathered}$	West Swanzey	II		0.00	0.05	0.00	0.00	0.02	0.00	0.00	28	
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	7.16	7.17	WPI-1684	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 56.194^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 18^{\prime} \\ 20.811^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	West Swanzey	II		0.00	0.07	0.00	0.00	0.03	0.00	0.00	40	
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	7.50	7.61	WPI-1688	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 56.679^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 17 \prime \\ 56.473^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	West Swanzey	II		0.00	0.69	0.00	0.00	0.27	0.00	0.00	443	
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	7.53	7.54	WPI-1686	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 57.4933^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 17^{\prime} \\ 54.309^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	West Swanzey	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	7.54	7.55	WPI-1687	PSS/PEM	N/A	$\begin{gathered} \hline 42^{\circ} 46^{\prime} \\ 57.503^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 17^{\prime} \\ 53.631^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	West Swanzey	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	7.75	7.78	WPI-1689	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 58.046^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 17 \prime \\ 39.145^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	West Swanzey	II		0.00	0.00	0.07	0.00	0.00	0.01	0.00	19	
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	8.46	8.48	WPI-1690	PFO	N/A	$\begin{aligned} & 42^{\circ} 47^{\prime} \\ & 4.881^{\prime \prime} \mathrm{N} \end{aligned}$	$\begin{gathered} 72^{\circ} 16^{\prime} \\ 49.688^{\prime \prime} \mathrm{W} \end{gathered}$	West Swanzey	II		0.00	0.10	0.00	0.00	0.05	0.00	0.00	80	
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	8.46	8.50	WPI-1691	PSS/PEM	N/A	$\begin{array}{r} 42^{\circ} 47^{\prime} \\ 5.026^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 72^{\circ} 16^{\prime} \\ 49.744^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	West Swanzey	N/A		0.00	0.00	0.06	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	8.48	8.50	WPI-1692	PFO	N/A	$\begin{array}{r} 42^{\circ} 47^{\prime} \\ 4.629^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 16^{\prime} \\ 48.063^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	West Swanzey	II		0.00	0.15	0.00	0.00	0.07	0.00	0.00	96	
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	8.93	8.94	WPI-1696	PEM	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 10.122^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 16^{\prime} \\ 16.969^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	West Swanzey	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0	

Table 2.3-8

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{aligned} & \text { Wetland } \\ & \mathbf{I D}^{3,4} \end{aligned}$	$\begin{aligned} & \text { Wetland } \\ & \text { Class }^{5} \end{aligned}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method ${ }^{7}$	Comments	Wetland Impact (acres)				Operation ${ }^{9}$			$\left.\begin{gathered} \text { Crossing } \\ \text { Length } \\ \text { (feet) }{ }^{11} \end{gathered} \right\rvert\,$	
						Construction ${ }^{8}$																
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$		
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	9.03	9.10		WPI-1698	PFO	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 11.087^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 16^{\prime} \\ 10.128^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	West Swanzey	II		0.00	0.31	0.00	0.00	0.09	0.00	0.00	165
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	9.03	9.07	WPI-1697	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 11.317^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 16^{\prime} \\ 10.377{ }^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	West Swanzey	II		0.00	0.00	0.12	0.00	0.00	0.02	0.00	45	
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	9.08	9.14	WPI-1699	PSS/PEM	N/A	$\begin{gathered} \hline 42^{\circ} 47^{\prime} \\ 11.847^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 16^{\prime} \\ 7.059^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	West Swanzey	II		0.00	0.00	0.28	0.00	0.00	0.05	0.00	217	
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	9.95	9.97	WPI-1701	PFO	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 20.768^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 72^{\circ} 15^{\prime} \\ 6.429^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	West Swanzey	N/A		0.00	0.08	0.00	0.00	0.01	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	10.18	10.20	WPI-1703	PSS/PEM	N/A	$\begin{array}{r} 42^{\circ} 47^{\prime} \\ 24.168^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 14^{\prime} \\ 50.496^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	10.32	10.34	WPI-1705	PFO	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 24.826^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 14^{\prime} \\ 40.986^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	II		0.00	0.09	0.00	0.00	0.02	0.00	0.00	38	
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	10.33	10.33	WPI-1706	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 25.485^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 72^{\circ} 14^{\prime} \\ 40.535^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Troy	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	10.40	10.42	WPI-1708	Other	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 26.269^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 14^{\prime} \\ 35.1833^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	II		0.00	0.00	0.00	0.03	0.00	0.00	0.00	23	
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	10.47	10.50	RI-D-W004	PSS	N/A	$\begin{array}{r} 42^{\circ} 47^{\prime} \\ 26.995^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 14^{\prime} \\ 30.675^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	II		0.00	0.00	0.08	0.00	0.00	0.02	0.00	97	
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	10.48	10.50	RI-D-W004	PFO	N/A	$\begin{array}{r} \hline 42^{\circ} 47^{\prime} \\ 27.019^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 14^{\prime} \\ 29.969^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	II		0.00	0.11	0.00	0.00	0.02	0.00	0.00	12	
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	10.58	10.61	RI-D-W005	PEM	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 28.378^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 14^{\prime} \\ 23.171^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	N/A		0.08	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	10.58	10.60	RI-D-W005	PFO	N/A	$\begin{array}{r} 42^{\circ} 47^{\prime} \\ 28.277^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 14^{\prime} \\ 22.889^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	II		0.00	0.09	0.00	0.00	0.04	0.00	0.00	108	
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	10.80	10.81	RI-Y-W003	PEM	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 30.865^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 14^{\prime} \\ 8.182^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	II		0.03	0.00	0.00	0.00	0.00	0.00	0.00	32	
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	11.14	11.15	RI-L-W002	PFO	N/A	$\begin{array}{r} 42^{\circ} 47^{\prime} \\ 34.116^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 13^{\prime} \\ 44.386^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	II		0.00	0.03	0.00	0.00	0.01	0.00	0.00	6	
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	11.15	11.16	WPI-1711	PSS/PEM	N/A	$\begin{array}{r} 42^{\circ} 47^{\prime} \\ 34.654^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 13^{\prime} \\ 43.919^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	11.39	11.41	RI-D-W001	PFO	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 36.498^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 13^{\prime} \\ 27.123^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	II		0.00	0.05	0.00	0.00	0.02	0.00	0.00	40	
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	11.40	11.41	RI-D-W001	PEM	N/A	$\begin{array}{r} 42^{\circ} 47^{\prime} \\ 37.316^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 72^{\circ} 13^{\prime} \\ 26.504^{\prime} \mathrm{W} \\ \hline \end{array}$	Troy	N/A		0.02	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	11.40	11.40	WPI-1713	PSS/PEM	N/A	$\begin{array}{r} 42^{\circ} 47^{\prime} \\ 37.603^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 13^{\prime} \\ 26.213^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	11.43	11.44	WPI-1713	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 37.874^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 13^{\prime} \\ 24.515^{\prime \prime} \mathrm{W} \end{gathered}$	Troy	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	11.46	11.48	RI-Y-W001	PFO	N/A	$\begin{array}{r} 42^{\circ} 47^{\prime} \\ 37.385^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 13^{\prime} \\ 21.825^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	N/A		0.00	0.05	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	11.47	11.48	RI-Y-W001	PEM	N/A	$\begin{array}{r} 42^{\circ} 47^{\prime} \\ 37.935^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 13^{\prime} \\ 21.725^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	II		0.05	0.00	0.00	0.00	0.00	0.00	0.00	56	
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	11.48	11.48	RI-Y-W001	PEM	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 37.921^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 13^{\prime} \\ 20.951^{\prime \prime} \mathrm{W} \end{gathered}$	Troy	II		0.03	0.00	0.00	0.00	0.00	0.00	0.00	39	
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	11.48	11.48	RI-Y-W001	PFO	N/A	$\begin{array}{r} 42^{\circ} 47^{\prime} \\ 37.493^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 13^{\prime} \\ 20.880^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	11.48	11.48	RI-Y-W001	PFO	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 37.613^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{aligned} & 72^{\circ} 13^{\prime} \\ & 20.905^{\prime \prime} \mathrm{W} \end{aligned}$	Troy	N/A		0.00	0.03	0.00	0.00	0.00	0.00	0.00	0	

Table 2.3-8

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{aligned} & \text { Wetland } \\ & \mathbf{I D}^{3,4} \end{aligned}$	WetlandClass	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method ${ }^{7}$	Comments	Wetland Impact (acres)				Operation ${ }^{9}$			Crossing Length (feet) ${ }^{11}$	
						Construction ${ }^{8}$																
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$		
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	11.51	11.51		RI-L-W001	PFO	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 37.863^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 13^{\prime} \\ 18.554^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	11.51	11.51	RI-L-W001	PFO	N/A	$\begin{array}{r} 42^{\circ} 47^{\prime} \\ 37.897^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 13^{\prime} \\ 18.340^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Richmond	I	11.51	11.52	WPI-1716	PSS/PEM	N/A	$\begin{array}{r} 42^{\circ} 47^{\prime} \\ 38.672^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 13^{\prime} \\ 18.726^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Troy	I	11.63	11.64	TR-Y-W008	PEM	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 39.232^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 72^{\circ} 13^{\prime} \\ 9.962^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Troy	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Troy	I	11.63	11.64	WPI-1717	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 40.150^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 13^{\prime} \\ 10.225^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Troy	I	11.65	11.67	TR-D-W003	PFO	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 39.464^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 13^{\prime} \\ 8.504^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	N/A		0.00	0.02	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Troy	I	11.66	11.68	TR-D-W003	PFO	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 39.576^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 13^{\prime} \\ 7.798^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Troy	I	11.67	11.68	TR-D-W003	PEM	N/A	$\begin{array}{r} 42^{\circ} 47^{\prime} \\ 39.953^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 13^{\prime} \\ 7.639^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	II		0.05	0.00	0.00	0.00	0.00	0.00	0.00	43	
Wright to Dracut Pipeline Segment	Cheshire	Troy	I	11.67	11.68	TR-D-W003	PFO	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 39.750^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 72^{\circ} 13^{\prime} \\ 7.556^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Troy	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Troy	I	11.67	11.68	WPI-1717	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 40.517^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 72^{\circ} 13^{\prime} \\ 7.915^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Troy	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Troy	I	11.68	11.70	TR-D-W003	PFO	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 40.458^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 13^{\prime} \\ 6.940^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	II		0.00	0.04	0.00	0.00	0.04	0.00	0.00	59	
Wright to Dracut Pipeline Segment	Cheshire	Troy	I	11.69	11.70	WPI-1717	PSS/PEM	N/A	$\begin{array}{r} 42^{\circ} 47^{\prime} \\ 40.816^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 72^{\circ} 13^{\prime} \\ 6.040^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Troy	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Troy	I	11.70	11.71	TR-Y-W007	PFO	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 39.848^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 13^{\prime} \\ 5.563^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	N/A		0.00	0.06	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Troy	I	11.74	11.76	WPI-1719	PSS/PEM	N/A	$42^{\circ} 47^{\prime}$	$\begin{array}{r} 72^{\circ} 13^{\prime} \\ 2.862^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Troy	N/A		0.00	0.00	0.03	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Troy	I	11.76	11.77	TR-D-W001	PSS	N/A	$\begin{array}{r} 42^{\circ} 47^{\prime} \\ 40.995^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 72^{\circ} 13^{\prime} \\ 1.216^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Troy	II		0.00	0.00	0.01	0.00	0.00	0.01	0.00	12	
Wright to Dracut Pipeline Segment	Cheshire	Troy	I	11.76	11.77	WPI-1720	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 41.332^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 13^{\prime} \\ 1.284^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Troy	I	11.76	11.77	TR-D-W001	PSS	N/A	$\begin{array}{r} 42^{\circ} 47^{\prime} \\ 41.223^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 13^{\prime} \\ 1.153^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	II		0.00	0.00	0.01	0.00	0.00	0.01	0.00	1	
Wright to Dracut Pipeline Segment	Cheshire	Troy	I	11.83	11.85	WPI-1723	PSS/PEM	N/A	$\begin{array}{r} 42^{\circ} 47^{\prime} \\ 42.104^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 12^{\prime} \\ 56.476^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	N/A		0.00	0.00	0.02	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Troy	I	11.84	11.85	WPI-1721	Other	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 42.346^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 12^{\prime} \\ 55.799^{\prime \prime} \mathrm{W} \end{gathered}$	Troy	N/A		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Troy	I	11.85	11.85	WPI-1723	PSS/PEM	N/A	$\begin{array}{r} 42^{\circ} 47^{\prime} \\ 42.274^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 12^{\prime} \\ 55.416^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Troy	I	11.89	11.91	WPI-1725	PSS/PEM	N/A	$\begin{array}{r} 42^{\circ} 47^{\prime} \\ 42.778^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 12^{\prime} \\ 52.278^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	N/A		0.00	0.00	0.03	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Troy	I	11.92	11.94	WPI-1726	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 43.251^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 12^{\prime} \\ 50.114^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Troy	I	11.93	11.93	TR-L-W001	PFO	N/A	$\begin{array}{r} 42^{\circ} 47^{\prime} \\ 42.558^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 72^{\circ} 12^{\prime} \\ 49.705^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Troy	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Troy	I	11.94	11.96	TR-G-W001	PFO	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 43.296^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 12^{\prime} \\ 49.043^{\prime \prime} \mathrm{W} \end{gathered}$	Troy	II		0.00	0.15	0.00	0.00	0.08	0.00	0.00	118	

Table 2.3-8

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\underset{\substack{\text { Wetland } \\ \mathbf{I D}^{3,4}}}{\substack{\text { an}}}$	$\begin{aligned} & \text { Wetland } \\ & \text { Class }^{5} \end{aligned}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method ${ }^{7}$	Comments	Wetland Impact (acres)				Operation ${ }^{9}$			Crossing Length (feet) ${ }^{11}$	
						Construction ${ }^{8}$																
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$		
Wright to Dracut Pipeline Segment	Cheshire	Troy	I	11.99	12.00		TR-L-W002	PFO	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 42.795^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 12^{\prime} \\ 45.3977^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	N/A		0.00	0.02	0.00	0.00	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Cheshire	Troy	I	12.29	12.29	WPI-1731	PSS/PEM	N/A	$\begin{array}{r} 42^{\circ} 47^{\prime} \\ 47.018^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 72^{\circ} 12^{\prime} \\ 24.873^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Troy	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Troy	I	12.29	12.30	WPI-1732	PSS/PEM	N/A	$\begin{array}{r} 42^{\circ} 47^{\prime} \\ 47.093^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 12^{\prime} \\ 24.451^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Troy	I	12.44	12.46	WPI-1733	Other	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 49.037^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 12^{\prime} \\ 14.386^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	N/A		0.00	0.00	0.00	0.02	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Troy	I	12.56	12.58	WPI-1736	PFO	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 49.569^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 12^{\prime} \\ 5.921^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	II		0.00	0.08	0.00	0.00	0.03	0.00	0.00	62	
Wright to Dracut Pipeline Segment	Cheshire	Troy	I	12.56	12.58	WPI-1735	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 50.270^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 12^{\prime} \\ 5.856^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	N/A		0.00	0.00	0.03	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Troy	I	13.04	13.05	TR-X-W004	PSS	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 57.655^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 11^{\prime} \\ 35.030^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	N/A		0.00	0.00	0.04	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	13.13	13.16	TR-X-W001	PEM	N/A	$\begin{array}{r} 42^{\circ} 47^{\prime} \\ 58.400^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 11^{\prime} \\ 28.478^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	N/A		0.06	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Troy	I	13.13	13.13	TR-X-W001	PEM	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 58.490^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 11^{\prime} \\ 28.519^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Troy	I	13.14	13.15	TR-X-W001	PEM	N/A	$\begin{array}{r} 42^{\circ} 47^{\prime} \\ 58.155^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{c\|} \hline 72^{\circ} 11^{\prime} \\ 27.865^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Troy	II		0.06	0.00	0.00	0.00	0.00	0.00	0.00	80	
Wright to Dracut Pipeline Segment	Cheshire	Troy	I	13.17	13.20	TR-X-W001	PEM	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 59.371^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 11^{\prime} \\ 26.141^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	II		0.19	0.00	0.00	0.00	0.00	0.00	0.00	93	
Wright to Dracut Pipeline Segment	Cheshire	Troy	I	13.19	13.20	TR-X-W001	PEM	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 59.062^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 11^{\prime} \\ 24.258^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	II		0.04	0.00	0.00	0.00	0.00	0.00	0.00	23	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	13.20	13.21	TR-X-W001	PEM	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 59.987^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 11^{\prime} \\ 23.694^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	II		0.01	0.00	0.00	0.00	0.00	0.00	0.00	8	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	13.22	13.23	TR-X-W002	PEM	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 0.318^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 72^{\circ} 11^{\prime} \\ 22.262^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Troy	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	13.33	13.34	TR-X-W003	PEM	N/A	$\begin{array}{r} 42^{\circ} 48^{\prime} \\ 2.150^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 11^{\prime} \\ 15.487 " \mathrm{~W} \\ \hline \end{gathered}$	Troy	II		0.06	0.00	0.00	0.00	0.00	0.00	0.00	33	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	13.41	13.42	TR-Y-W003	PFO	N/A	$\begin{array}{r} 42^{\circ} 48^{\prime} \\ 3.670^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{c\|} \hline 72^{\circ} 11^{\prime} \\ 9.864^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Troy	II		0.00	0.03	0.00	0.00	0.01	0.00	0.00	21	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	13.44	13.46	TR-Y-W002	PSS	N/A	$\begin{array}{r} 42^{\circ} 48^{\prime} \\ 4.124^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{aligned} & 72^{\circ} 11^{\prime} \\ & 7.772^{\prime \prime} \mathrm{W} \\ & \hline \end{aligned}$	Troy	II		0.00	0.00	0.05	0.00	0.00	0.01	0.00	32	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	13.49	13.49	TR-Y-W001	PSS	N/A	$\begin{array}{r} 42^{\circ} 48^{\prime} \\ 4.677^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 11^{\prime} \\ 4.651^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	13.54	13.62	WPI-1746	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 5.146^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{array}{c\|} \hline 72^{\circ} 11^{\prime} \\ 1.089^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Troy	N/A		0.00	0.00	0.04	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	13.72	13.78	WPI-1748	PFO	N/A	$\begin{array}{r} 42^{\circ} 48^{\prime} \\ 9.142^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 72^{\circ} 10^{\prime} \\ 49.605^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Troy	II		0.00	0.53	0.00	0.00	0.20	0.00	0.00	288	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	14.16	14.16	WPI-1750	PFO	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 13.873^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 10^{\prime} \\ 19.783^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Troy	I	14.16	14.19	WPI-1750	PFO	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 13.880^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} \hline 72^{\circ} 10^{\prime} \\ 19.782^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	N/A		0.00	0.07	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	14.31	14.32	WPI-1752	PEM	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 17.403^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 10^{\prime} \\ 10.262^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	14.31	14.34	FT-X-W001	PFO	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 17.358^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 10^{\prime} \\ 10.180^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	II		0.00	0.03	0.00	0.00	0.02	0.00	0.00	23	

Table 2.3-8

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{aligned} & \text { Wetland } \\ & \mathbf{I D}^{3,4} \end{aligned}$	Wetland Class ${ }^{5}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method ${ }^{\text {h }}$	Comments	Wetland Impact (acres)							CrossingLength$(\text { (feet })^{11}$	
						Construction ${ }^{8}$								Operation ${ }^{9}$								
				Begin	End									PEM	PFO	Pss	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$		
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	14.31	14.34		WPI-1751	Other	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 17.479^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 10^{\prime} \\ 9.988^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	N/A		0.00	0.00	0.00	0.04	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	14.34	14.35	WPI-1752	PEM	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 17.792^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 72^{\circ} 10^{\prime} \\ 8.242^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Troy	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	14.41	14.44	FT-X-W001	PEM	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 19.147^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 72^{\circ} 10^{\prime} \\ 3.628^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Troy	II		0.15	0.00	0.00	0.00	0.00	0.00	0.00	77	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	14.54	14.55	WPI-1754	PEM	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 21.978 " \mathrm{~N} \end{gathered}$	$\begin{gathered} 72^{\circ} 9^{\prime} \\ 55.229^{\prime \prime} \mathrm{W} \end{gathered}$	Troy	N/A		0.02	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	14.56	14.58	WPI-1754	PEM	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 22.1355^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 9^{\prime} \\ 53.465^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	N/A		0.02	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	14.65	14.68	WPI-1756	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 23.775^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 9^{\prime} \\ 47.376^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	N/A		0.00	0.00	0.07	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	14.81	14.88	WPI-1757	PEM	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 27.187 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 9^{\prime} \\ 37.878^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	II		0.21	0.00	0.00	0.00	0.00	0.00	0.00	80	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	15.45	15.49	WPI-1760	PSS	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 16.805^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 9^{\prime} \\ 2.116^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	II		0.00	0.00	0.18	0.00	0.00	0.02	0.00	105	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	15.47	15.49	WPI-1761	PSS/PEM	N/A	$\begin{array}{r} 42^{\circ} 48^{\prime} \\ 16.112^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 9^{\prime} \\ 1.199^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	II		0.00	0.00	0.07	0.00	0.00	0.01	0.00	46	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	15.48	15.52	WPI-1762	PFO	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 15.714^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 9^{\prime} \\ 0.7433^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	II		0.00	0.29	0.00	0.00	0.12	0.00	0.00	181	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	15.52	15.53	WPI-1763	PEM	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 14.242^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 8^{\prime} \\ 59.053^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	II		0.02	0.00	0.00	0.00	0.00	0.00	0.00	32	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	15.52	15.55	WPI-1764	PFO	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 14.435 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 8^{\prime} \\ 58.496^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	II		0.00	0.20	0.00	0.00	0.07	0.00	0.00	93	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	15.66	15.67	WPI-1766	PSS/PEM	N/A	$\begin{array}{r} 42^{\circ} 48^{\prime} \\ 8.757^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 8^{\prime \prime} \\ 52.222^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	15.94	15.94	WPI-1771	Other	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 59.342^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 8^{\prime} \\ 37.184^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	N/A		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	16.21	16.23	WPI-1772	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 47.749^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 8^{\prime} \\ 28.798^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	N/A		0.00	0.00	0.02	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	1	16.42	16.44	WPI-1775	Other	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 40.444^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 8^{\prime} \\ 18.259^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	N/A		0.00	0.00	0.00	0.02	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	16.49	16.52	WPI-1777	PSS	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 37.545^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 8^{\prime} \\ 14.436^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	N/A		0.00	0.00	0.08	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	16.52	16.61	WPI-1779	PSS	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 36.752^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 8^{\prime} \\ 13.350^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	N/A		0.00	0.00	0.26	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	16.62	16.64	FT-T-W007	PSS	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 33.0877^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 8^{\prime} \\ 7.446 " \mathrm{~W} \\ \hline \end{gathered}$	Troy	N/A		0.00	0.00	0.03	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	16.70	16.72	FT-T-W006	PFO	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 29.923 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 8^{\prime} \\ 3.9177^{\prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	II		0.00	0.07	0.00	0.00	0.05	0.00	0.00	71	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	16.70	16.72	FT-T-W006	PSS	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 30.237^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 8^{\prime} \\ 3.481 " \mathrm{~W} \\ \hline \end{gathered}$	Troy	N/A		0.00	0.00	0.03	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	16.72	16.72	FT-T-W006	PFO	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 29.2155^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 8^{\prime} \\ 3.468^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	16.72	16.77	FT-T-W006	PFO	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 29.094^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 8^{\prime} \\ 3.291 " \mathrm{~W} \\ \hline \end{gathered}$	Troy	II		0.00	0.23	0.00	0.00	0.10	0.00	0.00	157	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	16.73	16.77	FT-T-W006	PSS	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 29.219^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 8^{\prime} \\ 1.998{ }^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	N/A		0.00	0.00	0.05	0.00	0.00	0.00	0.00	0	

Table 2.3-8

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{aligned} & \text { Wetland } \\ & \mathbf{I D}^{3,4} \end{aligned}$	Wetland Class ${ }^{5}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing	Comments			Wetl	nd Impac	(acres)			Crossing Length (feet) ${ }^{11}$	
						Construction ${ }^{8}$								Operation ${ }^{9}$								
				Begin	End									PEM	PFO	Pss	Other ${ }^{10}$	PFO	PsS	Other ${ }^{10}$		
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	16.77	16.77		FT-T-W006	PFO	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 27.378^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 8^{\prime} \\ 0.791 " \mathrm{~W} \end{gathered}$	Troy	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	16.80	16.84	FT-T-W006	PFO	N/A	$\begin{array}{r} 42^{\circ} 47^{\prime} \\ 26.348^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 7^{\prime \prime} \\ 59.292^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	II		0.00	0.30	0.00	0.00	0.12	0.00	0.00	170	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	16.81	16.84	FT-T-W006	PSS	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 26.527^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 7^{\prime} \\ 58.078^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	16.98	17.01	FT-T-W001	PFO	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 19.285^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 7^{\prime} \\ 50.184^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	N/A		0.00	0.17	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	17.11	17.11	FT-T-W002	PSS	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 15.873^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 7^{\prime} \\ 42.363^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	17.12	17.13	FT-T-W002	PSS	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 15.577^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 7^{\prime} \\ 41.932^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	17.18	17.19	FT-T-W005	PFO	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 12.737^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 7^{\prime} \\ 39.291^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	II		0.00	0.01	0.00	0.00	0.01	0.00	0.00	13	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	17.27	17.30	WPI-1790	PEM	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 10.509^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 7^{\prime} \\ 33.959^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	II		0.18	0.00	0.00	0.00	0.00	0.00	0.00	31	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	17.27	17.38	WPI-1791	Other	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 10.477^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 7^{\prime} \\ 33.359^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	II		0.00	0.00	0.00	2.03	0.00	0.00	0.00	361	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	1	17.34	17.49	WPI-1791	Other	N/A	$\begin{array}{r} 42^{\circ} 47^{\prime} \\ 8.398^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 7^{\prime} \\ 30.002^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Monadnock Mountain	II		0.00	0.00	0.00	3.00	0.00	0.00	0.00	508	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	17.47	17.50	WPI-1792	PFO	N/A	$\begin{gathered} \hline 42^{\circ} 47^{\prime} \\ 2.8088^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} \hline 72^{\circ} 7^{\prime} \\ 24.086^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Monadnock } \\ \text { Mountain } \\ \hline \end{gathered}$	N/A		0.00	0.18	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	17.63	17.64	WPI-1793	PFO/PSS	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 57.314^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 7^{\prime} \\ 15.3377^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Monadnock	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	17.81	17.82	WPI-1794	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 50.914^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 7^{\prime} \\ 6.018^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Monadnock Mountain	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	17.83	17.87	WPI-1796	PFO	N/A	$\begin{array}{r} 42^{\circ} 46^{\prime} \\ 49.829^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 7^{\prime} \\ 6.110^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Monadnock	II		0.00	0.29	0.00	0.00	0.10	0.00	0.00	151	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	17.86	17.86	WPI-1797	PSS	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 49.176^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 7^{\prime} \\ 3.684^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Monadnock Mountain	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	17.86	17.93	WPI-1801	PSS/PEM	N/A	$\begin{array}{r} 42^{\circ} 46^{\prime} \\ 48.886^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 7^{\prime} \\ 3.507{ }^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \text { Monadnock } \\ \text { Mountain } \\ \hline \end{gathered}$	II		0.00	0.00	0.38	0.00	0.00	0.06	0.00	257	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	17.91	18.01	WPI-1799	PFO	N/A	$\begin{array}{r} 42^{\circ} 46^{\prime} \\ 46.905^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 7^{\prime \prime} \\ 1.783{ }^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \text { Monadnock } \\ \text { Mountain } \\ \hline \end{gathered}$	II		0.00	0.73	0.00	0.00	0.31	0.00	0.00	510	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	17.93	18.00	WPI-1800	PSS	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 46.442^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 6^{\prime} \\ 59.860^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Monadnock Mountain	N/A		0.00	0.00	0.10	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	17.99	18.10	WPI-1801	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 44.340^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} \hline 72^{\circ} 6^{\prime} \\ 56.6444^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Monadnock } \\ \text { Mountain } \\ \hline \end{gathered}$	N/A		0.00	0.00	0.16	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	1	18.01	18.10	WPI-1803	PFO	N/A	$\begin{array}{r} 42^{\circ} 46^{\prime} \\ 43.390^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 6^{\prime} \\ 56.736^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \text { Monadnock } \\ \text { Mountain } \\ \hline \end{gathered}$	II		0.00	0.64	0.00	0.00	0.29	0.00	0.00	463	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	18.09	18.09	WPI-1805	PFO	N/A	$\begin{array}{r} 42^{\circ} 46^{\prime} \\ 40.559^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} \hline 72^{\circ} 6^{\prime} \\ 52.6144^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Monadnock } \\ \text { Mountain } \\ \hline \end{gathered}$	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	1	18.13	18.18	WPI-1801	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 39.706^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 6^{\prime} \\ 49.898^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Monadnock	N/A		0.00	0.00	0.04	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	18.42	18.65	WPI-1808	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 29.247^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{c\|} 72^{\circ} 6^{\prime} \mathrm{W} \\ 34.674^{\prime \prime} \mathrm{F} \\ \hline \end{array}$	$\begin{gathered} \text { Monadnock } \\ \text { Mountain } \\ \hline \end{gathered}$	N/A		0.00	0.00	0.31	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	18.44	18.65	WPI-1809	PFO	N/A	$\begin{gathered} \hline 42^{\circ} 46^{\prime} \\ 28.119^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 6^{\prime} \\ 34.507 \mathrm{~W} \\ \hline \end{gathered}$	Monadnock	II		0.00	1.60	0.00	0.00	0.68	0.00	0.00	1,070	

Table 2.3-8

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{aligned} & \text { Wetland } \\ & \mathbf{I D}^{3,4} \end{aligned}$	$\begin{aligned} & \text { Wetland } \\ & \text { Class }^{5} \end{aligned}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method ${ }^{7}$	Comments	Wetland Impact (acres)				Operation ${ }^{9}$			Crossing Length (feet) ${ }^{11}$	
						Construction ${ }^{8}$																
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$		
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	18.83	18.88		WPI-1810	PSS/PEM	N/A	$\begin{gathered} \hline 42^{\circ} 46^{\prime} \\ 14.528^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 72^{\circ} 6^{\prime} \\ 13.095^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Monadnock Mountain	N/A		0.00	0.00	0.06	0.00	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	18.96	19.09	WPI-1814	PFO	N/A	$\begin{array}{r} 42^{\circ} 46^{\prime} \\ 9.589^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 6^{\prime} \\ 6.787 \mathrm{~W} \\ \hline \end{gathered}$	Monadnock Mountain	N/A		0.00	0.68	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	18.98	19.02	WPI-1812	PEM	N/A	$\begin{array}{r} 42^{\circ} 46^{\prime} \\ 9.535^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 6^{\prime} \\ 5.792 " \mathrm{~W} \\ \hline \end{gathered}$	Monadnock	N/A		0.11	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	19.07	19.08	WPI-1816	PEM	N/A	$\begin{array}{r} 42^{\circ} 46^{\prime} \\ 6.143^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 6^{\prime} \\ 0.855^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Monadnock Mountain	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	19.08	19.21	WPI-1817	PFO	N/A	$\begin{array}{r} 42^{\circ} 46^{\prime} \\ 5.455^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 6^{\prime} \\ 0.787 " \mathrm{~W} \\ \hline \end{gathered}$	Monadnock Mountain	N/A		0.00	0.66	0.00	0.00	0.03	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	19.25	19.31	WPI-1818	PSS	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 59.637 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 5^{\prime} \\ 51.391 " \mathrm{~W} \\ \hline \end{gathered}$	Monadnock Mountain	N/A		0.00	0.00	0.08	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	19.27	19.29	WPI-1819	Other	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 58.948^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 5^{\prime} \\ 50.462^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Monadnock Mountain	N/A		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	19.32	19.33	WPI-1818	PSS	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 57.320^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 5^{\prime} \\ 48.018^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Monadnock	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	19.78	19.85	WPI-1821	PFO	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 44.503 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 5^{\prime} \\ 22.296^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Monadnock Mountain	N/A		0.00	0.23	0.00	0.00	0.01	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	19.79	19.80	WPI-1820	PSS	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 43.954 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 72^{\circ} 5^{\prime} \\ 22.460^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Monadnock Mountain	II		0.00	0.00	0.07	0.00	0.00	0.02	0.00	78	
Wright to Dracut Pipeline Segment	Cheshire	Fitzwilliam	I	19.80	19.85	WPI-1822	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 43.692^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 5^{\prime} \\ 21.616^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Monadnock Mountain	II		0.00	0.00	0.28	0.00	0.00	0.06	0.00	261	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	20.37	20.44	WPI-1824	PFO	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 22.528^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 4^{\prime} \\ 54.174^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Monadnock Mountain	II		0.00	0.29	0.00	0.00	0.23	0.00	0.00	359	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	20.37	20.44	WPI-1825	PSS	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 22.064^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 4^{\prime} \\ 54.323^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Monadnock Mountain	N/A		0.00	0.00	0.21	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	20.41	20.48	NWI-1102	PEM	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 21.091 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 4^{\prime} \\ 51.846^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Monadnock	N/A		0.10	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	20.44	20.45	WPI-1830	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 19.791^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 4^{\prime} \\ 51.008^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Monadnock Mountain	II		0.00	0.00	0.04	0.00	0.00	0.01	0.00	14	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	20.44	20.48	WPI-1828	Other	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 19.990^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 4^{\prime} \\ 50.484^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Monadnock Mountain	II		0.00	0.00	0.00	0.22	0.00	0.00	0.00	142	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	20.47	20.53	WPI-1831	PFO	N/A	$\begin{gathered} \hline 42^{\circ} 45^{\prime} \\ 18.992^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 72^{\circ} 4^{\prime} \mathrm{W} \\ 49.031 \mathrm{~W} \\ \hline \end{array}$	Monadnock Mountain	II		0.00	0.17	0.00	0.00	0.11	0.00	0.00	153	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	20.47	20.49	WPI-1830	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 18.779^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 4^{\prime} \\ 49.082^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Monadnock Mountain	N/A		0.00	0.00	0.06	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	20.48	20.59	WPI-1832	PSS	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 18.709^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 4^{\prime} \\ 48.518^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Monadnock Mountain	II		0.00	0.00	0.45	0.00	0.00	0.05	0.00	209	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	20.52	20.53	WPI-1833	Other	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 16.796^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 4^{\prime} \\ 47.003^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Monadnock Mountain	N/A		0.00	0.00	0.00	0.03	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	20.54	20.59	WPI-1834	PFO	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 16.410^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 4^{\prime} \\ 45.716^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Monadnock	II		0.00	0.21	0.00	0.00	0.15	0.00	0.00	267	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	20.66	20.68	WPI-1837	PSS	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 11.813^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 4^{\prime} \\ 39.8366^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Monadnock Mountain	II		0.00	0.00	0.07	0.00	0.00	0.01	0.00	26	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	20.80	20.84	NWI-1106	PFO	N/A	$\begin{array}{r} 42^{\circ} 45^{\prime} \\ 9.019^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 4^{\prime} \\ 31.270^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Monadnock Mountain	II		0.00	0.21	0.00	0.00	0.10	0.00	0.00	143	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	20.87	20.91	NWI-520	Other	N/A	$\begin{array}{r} 42^{\circ} 45^{\prime} \\ 6.839^{\prime \prime} \mathrm{N} \end{array}$	$\begin{gathered} 72^{\circ} 4^{\prime} \\ 27.130^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Monadnock Mountain	II		0.00	0.00	0.00	0.23	0.00	0.00	0.00	128	

Table 2.3-8

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{aligned} & \text { Wetland } \\ & \mathbf{I D}^{3,4} \end{aligned}$	$\begin{aligned} & \text { Wetland } \\ & \text { Class }^{5} \end{aligned}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing	Comments	Wetland Impact (acres)				Operation ${ }^{9}$			Crossing Length (feet) ${ }^{11}$	
						Construction ${ }^{8}$																
				Begin	End									PEM	PFO	Pss	Other ${ }^{10}$	PFO	PsS	Other ${ }^{10}$		
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	20.90	20.95		NWI-1107	Other	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 5.680^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 4^{\prime} \\ 25.463^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Monadnock Mountain	II		0.00	0.00	0.00	0.38	0.00	0.00	0.00	233
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	20.94	20.96	NWI-520	Other	N/A	$\begin{array}{r} 42^{\circ} 45^{\prime} \\ 3.666^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 4^{\prime} \\ 24.030^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Monadnock Mountain	N/A		0.00	0.00	0.00	0.03	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	21.39	21.48	NWI-521	PEM	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 48.153^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 4^{\prime} \\ 0.439^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	II		0.77	0.00	0.00	0.00	0.00	0.00	0.00	467	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	21.48	21.53	NWI-1109	PEM	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 44.546^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 3^{\prime} \\ 56.713^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	II		0.40	0.00	0.00	0.00	0.00	0.00	0.00	218	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	21.52	21.67	NWI-521	PEM	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 43.446^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 3^{\prime} \\ 53.666^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	II		1.32	0.00	0.00	0.00	0.00	0.00	0.00	771	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	21.67	21.76	NWI-1111	PEM	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 37.877^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 3^{\prime} \\ 46.748^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	II		0.71	0.00	0.00	0.00	0.00	0.00	0.00	402	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	21.86	21.91	NWI-1112	PSS	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 30.761^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 3^{\prime} \\ 36.687^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	II		0.00	0.00	0.33	0.00	0.00	0.05	0.00	199	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	21.95	21.97	WPI-1859	PEM	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 27.574^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 3^{\prime} \\ 31.944^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	N/A		0.07	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	22.10	22.15	WPI-1864	PFO	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 25.353^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 3^{\prime} \\ 22.610^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	N/A		0.00	0.17	0.00	0.00	0.01	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	22.10	22.13	WPI-1863	PSS/PEM	N/A	$\begin{gathered} \hline 42^{\circ} 44^{\prime} \\ 25.619^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 3^{\prime} \\ 22.634^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	II		0.00	0.00	0.14	0.00	0.00	0.03	0.00	148	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	22.13	22.17	WPI-1862	PEM	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 25.154^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 3^{\prime} \\ 20.674^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	II		0.23	0.00	0.00	0.00	0.00	0.00	0.00	162	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	22.16	22.23	WPI-1864	PFO	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 25.1577^{\prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 3^{\prime} \\ 18.415^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	II		0.00	0.58	0.00	0.00	0.24	0.00	0.00	348	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	22.16	22.17	WPI-1863	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 25.446^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 3^{\prime} \\ 18.869^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	II		0.00	0.00	0.01	0.00	0.00	0.01	0.00	4	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	22.35	22.37	WPI-1867	PFO	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 24.340^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 3^{\prime} \\ 5.118^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	II		0.00	0.08	0.00	0.00	0.02	0.00	0.00	3	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	22.43	22.48	WPI-1871	PFO	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 24.623 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 2^{\prime} \\ 59.912^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	II		0.00	0.41	0.00	0.00	0.17	0.00	0.00	240	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	22.60	22.63	WPI-1874	PFO	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 23.332^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 2^{\prime} \\ 47.299^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	II		0.00	0.19	0.00	0.00	0.08	0.00	0.00	118	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	22.62	22.65	WPI-1872	PFO	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 23.278^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 2^{\prime} \\ 46.046^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	II		0.00	0.24	0.00	0.00	0.09	0.00	0.00	130	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	22.65	22.74	WPI-1874	PFO	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 23.925 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 2^{\prime \prime} \\ 43.873^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	II		0.00	0.75	0.00	0.00	0.30	0.00	0.00	439	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	22.74	22.86	WPI-1876	PFO	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 22.931 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 2^{\prime} \\ 38.096^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	II		0.00	1.14	0.00	0.00	0.45	0.00	0.00	657	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	22.86	22.94	WPI-1879	PFO	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 23.282^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 2^{\prime} \\ 29.108^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	II		0.00	0.70	0.00	0.00	0.28	0.00	0.00	401	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	23.08	23.11	WPI-1884	PEM	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 22.247 \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 2^{\prime} \\ 13.655^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	II		0.15	0.00	0.00	0.00	0.00	0.00	0.00	95	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	23.14	23.15	WPI-1891	PFO	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 24.388^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 2^{\prime} \\ 9.978^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	N/A		0.00	0.02	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	23.14	23.14	WPI-1885	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 22.703^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 2^{\prime} \\ 9.671 " \mathrm{~W} \\ \hline \end{gathered}$	Winchendon	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	23.18	23.20	WPI-1886	PFO	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 22.260^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 2^{\prime} \\ 6.876 " \mathrm{~W} \end{gathered}$	Winchendon	II		0.00	0.15	0.00	0.00	0.05	0.00	0.00	113	

Table 2.3-8

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{gathered} \text { Wettand } \\ \mathbf{I D}^{3,4} \end{gathered}$	$\begin{aligned} & \text { Wetland } \\ & \text { Class }^{5} \end{aligned}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method ${ }^{7}$	Comments	Wetland Impact (acres)				Operation ${ }^{9}$			Crossing Length (feet) ${ }^{11}$	
						Construction ${ }^{8}$																
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$		
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	23.19	23.22		WPI-1887	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 22.792^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 2^{\prime} \\ 6.137^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	II		0.00	0.00	0.13	0.00	0.00	0.02	0.00	89
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	23.23	23.23	WPI-1888	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 22.879^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 2^{\prime \prime} \\ 3.534^{\prime \prime} \mathrm{W} \end{gathered}$	Winchendon	II		0.00	0.00	0.02	0.00	0.00	0.01	0.00	25	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	23.24	23.38	WPI-1889	PFO	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 22.527 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 2^{\prime} \\ 2.923^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	II		0.00	0.90	0.00	0.00	0.34	0.00	0.00	765	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	23.25	23.39	WPI-1888	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 22.805^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 2^{\prime} \\ 1.547^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	II		0.00	0.00	0.33	0.00	0.00	0.01	0.00	4	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	23.42	23.43	WPI-1892	Other	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 22.248^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 1^{\prime} \\ 49.713^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	N/A		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	23.43	23.49	WPI-1888	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 21.948^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 1^{\prime} \\ 48.921 " \mathrm{~W} \\ \hline \end{gathered}$	Winchendon	II		0.00	0.00	0.23	0.00	0.00	0.06	0.00	283	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	23.46	23.61	WPI-1894	PFO	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 21.940^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 1^{\prime} \\ 46.885^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	N/A		0.00	0.69	0.00	0.00	0.07	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	23.49	23.53	WPI-1893	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 21.846^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 1^{\prime} \\ 44.689^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	II		0.00	0.00	0.13	0.00	0.00	0.04	0.00	180	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	23.55	23.59	WPI-1895	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 21.846^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 1^{\prime} \\ 40.774^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	II		0.00	0.00	0.20	0.00	0.00	0.05	0.00	216	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	23.66	23.69	WPI-1896	PFO	N/A	$\begin{gathered} \hline 42^{\circ} 44^{\prime} \\ 21.283 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 72^{\circ} 1^{\prime} \\ 32.910^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Winchendon	N/A		0.00	0.09	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	23.67	23.72	WPI-1899	PSS	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 21.689^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 1^{\prime} \\ 32.116^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	II		0.00	0.00	0.20	0.00	0.00	0.04	0.00	186	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	23.67	23.69	WPI-1897	Other	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 21.706^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 1^{\prime} \\ 32.115^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	N/A		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	23.69	23.72	WPI-1900	PFO	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 21.251 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 1^{\prime} \\ 31.114^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	N/A		0.00	0.11	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	23.72	23.74	WPI-1896	PFO	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 21.175^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 1^{\prime} \\ 28.760^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	N/A		0.00	0.07	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	23.77	23.78	WPI-1901	PFO	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 20.733^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 1^{\prime} \\ 25.440^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	II		0.00	0.08	0.00	0.00	0.02	0.00	0.00	47	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	23.78	23.79	WPI-1902	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 22.203 " \mathrm{~N} \end{gathered}$	$\begin{gathered} 72^{\circ} 1^{\prime} \\ 24.668^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	N/A		0.00	0.00	0.11	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	23.80	23.84	WPI-1902	PSS/PEM	N/A	$\begin{array}{r} 42^{\circ} 44^{\prime} \\ 21.376^{\prime \prime} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 1^{\prime} \mathrm{W} \\ 22.767^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	N/A		0.00	0.00	0.08	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	23.83	23.84	WPI-1903	PSS	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 21.708^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 1^{\prime} \\ 20.606^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	N/A		0.00	0.00	0.03	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	23.84	23.86	WPI-1904	PFO	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 21.175^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 1^{\prime} \\ 20.386^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	II		0.00	0.10	0.00	0.00	0.01	0.00	0.00	15	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	23.84	23.86	WPI-1903	PSS	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 21.292^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 1^{\prime} \\ 20.482^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	II		0.00	0.00	0.11	0.00	0.00	0.02	0.00	107	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	23.96	24.04	WPI-1907	PFO/PSS	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 20.953 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 1^{\prime} \\ 11.893^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	II		0.00	0.65	0.00	0.00	0.20	0.00	0.00	411	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	24.01	24.02	WPI-1908	Other	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 20.320^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 1^{\prime} \\ 8.0655^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	N/A		0.00	0.00	0.00	0.02	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	24.02	24.04	WPI-1910	PSS	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 20.810^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 1^{\prime} \\ 7.442^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	N/A		0.00	0.00	0.02	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	24.04	24.06	WPI-1910	PSS	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 20.7777^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 1^{\prime} \\ 5.856^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	N/A		0.00	0.00	0.11	0.00	0.00	0.00	0.00	0	

Table 2.3-8

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{gathered} \text { Wettand } \\ \mathbf{I D}^{3,4} \end{gathered}$	Wetland Class ${ }^{5}$	State Wetland	Latitude	Longitude	Quadrangle	Crossing	Comments			Wetl	d Impac	Operation ${ }^{9}$			Crossing Length (feet) ${ }^{11}$	
						Construction ${ }^{8}$																
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$		
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	24.35	24.37		WPI-1913	PFO	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 19.221^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 0^{\prime} \\ 44.526^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	II		0.00	0.15	0.00	0.00	0.05	0.00	0.00	80
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	24.35	24.37	WPI-1912	PSS	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 19.960^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 0^{\prime} \\ 44.441^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	II		0.00	0.00	0.06	0.00	0.00	0.01	0.00	46	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	24.37	24.38	WPI-1916	PFO	N/A	$\begin{gathered} \hline 42^{\circ} 44^{\prime} \\ 19.506^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 0^{\prime} \\ 42.666^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	N/A		0.00	0.02	0.00	0.00	0.01	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	24.37	24.37	WPI-1914	PSS	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 19.886^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 0^{\prime} \\ 42.983^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	II		0.00	0.00	0.01	0.00	0.00	0.01	0.00	13	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	24.41	24.44	WPI-1917	PFO	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 19.058^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 0^{\prime} \\ 40.115^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	II		0.00	0.19	0.00	0.00	0.07	0.00	0.00	131	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	24.42	24.45	WPI-1918	PEM	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 19.624^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 0^{\prime} \\ 39.442^{\prime \prime} \mathrm{W} \end{gathered}$	Winchendon	N/A		0.05	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	24.65	24.67	WPI-1921	PFO	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 18.946^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 72^{\circ} 0^{\prime} \mathrm{W} \\ 22.853^{\prime \prime} \mathrm{C} \\ \hline \end{array}$	Winchendon	II		0.00	0.03	0.00	0.00	0.03	0.00	0.00	53	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	24.65	24.68	WPI-1920	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 19.270^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 0^{\prime} \\ 23.153^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	II		0.00	0.00	0.10	0.00	0.00	0.01	0.00	56	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	24.75	24.81	WPI-1925	PFO	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 18.156^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 0^{\prime} \\ 15.760^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	II		0.00	0.33	0.00	0.00	0.09	0.00	0.00	142	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	24.76	24.80	WPI-1923	PSS	N/A	$\begin{gathered} \hline 42^{\circ} 44^{\prime} \\ 18.8855^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 0^{\prime} \\ 15.418^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	II		0.00	0.00	0.12	0.00	0.00	0.02	0.00	93	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	24.80	24.81	WPI-1930	PFO	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 18.553^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 0^{\prime} \\ 12.192^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	II		0.00	0.03	0.00	0.00	0.02	0.00	0.00	55	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	24.80	24.81	WPI-1926	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 18.555^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 0^{\prime} \\ 12.523^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	24.80	24.81	WPI-1929	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 18.571^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 0^{\prime} \\ 12.187^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	24.81	24.82	WPI-1933	PFO	N/A	$\begin{gathered} \hline 42^{\circ} 44^{\prime} \\ 18.181^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 0^{\prime} \\ 11.461^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	II		0.00	0.02	0.00	0.00	0.01	0.00	0.00	22	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	24.81	24.82	WPI-1935	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 18.739^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 0^{\prime} \\ 11.493^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	24.82	24.88	WPI-1940	PFO	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 18.197^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 0^{\prime} \\ 11.105^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	II		0.00	0.37	0.00	0.00	0.11	0.00	0.00	169	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	24.82	24.82	WPI-1937	PSS/PEM	N/A	$\begin{gathered} \hline 42^{\circ} 44^{\prime} \\ 18.601^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 0^{\prime} \\ 11.329^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	24.82	24.88	WPI-1942	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 18.5033^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 0^{\prime} \\ 10.981^{\prime \prime} \mathrm{C} \\ \hline \end{gathered}$	Winchendon	II		0.00	0.00	0.18	0.00	0.00	0.04	0.00	163	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	25.25	25.35	WPI-1943	Other	N/A	$\begin{gathered} \hline 42^{\circ} 44^{\prime} \\ 17.681 \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 59^{\prime} \\ 40.319^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashburnham	II		0.00	0.00	0.00	0.87	0.00	0.00	0.00	508	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	25.81	25.84	WPI-1946	PEM	N/A	$\begin{array}{r} 42^{\circ} 44^{\prime} \\ 33.978^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 59 ' \\ 15.980^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashburnham	N/A		0.07	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	25.81	25.82	WPI-1944	PSS	N/A	$\begin{array}{r} 42^{\circ} 44^{\prime} \\ 34.258^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 59^{\prime} \\ 15.793^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashburnham	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	25.86	25.89	WPI-1946	PEM	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 36.628^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 59 ' \\ 14.212^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashburnham	II		0.19	0.00	0.00	0.00	0.00	0.00	0.00	10	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	25.89	25.89	WPI-1947	PSS	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 37.884^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 59 ' \\ 13.374^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashburnham	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	26.56	26.57	WPI-1951	PEM	N/A	$\begin{array}{r} 42^{\circ} 45^{\prime} \\ 8.981^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 58^{\prime} \\ 53.527^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	N/A		0.02	0.00	0.00	0.00	0.00	0.00	0.00	0	

Table 23-8

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{aligned} & \text { Wetland } \\ & \mathbf{I D}^{3,4} \end{aligned}$	$\begin{aligned} & \text { Wetland } \\ & \text { Class }^{5} \end{aligned}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method ${ }^{7}$	Comments			Wetland Impact (acres)		Operation ${ }^{9}$			Crossing Length (feet) ${ }^{11}$	
						Construction ${ }^{8}$																
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$		
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	26.63	26.65		WPI-1952	PSS	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 11.230^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 58^{\prime} \\ 49.946^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	N/A		0.00	0.00	0.04	0.00	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	26.65	26.67	RN-L-W001	PFO	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 11.013^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 58^{\prime} \\ 47.9499^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	$\begin{gathered} \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	II		0.00	0.09	0.00	0.00	0.01	0.00	0.00	10	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	26.76	26.80	WPI-1953	PSS	N/A	$\begin{gathered} \hline 42^{\circ} 45^{\prime} \\ 14.048^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 58^{\prime} \\ 41.138^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	N/A		0.00	0.00	0.04	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	26.77	26.81	WPI-1954	PFO	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 13.997^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 58^{\prime} \\ 40.890^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Peterborough } \\ & \text { South } \\ & \hline \end{aligned}$	II		0.00	0.31	0.00	0.00	0.12	0.00	0.00	198	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	26.95	26.97	WPI-1955	PFO	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 17.143^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 58^{\prime} \\ 28.946^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	$\begin{aligned} & \text { Peterborough } \\ & \text { South } \\ & \hline \end{aligned}$	II		0.00	0.11	0.00	0.00	0.03	0.00	0.00	71	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	26.96	26.97	WPI-1957	PSS	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 17.846^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 58^{\prime} \\ 28.610^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	N/A		0.00	0.00	0.03	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	26.97	27.02	WPI-1956	PFO	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 17.565^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 58^{\prime} \\ 27.628^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Peterborough } \\ & \text { South } \\ & \hline \end{aligned}$	II		0.00	0.22	0.00	0.00	0.11	0.00	0.00	252	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	26.97	27.02	WPI-1957	PSS	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 18.138^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 58^{\prime} \\ 27.669^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	$\begin{gathered} \hline \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	N/A		0.00	0.00	0.12	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	27.06	27.13	WPI-1961	PSS	N/A	$\begin{array}{r} 42^{\circ} 45^{\prime} \\ 20.301^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 71^{\circ} 58^{\prime} \\ 21.600^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	$\begin{aligned} & \text { Peterborough } \\ & \text { South } \\ & \hline \end{aligned}$	N/A		0.00	0.00	0.05	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	27.07	27.12	WPI-1962	PFO	N/A	$\begin{gathered} \hline 42^{\circ} 45^{\prime} \\ 20.226 \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 58^{\prime} \\ 21.443^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	II		0.00	0.44	0.00	0.00	0.20	0.00	0.00	293	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	27.30	27.36	WPI-1964	PFO	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 24.509^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{array}{r} 71^{\circ} 58^{\prime} \\ 6.158^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	$\begin{aligned} & \hline \text { Peterborough } \\ & \text { South } \\ & \hline \end{aligned}$	N/A		0.00	0.25	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	27.30	27.36	WPI-1966	PSS	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 24.788^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 58^{\prime} \\ 5.974^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	II		0.00	0.00	0.32	0.00	0.00	0.08	0.00	329	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	27.72	27.82	WPI-1968	PFO	N/A	$\begin{array}{r} 42^{\circ} 45^{\prime} \\ 33.310^{\prime \prime} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 57 \prime \\ 38.411^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	II		0.00	0.46	0.00	0.00	0.13	0.00	0.00	55	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	27.74	27.82	WPI-1969	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 33.963 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 57^{\prime} \\ 37.923^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	II		0.00	0.00	0.26	0.00	0.00	0.07	0.00	368	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	27.82	27.84	WPI-1971	PEM	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 35.724 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 57 \prime \\ 32.674^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	N/A		0.04	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	27.83	27.84	WPI-1972	PFO	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 35.977{ }^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 57^{\prime} \\ 31.956^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Peterborough } \\ & \text { South } \\ & \hline \end{aligned}$	II		0.00	0.04	0.00	0.00	0.02	0.00	0.00	48	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	27.87	27.88	WPI-1974	Other	N/A	$\begin{gathered} \hline 42^{\circ} 45^{\prime} \\ 36.243 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 57 \prime \\ 29.238^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	N/A		0.00	0.00	0.00	0.03	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	27.94	27.94	WPI-1975	PSS	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 37.735 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 571 \\ 24.572^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	II		0.00	0.00	0.01	0.00	0.00	0.01	0.00	6	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	28.03	28.07	WPI-1980	PEM	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 40.378^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 57^{\prime} \\ 18.802^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Peterborough } \\ & \text { South } \\ & \hline \end{aligned}$	N/A		0.05	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	28.06	28.07	WPI-1976	PFO/PSS	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 40.223^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 57 \prime \\ 16.792^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Peterborough } \\ & \text { South } \\ & \hline \end{aligned}$	II		0.00	0.05	0.00	0.00	0.02	0.00	0.00	33	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	28.07	28.12	WPI-1977	PSS	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 40.397^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 57 \prime \\ 16.248^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	II		0.00	0.00	0.34	0.00	0.00	0.02	0.00	178	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	28.08	28.08	WPI-1980	PEM	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 41.301^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 57^{\prime} \\ 15.946^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	28.08	28.09	WPI-1978	Other	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 41.307^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 57^{\prime} \\ 15.920^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	$\begin{gathered} \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	II		0.00	0.00	0.00	0.02	0.00	0.00	0.00	4	
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	28.09	28.13	WPI-1980	PEM	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 41.298^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 57^{\prime} \\ 15.098^{\prime \prime} \mathrm{W} \end{gathered}$	$\begin{aligned} & \text { Peterborough } \\ & \text { South } \end{aligned}$	II		0.13	0.00	0.00	0.00	0.00	0.00	0.00	111	

Table 2.3-8

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{gathered} \text { Wettand } \\ \mathbf{I D}^{3,4} \end{gathered}$	Wetland	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method ${ }^{7}$	Comments	Wetland Impact (acres)							Crossing$\substack{\text { Length } \\ \text { (feet) }{ }^{11}}$	
						Construction ${ }^{8}$								Operation ${ }^{9}$								
				Begin	End									PEM	PFO	PsS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$		
Wright to Dracut Pipeline Segment	Cheshire	Rindge	I	28.11	28.13		WPI-1981	PFO	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 41.359^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 57 \prime \\ 13.239^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	II		0.00	0.07	0.00	0.00	0.03	0.00	0.00	36
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	0.03	0.04	WPI-1986	PSS	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 56.245^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 56^{\prime} \\ 29.129^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Peterborough } \\ & \text { South } \end{aligned}$	N/A		0.00	0.00	0.02	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	0.10	0.10	WPI-1989	PEM	N/A	$\begin{gathered} \hline 42^{\circ} 45^{\prime} \\ 57.678^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 56^{\prime} \\ 25.051^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peterborough South	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	0.20	0.23	WPI-1992	PSS	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 59.770^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 56^{\prime} \\ 18.166^{\prime \prime} \mathrm{W} \end{gathered}$	Peterborough	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	0.25	0.30	WPI-1994	PFO	N/A	$\begin{array}{r} 42^{\circ} 46^{\prime} \\ 0.668^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 11^{\circ} 56^{\prime} \\ 14.783^{\prime \prime} \mathrm{W} \end{gathered}$	$\begin{aligned} & \text { Peterborough } \\ & \text { South } \end{aligned}$	II		0.00	0.23	0.00	0.00	0.11	0.00	0.00	184	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	0.25	0.36	WPI-1992	PSS	N/A	$\begin{array}{r} 42^{\circ} 46^{\prime} \\ 0.742^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 566^{\prime} \\ 14.843^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Peterborough } \\ & \text { South } \\ & \hline \end{aligned}$	N/A		0.00	0.00	0.16	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	0.28	0.28	WPI-1996	Other	N/A	$\begin{array}{r} 42^{\circ} 46^{\prime} \\ 1.362^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 56^{\prime} \\ 13.183^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Peterborough } \\ & \text { South } \\ & \hline \end{aligned}$	N/A		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	0.44	0.54	WPI-2003	PFO	N/A	$\begin{array}{r} 42^{\circ} 46^{\prime} \\ 3.921^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 56^{\prime} \\ 2.648^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Peterborough } \\ & \text { South } \\ & \hline \end{aligned}$	II		0.00	0.65	0.00	0.00	0.29	0.00	0.00	442	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	0.44	0.47	WPI-2000	PSS	N/A	$\begin{array}{r} 42^{\circ} 46^{\prime} \\ 4.646^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 56^{\prime} \\ 2.514^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	N/A		0.00	0.00	0.02	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	0.48	0.49	WPI-2000	PSS	N/A	$\begin{array}{r} 42^{\circ} 46^{\prime} \\ 5.524^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 56^{\prime} \\ 0.158^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	0.51	0.52	WPI-2000	PSS	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 6.056^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 55 ' \\ 58.4944^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	0.61	0.62	WPI-2010	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 7.600^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 55^{\prime} \\ 51.132^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	0.64	0.64	WPI-2010	PFO	N/A	$\begin{array}{r} \hline 42^{\circ} 46^{\prime} \\ 8.134^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 551 \\ 49.462^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	0.76	0.79	WPI-2011	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 10.724^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 555^{\prime} \\ 41.352^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \text { Peterborough } \\ \text { South } \end{gathered}$	II		0.00	0.12	0.00	0.00	0.04	0.00	0.00	43	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	0.77	0.79	WPI-2012	PSS	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 11.169^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 55 ' \\ 41.438^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	$\begin{gathered} \hline \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	II		0.00	0.00	0.08	0.00	0.00	0.02	0.00	84	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	1.03	1.03	WPI-2015	PEM	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 16.884^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 55^{\prime} \\ 24.5533^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	1.03	1.06	WPI-2016	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 16.265^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 55^{\prime} \\ 24.132^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	II		0.00	0.17	0.00	0.00	0.07	0.00	0.00	106	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	1.05	1.07	WPI-2018	Other	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 17.434^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 55^{\prime} \\ 22.871^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	$\begin{gathered} \hline \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	N/A		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	1.34	1.36	WPI-2020	PEM	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 23.1533^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 55 \prime \\ 4.204^{\prime \prime} \mathrm{W} \end{gathered}$	$\begin{aligned} & \text { Peterborough } \\ & \text { South } \end{aligned}$	II		0.06	0.00	0.00	0.00	0.00	0.00	0.00	50	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	1.50	1.52	WPI-2024	PSS	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 26.448^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 54^{\prime} \\ 53.868^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Peterborough } \\ & \text { South } \\ & \hline \end{aligned}$	N/A		0.00	0.00	0.06	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	1.68	1.68	WPI-2025	PSS	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 32.209^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 54^{\prime} \\ 44.486^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	1.68	1.71	WPI-2027	Other	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 32.026 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 54^{\prime} \\ 44.443^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	II		0.00	0.00	0.00	0.21	0.00	0.00	0.00	135	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	1.72	1.75	WPI-2030	PEM	N/A	$\begin{array}{r} 42^{\circ} 46^{\prime} \\ 32.347^{\prime \prime} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 54^{\prime} \\ 41.887 " \mathrm{~W} \\ \hline \end{gathered}$	$\begin{gathered} \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	N/A		0.02	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	1.93	1.94	WPI-2032	PEM	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 36.091 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 54^{\prime} \\ 27.676^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Peterborough } \\ & \text { South } \\ & \hline \end{aligned}$	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0	

Table 2.3-8

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{gathered} \text { Wettand } \\ \mathbf{I D}^{3,4} \end{gathered}$	Wetland Class ${ }^{5}$	State Wetland	Latitude	Longitude	Quadrangle	Crossing	Comments			Wetl	d Impac	(acres)			$\begin{aligned} & \text { Crossing } \\ & \text { Length } \\ & \text { (feet }{ }^{11} \end{aligned}$	
						Construction ${ }^{8}$								Operation ${ }^{9}$								
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$		
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	2.08	2.10		WPI-2034	Other	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 36.835^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 54^{\prime} \\ 17.647^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peterborough South	N/A		0.00	0.00	0.00	0.02	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	2.33	2.33	WPI-2037	PSS/PEM	N/A	$\begin{array}{r} 42^{\circ} 46^{\prime} \\ 37.075^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 54^{\prime} \\ 0.781^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Peterborough } \\ & \text { South } \\ & \hline \end{aligned}$	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	2.42	2.42	WPI-2038	PFO	N/A	$\begin{gathered} \hline 42^{\circ} 46^{\prime} \\ 36.814^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 53 ' \\ 54.051^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	2.42	2.44	WPI-2039	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 37.4444^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 53 \prime \\ 54.088^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Peterborough } \\ & \text { South } \\ & \hline \end{aligned}$	II		0.00	0.08	0.00	0.00	0.03	0.00	0.00	46	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	2.53	2.53	WPI-2040	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 38.294 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 53^{\prime} \\ 46.727^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	2.77	2.79	WPI-2042	PSS	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 39.649^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 53^{\prime} \\ 29.653^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Peterborough } \\ & \text { South } \\ & \hline \end{aligned}$	II		0.00	0.00	0.04	0.00	0.00	0.01	0.00	36	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	2.79	2.79	WPI-2043	PSS	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 39.424^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 53^{\prime} \\ 28.456^{\prime \prime} \mathrm{W} \end{gathered}$	$\begin{aligned} & \text { Peterborough } \\ & \text { South } \end{aligned}$	II		0.00	0.00	0.02	0.00	0.00	0.01	0.00	19	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	3.47	3.47	WPI-2049	PSS	N/A	$\begin{array}{r} 42^{\circ} 46^{\prime} \\ 44.026^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 52^{\prime} \\ 40.597^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	3.61	3.62	WPI-2052	PFO	N/A	$\begin{array}{r} 42^{\circ} 46^{\prime} \\ 44.070^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 52^{\prime} \\ 30.330^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	N/A		0.00	0.02	0.00	0.00	0.01	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	3.61	3.62	WPI-2051	PSS	N/A	$\begin{array}{r} 42^{\circ} 46^{\prime} \\ 44.515^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 52^{\prime} \\ 30.336^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	II		0.00	0.00	0.01	0.00	0.00	0.01	0.00	22	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	3.62	3.62	WPI-2052	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 44.096^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 52^{\prime} \\ 30.0299^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	N/A		0.00	0.02	0.00	0.00	0.01	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	3.62	3.63	WPI-2053	PFO	N/A	$\begin{array}{r} 42^{\circ} 46^{\prime} \\ 44.118^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 52^{\prime} \\ 29.776^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	II		0.00	0.01	0.00	0.00	0.01	0.00	0.00	8	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	3.62	3.63	WPI-2051	PSS	N/A	$\begin{array}{r} 42^{\circ} 46^{\prime} \\ 44.558^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 52^{\prime} \\ 30.029^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	II		0.00	0.00	0.03	0.00	0.00	0.01	0.00	29	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	3.63	3.63	WPI-2051	PSS	N/A	$\begin{array}{r} 42^{\circ} 46^{\prime} \\ 44.824^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 71^{\circ} 52^{\prime} \\ 29.315^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Greenville	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	3.91	3.93	WPI-2056	PFO	N/A	$\begin{array}{r} 42^{\circ} 46^{\prime} \\ 46.346^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 52^{\prime} \\ 9.718^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	II		0.00	0.11	0.00	0.00	0.04	0.00	0.00	86	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	3.91	3.93	WPI-2057	PSS	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 46.549^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 52^{\prime} \\ 9.794^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	II		0.00	0.00	0.06	0.00	0.00	0.01	0.00	16	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	3.94	3.97	WPI-2061	PSS	N/A	$\begin{array}{r} 42^{\circ} 46^{\prime} \\ 46.0777^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 52^{\prime} \\ 7.140^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	II		0.00	0.00	0.14	0.00	0.00	0.01	0.00	56	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	3.96	3.97	WPI-2062	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 46.628^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 52^{\prime} \\ 6.195 " \mathrm{~W} \\ \hline \end{gathered}$	Greenville	II		0.00	0.06	0.00	0.00	0.04	0.00	0.00	74	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	3.97	3.98	WPI-2063	Other	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 46.986^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 52^{\prime} \\ 5.2477^{\prime} \mathrm{W} \end{gathered}$	Greenville	N/A		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	4.06	4.08	WPI-2066	Other	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 47.490^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 51^{\prime} \\ 58.969^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	N/A		0.00	0.00	0.00	0.03	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	4.13	4.17	WPI-2070	PFO/PSS	N/A	$\begin{array}{r} 42^{\circ} 46^{\prime} \\ 47.3111^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 51^{\prime} \\ 53.917^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	II		0.00	0.13	0.00	0.00	0.02	0.00	0.00	41	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	4.13	4.15	WPI-2075	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 47.3122^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 51^{\prime} \\ 53.915^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	N/A		0.00	0.02	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	4.13	4.15	WPI-2069	PSS/PEM	N/A	$\begin{array}{r} 42^{\circ} 46^{\prime} \\ 47.569^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 51^{\prime} \\ 53.767^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	II		0.00	0.00	0.04	0.00	0.00	0.01	0.00	25	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	4.15	4.15	WPI-2075	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 47.344^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 51^{\prime} \\ 52.486^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	

Table 2.3-8

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{aligned} & \text { Wetland } \\ & \mathbf{I D}^{3,4} \end{aligned}$	Wetland	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method	Comments			Wetl	nd Impact	Operation ${ }^{9}$			Crossing Length (feet) ${ }^{11}$	
						Construction ${ }^{8}$																
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$		
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	4.15	4.16		WPI-2072	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 47.927^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 51^{\prime} \\ 52.504^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	N/A		0.00	0.00	0.02	0.00	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	4.15	4.18	WPI-2071	Other	N/A	$\begin{array}{r} 42^{\circ} 46^{\prime} \\ 47.549^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 51^{\prime} \\ 52.972^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	II		0.00	0.00	0.00	0.17	0.00	0.00	0.00	183	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	4.17	4.19	WPI-2072	PSS/PEM	N/A	$\begin{array}{r} 42^{\circ} 46^{\prime} \\ 47.655^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 51^{\prime} \\ 51.555^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	II		0.00	0.00	0.05	0.00	0.00	0.01	0.00	12	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	4.17	4.17	WPI-2072	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 48.171^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 51^{\prime} \\ 51.552^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	4.18	4.19	WPI-2075	PFO	N/A	$\begin{array}{r} 42^{\circ} 46^{\prime} \\ 47.490^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 51^{\prime} \\ 50.804^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	N/A		0.00	0.02	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	4.42	4.45	WPI-2081	PSS	N/A	$\begin{array}{r} 42^{\circ} 46^{\prime} \\ 49.737^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 51^{\prime} \\ 33.434^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	II		0.00	0.00	0.11	0.00	0.00	0.03	0.00	128	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	4.43	4.46	WPI-2085	PFO	N/A	$\begin{array}{r} 42^{\circ} 46^{\prime} \\ 49.395^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 51^{\prime} \\ 33.001^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	N/A		0.00	0.11	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	4.69	4.77	WPI-2090	PSS	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 51.3677^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 51^{\prime} \\ 14.564^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	II		0.00	0.00	0.37	0.00	0.00	0.09	0.00	404	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	5.15	5.17	WPI-2091	PSS	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 53.4877^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 50^{\prime} \\ 42.086^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Greenville	II		0.00	0.00	0.11	0.00	0.00	0.01	0.00	66	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	5.26	5.29	NI-V-W009	PEM	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 54.820^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 50^{\prime} \\ 34.633^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	II		0.07	0.00	0.00	0.00	0.00	0.00	0.00	6	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	5.27	5.28	NI-V-W009	PEM	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 54.794^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 50^{\prime} \\ 34.051^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	II		0.01	0.00	0.00	0.00	0.00	0.00	0.00	23	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	5.27	5.28	NI-V-W009	PEM	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 54.297^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 50^{\prime} \\ 33.5755^{\prime} \mathrm{F} \\ \hline \end{array}$	Greenville	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	5.53	5.56	NI-V-W003	PEM	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 55.450^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 50^{\prime} \\ 15.805^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	II		0.13	0.00	0.00	0.00	0.00	0.00	0.00	139	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	5.55	5.59	NI-V-W003	PSS	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 55.4433^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 50^{\prime} \\ 13.986^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	II		0.00	0.00	0.30	0.00	0.00	0.04	0.00	185	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	5.59	5.59	NI-V-W003	PEM	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 55.824^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 50^{\prime} \\ 11.734^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	5.63	5.63	NI-V-W003	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 55.795^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 50^{\prime} \\ 8.806^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	II		0.00	0.05	0.00	0.00	0.02	0.00	0.00	24	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	6.02	6.06	NI-R-W001	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 54.645^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 49^{\prime} \\ 43.818^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Greenville	II		0.00	0.27	0.00	0.00	0.11	0.00	0.00	146	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	6.10	6.14	NI-R-W001	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 55.245^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 49^{\prime} \\ 38.051^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	II		0.00	0.12	0.00	0.00	0.05	0.00	0.00	29	
Wright to Dracut Pipeline Segment	Hillsborough	New Ipswich	J	6.13	6.15	NI-R-W001	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 55.220^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 49^{\prime} \\ 36.072^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	II		0.00	0.10	0.00	0.00	0.04	0.00	0.00	58	
Wright to Dracut Pipeline Segment	Hillsborough	Greenville	J	6.45	6.46	WPI-2092	PSS	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 57.161^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 49 ' \\ 14.460^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	N/A		0.00	0.00	0.03	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Greenville	J	6.72	6.75	WPI-2099	PSS/PEM	N/A	$\begin{array}{r} 42^{\circ} 47^{\prime} \\ 4.097^{\prime \prime} \mathrm{N} \end{array}$	$\begin{gathered} 71^{\circ} 48^{\prime} \\ 57.656^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	II		0.00	0.00	0.12	0.00	0.00	0.02	0.00	108	
Wright to Dracut Pipeline Segment	Hillsborough	Greenville	J	7.71	7.72	GN-M-W001	PSS	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 12.977^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 47 \prime \\ 49.650^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	II		0.00	0.00	0.07	0.00	0.00	0.01	0.00	49	
Wright to Dracut Pipeline Segment	Hillsborough	Greenville	J	7.79	7.80	GN-M-W001	PSS	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 13.293^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 47^{\prime} \\ 43.800^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Greenville	II		0.00	0.00	0.01	0.00	0.00	0.01	0.00	3	
Wright to Dracut Pipeline Segment	Hillsborough	Mason	J	8.30	8.31	WPI-2105	Other	N/A	$\begin{array}{r} 42^{\circ} 47^{\prime} \\ 6.572^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 47^{\prime} \\ 9.479^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	N/A		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0	

Table 2.3-8

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{gathered} \text { Wettand } \\ \mathbf{I D}^{3,4} \end{gathered}$	$\begin{aligned} & \text { Wetland } \\ & \text { Class }^{5} \end{aligned}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing	Comments			Wetl	nd Impact	Operation ${ }^{9}$			Crossing Length (feet) ${ }^{11}$	
						Construction ${ }^{8}$																
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$		
Wright to Dracut Pipeline Segment	Hillsborough	Mason	J	8.38	8.40		WPI-2107	PEM	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 5.308^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 47^{\prime} \\ 4.160^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Hillsborough	Mason	J	8.38	8.40	WPI-2106	PFO	N/A	$\begin{array}{r} 42^{\circ} 47^{\prime} \\ 5.247^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 71^{\circ} 47^{\prime} \\ 4.111^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Greenville	N/A		0.00	0.04	0.00	0.00	0.01	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Mason	J	8.59	8.60	WPI-2109	PSS/PEM	N/A	$\begin{array}{r} 42^{\circ} 47^{\prime} \\ 2.341^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 46^{\prime} \\ 49.769^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Mason	J	8.81	8.83	WPI-2115	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 59.082^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 46^{\prime} \\ 34.466^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	II		0.00	0.11	0.00	0.00	0.06	0.00	0.00	90	
Wright to Dracut Pipeline Segment	Hillsborough	Mason	J	8.82	8.83	WPI-2113	Other	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 59.027 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 46^{\prime} \\ 34.200^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	N/A		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Mason	J	8.87	8.92	WPI-2116	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 58.226^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 46^{\prime} \\ 30.314^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	II		0.00	0.30	0.00	0.00	0.15	0.00	0.00	211	
Wright to Dracut Pipeline Segment	Hillsborough	Mason	J	8.91	8.96	WPI-2117	Other	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 57.758^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 46^{\prime} \\ 28.045^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	N/A		0.00	0.00	0.00	0.06	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Mason	J	8.94	8.97	WPI-2118	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 56.557{ }^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 46^{\prime} \\ 25.952^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	II		0.00	0.17	0.00	0.00	0.08	0.00	0.00	110	
Wright to Dracut Pipeline Segment	Hillsborough	Mason	J	9.06	9.08	WPI-2119	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 54.863^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 46^{\prime} \\ 17.740^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	II		0.00	0.12	0.00	0.00	0.04	0.00	0.00	65	
Wright to Dracut Pipeline Segment	Hillsborough	Mason	J	9.13	9.14	WPI-2120	PSS	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 55.147 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 46^{\prime} \\ 12.407 " \mathrm{~W} \\ \hline \end{gathered}$	Greenville	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Mason	J	9.14	9.15	WPI-2120	PSS	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 55.031 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 46^{\prime} \\ 11.845^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Mason	J	9.20	9.21	WPI-2121	Other	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 53.672^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 46^{\prime} \\ 7.743^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	N/A		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Mason	J	9.21	9.21	WPI-2122	PSS	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 53.584^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{array}{r} 71^{\circ} 46^{\prime} \\ 7.317^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Greenville	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Mason	J	9.33	9.35	WPI-2125	Other	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 51.096^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 59.483^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	II		0.00	0.00	0.00	0.11	0.00	0.00	0.00	49	
Wright to Dracut Pipeline Segment	Hillsborough	Mason	J	9.41	9.42	WPI-2126	Other	N/A	$\begin{array}{r} 42^{\circ} 46^{\prime} \\ 49.939^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 54.374^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	N/A		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Mason	J	9.55	9.60	WPI-2129	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 48.420^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{array}{r} 71^{\circ} 45^{\prime} \\ 43.981^{\prime \prime} \mathrm{W} \end{array}$	Greenville	II		0.00	0.44	0.00	0.00	0.18	0.00	0.00	261	
Wright to Dracut Pipeline Segment	Hillsborough	Mason	J	9.60	9.62	WPI-2131	PFO	N/A	$\begin{array}{r} 42^{\circ} 46^{\prime} \\ 47.733^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 40.601^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	II		0.00	0.11	0.00	0.00	0.04	0.00	0.00	58	
Wright to Dracut Pipeline Segment	Hillsborough	Mason	J	9.62	9.68	WPI-2131	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 46.999^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 39.633^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	II		0.00	0.23	0.00	0.00	0.04	0.00	0.00	37	
Wright to Dracut Pipeline Segment	Hillsborough	Mason	J	9.79	9.93	WPI-2139	PFO	N/A	$\begin{array}{r} 42^{\circ} 46^{\prime} \\ 45.335^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 28.136^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	II		0.00	1.22	0.00	0.00	0.50	0.00	0.00	732	
Wright to Dracut Pipeline Segment	Hillsborough	Mason	J	9.87	9.90	WPI-2138	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 44.271^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 22.695^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	N/A		0.00	0.00	0.02	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Mason	J	9.96	10.00	WPI-2139	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 42.157^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 16.182^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	N/A		0.00	0.15	0.00	0.00	0.01	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Mason	J	10.00	10.01	WPI-2142	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 42.396^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 13.611^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	II		0.00	0.06	0.00	0.00	0.03	0.00	0.00	38	
Wright to Dracut Pipeline Segment	Hillsborough	Mason	J	10.03	10.05	WPI-2144	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 41.954^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 11.472^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	II		0.00	0.10	0.00	0.00	0.04	0.00	0.00	52	
Wright to Dracut Pipeline Segment	Hillsborough	Mason	J	10.23	10.25	WPI-2152	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 38.423^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 58.096^{\prime \prime} \mathrm{W} \end{gathered}$	Milford	II		0.00	0.10	0.00	0.00	0.02	0.00	0.00	65	

Table 2.3-8

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{gathered} \text { Wettand } \\ \mathbf{I D}^{3,4} \end{gathered}$	$\begin{aligned} & \text { Wetland } \\ & \text { Class }^{5} \end{aligned}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing	Comments			Wetland Impact (acres)		Operation ${ }^{9}$			Crossing Length (feet) ${ }^{11}$	
						Construction ${ }^{8}$																
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PsS	Other ${ }^{10}$		
Wright to Dracut Pipeline Segment	Hillsborough	Mason	J	10.40	10.41		WPI-2156	Other	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 36.288^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 46.600^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	II		0.00	0.00	0.00	0.07	0.00	0.00	0.00	69
Wright to Dracut Pipeline Segment	Hillsborough	Mason	J	10.47	10.48	WPI-2157	Other	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 35.086^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 41.408^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	N/A		0.00	0.00	0.00	0.03	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Mason	J	10.52	10.55	WPI-2159	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 35.076^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 38.171^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	II		0.00	0.23	0.00	0.00	0.10	0.00	0.00	141	
Wright to Dracut Pipeline Segment	Hillsborough	Mason	J	10.61	10.69	WPI-2161	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 33.829^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 32.137^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	II		0.00	0.69	0.00	0.00	0.28	0.00	0.00	409	
Wright to Dracut Pipeline Segment	Hillsborough	Mason	J	10.76	10.77	WPI-2164	PSS	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 31.650^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 21.749^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	II		0.00	0.00	0.03	0.00	0.00	0.01	0.00	25	
Wright to Dracut Pipeline Segment	Hillsborough	Mason	J	10.77	10.83	WPI-2166	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 30.866^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 21.521^{\prime \prime} \mathrm{W} \end{gathered}$	Milford	II		0.00	0.57	0.00	0.00	0.22	0.00	0.00	322	
Wright to Dracut Pipeline Segment	Hillsborough	Mason	J	10.78	10.81	WPI-2165	PSS	N/A	$\begin{array}{r} 42^{\circ} 46^{\prime} \\ 31.856^{\prime \prime} \mathrm{F} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 20.474^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	N/A		0.00	0.00	0.05	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Mason	J	10.79	10.80	WPI-2164	PSS	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 32.903 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 19.010^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Mason	J	10.84	10.85	WPI-2167	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 30.560^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 16.316^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	II		0.00	0.06	0.00	0.00	0.03	0.00	0.00	40	
Wright to Dracut Pipeline Segment	Hillsborough	Mason	J	10.96	11.05	WPI-2168	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 28.493 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 44^{\prime} \\ 8.337^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Milford	II		0.00	0.81	0.00	0.00	0.32	0.00	0.00	466	
Wright to Dracut Pipeline Segment	Hillsborough	Mason	J	10.96	10.96	WPI-2168	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 28.403 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 8.362^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Mason	J	10.96	10.96	WPI-2168	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 28.403 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 8.362^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Mason	J	11.15	11.19	WPI-2170	PEM	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 30.133^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 43^{\prime} \\ 55.134^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	II		0.32	0.00	0.00	0.00	0.00	0.00	0.00	193	
Wright to Dracut Pipeline Segment	Hillsborough	Mason	J	11.50	11.50	WPI-2175	Other	N/A	$\begin{array}{r} 42^{\circ} 46^{\prime \prime} \\ 33.277^{\prime \prime} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 43^{\prime} \\ 30.954^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	N/A		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Mason	J	11.64	11.66	WPI-2176	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 33.112^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 43^{\prime} \\ 20.675^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	II		0.00	0.14	0.00	0.00	0.06	0.00	0.00	83	
Wright to Dracut Pipeline Segment	Hillsborough	Mason	J	11.65	11.66	WPI-2177	PSS	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 33.665 " \mathrm{~N} \end{gathered}$	$\begin{gathered} 71^{\circ} 43^{\prime} \\ 20.377^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Milford	J	11.93	11.95	WPI-2181	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 34.202 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 43^{\prime} \\ 0.637^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	II		0.00	0.18	0.00	0.00	0.07	0.00	0.00	106	
Wright to Dracut Pipeline Segment	Hillsborough	Milford	J	11.95	12.05	WPI-2182	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 34.518^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 42^{\prime} \\ 58.685^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	II		0.00	0.82	0.00	0.00	0.26	0.00	0.00	380	
Wright to Dracut Pipeline Segment	Hillsborough	Milford	J	12.05	12.08	WPI-2187	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 35.466^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 42^{\prime} \\ 51.687^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	II		0.00	0.13	0.00	0.00	0.05	0.00	0.00	63	
Wright to Dracut Pipeline Segment	Hillsborough	Milford	J	12.13	12.17	WPI-2188	Other	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 35.4677^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 42^{\prime} \\ 46.440^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	II		0.00	0.00	0.00	0.29	0.00	0.00	0.00	226	
Wright to Dracut Pipeline Segment	Hillsborough	Milford	J	12.14	12.15	WPI-2190	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 35.261^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 42^{\prime} \\ 45.6377^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	N/A		0.00	0.02	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Milford	J	12.14	12.18	WPI-2189	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 35.387^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 42^{\prime} \\ 45.751^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	II		0.00	0.00	0.16	0.00	0.00	0.01	0.00	57	
Wright to Dracut Pipeline Segment	Hillsborough	Milford	J	12.15	12.16	WPI-2189	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 35.881^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 42^{\prime} \\ 44.546^{\prime \prime} \mathrm{W} \end{gathered}$	Milford	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Milford	J	12.17	12.23	WPI-2190	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 35.228^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 42^{\prime} \\ 43.005^{\prime \prime} \mathrm{W} \end{gathered}$	Milford	II		0.00	0.42	0.00	0.00	0.16	0.00	0.00	226	

Table 2.3-8

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\underset{\substack{\text { Wetland } \\ \mathbf{I D}^{3,4}}}{ }$	Wetland	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing	Comments	Wetland Impact (acres)				Operation ${ }^{9}$			Crossing Length (feet) ${ }^{11}$	
						Construction ${ }^{8}$																
				Begin	End									PEM	PFO	Pss	Other ${ }^{10}$	PFO	PsS	Other ${ }^{10}$		
Wright to Dracut Pipeline Segment	Hillsborough	Milford	J	12.20	12.21		WPI-2191	Other	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 36.087^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 42^{\prime} \\ 41.016^{\prime \prime} \mathrm{W} \end{gathered}$	Milford	N/A		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Hillsborough	Milford	J	12.43	12.44	WPI-2195	PFO/PSS	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 36.739^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 42^{\prime} \\ 24.997^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	II		0.00	0.06	0.00	0.00	0.02	0.00	0.00	38	
Wright to Dracut Pipeline Segment	Hillsborough	Milford	J	12.49	12.52	WPI-2197	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 37.242^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 42^{\prime} \\ 21.159^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	II		0.00	0.23	0.00	0.00	0.10	0.00	0.00	140	
Wright to Dracut Pipeline Segment	Hillsborough	Milford	J	12.58	12.58	WPI-2199	PSS	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 37.744^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 42^{\prime} \\ 14.199^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Milford	J	12.58	12.59	WPI-2198	Other	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 36.950^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 42^{\prime} \\ 14.245^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	N/A		0.00	0.00	0.00	0.02	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Milford	J	12.72	12.76	WPI-2201	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 37.355^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 42^{\prime} \\ 4.713^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	II		0.00	0.20	0.00	0.00	0.02	0.00	0.00	12	
Wright to Dracut Pipeline Segment	Hillsborough	Milford	J	12.96	12.98	WPI-2202	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 38.4555^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 41^{\prime} \\ 47.479^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	II		0.00	0.15	0.00	0.00	0.06	0.00	0.00	93	
Wright to Dracut Pipeline Segment	Hillsborough	Brookline	J	13.13	13.19	WPI-2206	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 39.926 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 41^{\prime} \\ 35.840^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	II		0.00	0.48	0.00	0.00	0.19	0.00	0.00	278	
Wright to Dracut Pipeline Segment	Hillsborough	Brookline	J	13.23	13.31	WPI-2209	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 42.805^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 41^{\prime} \\ 29.927^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	II		0.00	0.63	0.00	0.00	0.26	0.00	0.00	374	
Wright to Dracut Pipeline Segment	Hillsborough	Brookline	J	13.29	13.34	WPI-2213	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 44.680^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 41^{\prime} \\ 26.077^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	II		0.00	0.28	0.00	0.00	0.11	0.00	0.00	156	
Wright to Dracut Pipeline Segment	Hillsborough	Brookline	J	13.34	13.37	WPI-2215	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 45.980^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 41^{\prime} \\ 23.408^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	II		0.00	0.09	0.00	0.00	0.02	0.00	0.00	31	
Wright to Dracut Pipeline Segment	Hillsborough	Brookline	J	13.68	13.69	WPI-2218	Other	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 56.051 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 41^{\prime} \\ 3.520^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	II		0.00	0.00	0.00	0.05	0.00	0.00	0.00	43	
Wright to Dracut Pipeline Segment	Hillsborough	Brookline	J	14.18	14.27	WPI-2223	PFO	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 10.939^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 40^{\prime} \\ 34.210^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Milford	II		0.00	0.26	0.00	0.00	0.01	0.00	0.00	146	
Wright to Dracut Pipeline Segment	Hillsborough	Brookline	J	14.28	14.30	WPI-2224	PFO	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 13.086^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 40^{\prime} \\ 27.7322^{\prime \prime} \\ \hline \end{array}$	Milford	II		0.00	0.13	0.00	0.00	0.04	0.00	0.00	57	
Wright to Dracut Pipeline Segment	Hillsborough	Brookline	J	14.72	14.77	WPI-2228	PFO	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 25.583 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 40^{\prime} \\ 2.053 " \mathrm{~W} \\ \hline \end{array}$	Milford	II		0.00	0.48	0.00	0.00	0.19	0.00	0.00	278	
Wright to Dracut Pipeline Segment	Hillsborough	Brookline	J	15.02	15.02	BK-M-W002	PFO	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 31.696 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 39^{\prime} \\ 43.080^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Brookline	J	15.22	15.28	WPI-2232	PFO	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 33.928^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 39^{\prime} \\ 29.287^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	II		0.00	0.41	0.00	0.00	0.21	0.00	0.00	320	
Wright to Dracut Pipeline Segment	Hillsborough	Milford	J	15.86	15.90	WPI-2234	PEM	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 42.767^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 38^{\prime} \\ 46.661^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Milford	N/A		0.05	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Milford	J	15.88	15.90	WPI-2235	PFO	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 42.865^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 38^{\prime} \\ 45.494^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	II		0.00	0.10	0.00	0.00	0.06	0.00	0.00	108	
Wright to Dracut Pipeline Segment	Hillsborough	Milford	J	15.98	15.99	WPI-2236	PEM	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 44.222^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 38^{\prime} \\ 38.847^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Milford	N/A		0.02	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Milford	J	16.34	16.37	WPI-2239	PEM	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 48.934^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 38^{\prime} \\ 14.0855^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	II		0.19	0.00	0.00	0.00	0.00	0.00	0.00	122	
Wright to Dracut Pipeline Segment	Hillsborough	Milford	J	16.35	16.37	WPI-2240	PFO	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 48.530^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 38^{\prime} \\ 13.129^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	N/A		0.00	0.03	0.00	0.00	0.02	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Milford	J	16.52	16.55	WPI-2242	PEM	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 51.196^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 38^{\prime} \\ 1.2455^{\prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	II		0.20	0.00	0.00	0.00	0.00	0.00	0.00	142	
Wright to Dracut Pipeline Segment	Hillsborough	Milford	J	16.56	16.58	WPI-2243	PSS	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 51.186^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 37^{\prime} \\ 58.696^{\prime \prime} \mathrm{W} \end{gathered}$	Milford	II		0.00	0.00	0.14	0.00	0.00	0.02	0.00	95	

Table 2.3-8

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{gathered} \text { Wettand } \\ \mathbf{I D}^{3,4} \end{gathered}$	$\begin{aligned} & \text { Wetland } \\ & \text { Class }^{5} \end{aligned}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing	Comments	Wetland Impact (acres)				Operation ${ }^{9}$			Crossing Length (feet) ${ }^{11}$	
						Construction ${ }^{8}$																
				Begin	End									PEM	PFO	Pss	Other ${ }^{10}$	PFO	PsS	Other ${ }^{10}$		
Wright to Dracut Pipeline Segment	Hillsborough	Milford	J	16.60	16.61		WPI-2244	Other	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 52.097^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 37 \prime \\ 55.708^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	N/A		0.00	0.00	0.00	0.02	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Hillsborough	Milford	J	16.61	16.61	WPI-2244	Other	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 52.275^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 37^{\prime} \\ 55.117^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	N/A		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Milford	J	16.62	16.72	WPI-2245	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 51.645^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 37 \prime \\ 54.3711^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	II		0.00	0.00	0.85	0.00	0.00	0.12	0.00	507	
Wright to Dracut Pipeline Segment	Hillsborough	Milford	J	16.63	16.63	WPI-2245	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 53.961^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 37 \prime \\ 54.189^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Milford	J	16.82	16.83	WPI-2246	PEM	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 54.360^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 37 \prime \\ 41.009^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Milford	N/A		0.05	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Milford	J	16.88	16.90	WPI-2247	PEM	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 55.241^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 37^{\prime} \\ 36.464^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	II		0.13	0.00	0.00	0.00	0.00	0.00	0.00	79	
Wright to Dracut Pipeline Segment	Hillsborough	Milford	J	17.06	17.08	WPI-2250	PSS	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 56.948^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 37^{\prime} \\ 24.259^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	$\begin{gathered} \text { South } \\ \text { Merrimack } \\ \hline \end{gathered}$	II		0.00	0.00	0.19	0.00	0.00	0.03	0.00	113	
Wright to Dracut Pipeline Segment	Hillsborough	Milford	J	17.30	17.34	WPI-2251	PFO	N/A	$\begin{array}{r} 42^{\circ} 48^{\prime} \\ 3.430^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 37^{\prime} \\ 10.291^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \text { South } \\ \text { Merrimack } \\ \hline \end{gathered}$	N/A		0.00	0.10	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Milford	J	17.32	17.35	WPI-2253	PEM	N/A	$\begin{array}{r} \hline 42^{\circ} 48^{\prime} \\ 4.383^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 71^{\circ} 37^{\prime} \\ 9.434^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	$\begin{gathered} \text { South } \\ \text { Merrimack } \\ \hline \end{gathered}$	II		0.10	0.00	0.00	0.00	0.00	0.00	0.00	86	
Wright to Dracut Pipeline Segment	Hillsborough	Milford	J	17.39	17.39	WPI-2256	Other	N/A	$\begin{array}{r} 42^{\circ} 48^{\prime} \\ 7.455^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 37^{\prime} \\ 7.041^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { South } \\ \text { Merrimack } \\ \hline \end{gathered}$	N/A		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Amherst	J	17.86	17.88	WPI-2258	Other	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 27.223 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 36^{\prime} \\ 47.419^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \text { South } \\ \text { Merrimack } \\ \hline \end{gathered}$	II		0.00	0.00	0.00	0.10	0.00	0.00	0.00	80	
Wright to Dracut Pipeline Segment	Hillsborough	Amherst	J	17.87	17.94	WPI-2259	PFO	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 27.261 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 36^{\prime} \\ 46.681^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	$\begin{gathered} \text { South } \\ \text { Merrimack } \\ \hline \end{gathered}$	II		0.00	0.42	0.00	0.00	0.16	0.00	0.00	312	
Wright to Dracut Pipeline Segment	Hillsborough	Amherst	J	17.88	17.94	WPI-2262	PSS/PEM	N/A	$\begin{array}{r} 42^{\circ} 48^{\prime} \\ 27.923^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 36^{\prime} \\ 46.796^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \text { South } \\ \text { Merrimack } \\ \hline \end{gathered}$	N/A		0.00	0.00	0.12	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Amherst	J	18.07	18.09	WPI-2264	PEM	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 36.2577^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 36^{\prime} \\ 39.372^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \text { South } \\ \text { Merrimack } \end{gathered}$	II		0.07	0.00	0.00	0.00	0.00	0.00	0.00	66	
Wright to Dracut Pipeline Segment	Hillsborough	Amherst	J	18.14	18.16	WPI-2268	Other	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 38.726^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 366^{\prime} \\ 35.340^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \text { South } \\ \text { Merrimack } \\ \hline \end{gathered}$	II		0.00	0.00	0.00	0.12	0.00	0.00	0.00	89	
Wright to Dracut Pipeline Segment	Hillsborough	Amherst	J	18.43	18.48	NWI-1122	PEM	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 36.665 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 36^{\prime} \\ 15.547^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \text { South } \\ \text { Merrimack } \\ \hline \end{gathered}$	II		0.37	0.00	0.00	0.00	0.00	0.00	0.00	229	
Wright to Dracut Pipeline Segment	Hillsborough	Amherst	J	18.50	18.56	NWI-1123	PFO	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 35.325 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 36^{\prime} \\ 10.564^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \text { South } \\ \text { Merrimack } \\ \hline \end{gathered}$	II		0.00	0.38	0.00	0.00	0.16	0.00	0.00	225	
Wright to Dracut Pipeline Segment	Hillsborough	Amherst	J	18.58	18.65	NWI-1123	PFO	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 34.562^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 36^{\prime} \\ 4.907^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	$\begin{gathered} \text { South } \\ \text { Merrimack } \\ \hline \end{gathered}$	II		0.00	0.47	0.00	0.00	0.19	0.00	0.00	268	
Wright to Dracut Pipeline Segment	Hillsborough	Amherst	J	19.33	19.39	NWI-1294	PSS	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 36.259 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 35 ' \\ 17.157^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \text { South } \\ \text { Merrimack } \\ \hline \end{gathered}$	II		0.00	0.00	0.46	0.00	0.00	0.07	0.00	326	
Wright to Dracut Pipeline Segment	Hillsborough	Amherst	J	19.42	19.45	NWI-1295	PFO	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 35.989 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 35^{\prime} \\ 10.797^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \text { South } \\ \text { Merrimack } \end{gathered}$	II		0.00	0.14	0.00	0.00	0.09	0.00	0.00	124	
Wright to Dracut Pipeline Segment	Hillsborough	Amherst	J	20.56	20.58	NWI-1298	PSS	N/A	$\begin{gathered} \hline 42^{\circ} 48^{\prime} \\ 15.239^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 33^{\prime} \\ 55.610^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { South } \\ \text { Merrimack } \\ \hline \end{gathered}$	N/A		0.00	0.00	0.05	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Hollis	J	20.57	20.60	NWI-1298	PSS	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 15.034^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 33^{\prime} \\ 54.860^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \text { South } \\ \text { Merrimack } \\ \hline \end{gathered}$	N/A		0.00	0.00	0.10	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Hollis	J	20.85	20.87	NWI-1299	PFO/SS	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 10.164^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 33^{\prime} \\ 36.024^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	South Merrimack	II		0.00	0.10	0.00	0.00	0.03	0.00	0.00	42	
Wright to Dracut Pipeline Segment	Hillsborough	Merrimack	J	20.86	20.90	NWI-1299	PFO/SS	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 10.605^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 33^{\prime} \\ 34.744^{\prime \prime} \mathrm{W} \end{gathered}$	$\begin{gathered} \text { South } \\ \text { Merrimack } \end{gathered}$	II		0.00	0.31	0.00	0.00	0.13	0.00	0.00	187	

Table 23-8

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\underset{\substack{\text { Wetland } \\ \mathbf{I D}^{3,4}}}{ }$	$\begin{aligned} & \text { Wetland } \\ & \text { Class }^{5} \end{aligned}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing	Comments			Wetland Impact (acres)		Operation ${ }^{9}$			$\begin{aligned} & \text { Crossing } \\ & \text { Length } \\ & \text { (feet) } \end{aligned}$	
						Construction ${ }^{8}$																
				Begin	End									PEM	PFO	Pss	Other ${ }^{10}$	PFO	PsS	Other ${ }^{10}$		
Wright to Dracut Pipeline Segment	Hillsborough	Merrimack	J	20.91	20.98		NWI-1299	PFO/SS	N/A	$\begin{gathered} \hline 42^{\circ} 48^{\prime} \\ 9.720^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 33^{\prime} \\ 31.499^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \text { South } \\ \text { Merrimack } \end{gathered}$	II		0.00	0.43	0.00	0.00	0.18	0.00	0.00	261
Wright to Dracut Pipeline Segment	Hillsborough	Merrimack	J	21.06	21.08	NWI-1302	PFO	N/A	$\begin{array}{r} 42^{\circ} 48^{\prime} \\ 6.127^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 33^{\prime} \\ 22.466^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \text { South } \\ \text { Merrimack } \\ \hline \end{gathered}$	II		0.00	0.18	0.00	0.00	0.05	0.00	0.00	78	
Wright to Dracut Pipeline Segment	Hillsborough	Merrimack	J	21.97	22.04	NWI-1307	PSS/EM	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 24.056^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 32^{\prime} \\ 36.952^{\prime \prime} \mathrm{W} \end{gathered}$	South Merrimack	II		0.00	0.00	0.52	0.00	0.00	0.08	0.00	327	
Wright to Dracut Pipeline Segment	Hillsborough	Merrimack	J	22.03	22.16	NWI-1308	PFO	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 24.942^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 32^{\prime} \\ 33.010^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \text { South } \\ \text { Merrimack } \\ \hline \end{gathered}$	II		0.00	1.07	0.00	0.00	0.41	0.00	0.00	596	
Wright to Dracut Pipeline Segment	Hillsborough	Merrimack	J	22.39	22.40	NWI-1309	PFO	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 24.916^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 32^{\prime} \\ 7.445^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	South Merrimack	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Merrimack	J	22.77	22.80	NWI-1312	PSS/FO	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 26.341^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 31^{\prime} \\ 40.658^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \text { South } \\ \text { Merrimack } \\ \hline \end{gathered}$	II		0.00	0.00	0.24	0.00	0.00	0.03	0.00	129	
Wright to Dracut Pipeline Segment	Hillsborough	Merrimack	J	23.40	23.53	NWI-1316	PFO	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 43.935 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 31^{\prime} \\ 5.237^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \text { South } \\ \text { Merrimack } \\ \hline \end{gathered}$	II		0.00	1.06	0.00	0.00	0.44	0.00	0.00	647	
Wright to Dracut Pipeline Segment	Hillsborough	Merrimack	J	26.17	26.19	WPI-2358	PFO	N/A	$\begin{gathered} 42^{\circ} 49^{\prime} \\ 44.580^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 28^{\prime} \\ 53.659^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Nashua North	IV		0.00	0.15	0.00	0.00	0.06	0.00	0.00	93	
Wright to Dracut Pipeline Segment	Hillsborough	Litchfield	J	26.18	26.19	WPI-2358	PFO	N/A	$\begin{gathered} 42^{\circ} 49^{\prime} \\ 44.088^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 28^{\prime} \\ 52.163^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	IV		0.00	0.01	0.00	0.00	0.01	0.00	0.00	3	
Wright to Dracut Pipeline Segment	Hillsborough	Litchfield	J	26.33	26.35	WPI-2359	PFO	N/A	$\begin{gathered} 42^{\circ} 49^{\prime} \\ 46.194^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 28^{\prime} \\ 41.968^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	IV		0.00	0.10	0.00	0.00	0.05	0.00	0.00	79	
Wright to Dracut Pipeline Segment	Hillsborough	Litchfield	J	26.33	26.42	WPI-2360	PSS	N/A	$\begin{gathered} 42^{\circ} 49^{\prime} \\ 46.545^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 28^{\prime} \\ 42.531^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	IV		0.00	0.00	0.95	0.00	0.00	0.06	0.00	253	
Wright to Dracut Pipeline Segment	Hillsborough	Litchfield	J	26.40	26.45	WPI-2361	PFO	N/A	$\begin{gathered} 42^{\circ} 49^{\prime} \\ 46.766^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 28^{\prime} \\ 37.337^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Nashua North	N/A		0.00	0.60	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Litchfield	J	26.46	26.47	WPI-2363	Other	N/A	$\begin{gathered} 42^{\circ} 49^{\prime} \\ 47.557^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 28^{\prime} \\ 33.159^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Nashua North	II		0.00	0.00	0.00	0.05	0.00	0.00	0.00	27	
Wright to Dracut Pipeline Segment	Hillsborough	Litchfield	J	26.47	26.47	WPI-2362	PEM	N/A	$\begin{array}{r} 42^{\circ} 49^{\prime} \\ 47.646^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 71^{\circ} 28^{\prime \prime} \\ 32.737^{\prime \prime} \mathrm{C} \\ \hline \end{array}$	Nashua North	II		0.03	0.00	0.00	0.00	0.00	0.00	0.00	21	
Wright to Dracut Pipeline Segment	Hillsborough	Litchfield	J	26.47	26.50	WPI-2363	Other	N/A	$\begin{gathered} 42^{\circ} 49^{\prime} \\ 47.679^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 28^{\prime} \\ 32.582^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Nashua North	II		0.00	0.00	0.00	0.27	0.00	0.00	0.00	158	
Wright to Dracut Pipeline Segment	Hillsborough	Litchfield	J	26.50	26.62	WPI-2365	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 49^{\prime} \\ 48.106^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{array}{r} 71^{\circ} 28^{\prime} \\ 30.5655^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Nashua North	II		0.00	0.00	0.96	0.00	0.00	0.12	0.00	532	
Wright to Dracut Pipeline Segment	Hillsborough	Litchfield	J	26.65	26.75	WPI-2371	PSS	N/A	$\begin{gathered} 42^{\circ} 49^{\prime} \\ 50.344^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 28^{\prime} \\ 19.988^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	II		0.00	0.00	0.76	0.00	0.00	0.11	0.00	478	
Wright to Dracut Pipeline Segment	Hillsborough	Litchfield	J	26.70	26.72	WPI-2369	PFO	N/A	$\begin{gathered} 42^{\circ} 49^{\prime} \\ 50.935^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 28^{\prime} \\ 17.190^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Litchfield	J	26.77	26.81	WPI-2371	PSS	N/A	$\begin{gathered} 42^{\circ} 49^{\prime} \\ 52.210^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 28^{\prime} \\ 11.855^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	II		0.00	0.00	0.29	0.00	0.00	0.04	0.00	167	
Wright to Dracut Pipeline Segment	Hillsborough	Litchfield	J	26.81	26.81	WPI-2370	Other	N/A	$\begin{gathered} 42^{\circ} 49^{\prime} \\ 52.669^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{array}{r} 71^{\circ} 28^{\prime} \\ 9.700^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Nashua North	N/A		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Litchfield	J	26.85	26.87	LT-G-W001	PSS	N/A	$\begin{gathered} 42^{\circ} 49^{\prime} \\ 53.640^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 28^{\prime} \\ 6.837{ }^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Nashua North	II		0.00	0.00	0.08	0.00	0.00	0.01	0.00	41	
Wright to Dracut Pipeline Segment	Hillsborough	Litchfield	J	26.86	26.91	WPI-2371	PSS	N/A	$\begin{gathered} 42^{\circ} 49^{\prime} \\ 53.672^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 28^{\prime} \\ 5.776^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	II		0.00	0.00	0.36	0.00	0.00	0.03	0.00	146	
Wright to Dracut Pipeline Segment	Hillsborough	Litchfield	J	26.86	26.87	WPI-2373	Other	N/A	$\begin{gathered} 42^{\circ} 49^{\prime} \\ 53.785^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 28^{\prime} \\ 6.302^{\prime \prime} \mathrm{W} \end{gathered}$	Nashua North	II		0.00	0.00	0.00	0.04	0.00	0.00	0.00	51	
Wright to Dracut Pipeline Segment	Hillsborough	Litchfield	J	26.89	26.96	WPI-2374	PFO	N/A	$\begin{gathered} 42^{\circ} 49^{\prime} \\ 54.390^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 28^{\prime} \\ 3.872^{\prime \prime} \mathrm{W} \end{gathered}$	Nashua North	II		0.00	0.37	0.00	0.00	0.19	0.00	0.00	275	

Table 2.3-8

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\underset{\substack{\text { Wetland } \\ \mathbf{I D}^{3,4}}}{ }$	$\begin{aligned} & \text { Wetland } \\ & \text { Class }^{5} \end{aligned}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing	Comments	Wetland Impact (acres)				Operation ${ }^{9}$			Crossing Length (feet) ${ }^{11}$	
						Construction ${ }^{8}$																
				Begin	End									PEM	PFO	Pss	Other ${ }^{10}$	PFO	PsS	Other ${ }^{10}$		
Wright to Dracut Pipeline Segment	Hillsborough	Litchfield	J	26.92	26.94		WPI-2375	Other	N/A	$\begin{gathered} 42^{\circ} 49^{\prime} \\ 54.708^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 28^{\prime} \\ 2.245^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	N/A		0.00	0.00	0.00	0.06	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Hillsborough	Litchfield	J	26.93	26.93	WPI-2374	PFO	N/A	$\begin{gathered} 42^{\circ} 49^{\prime} \\ 55.042^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 28^{\prime} \\ 1.699^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Litchfield	J	26.93	26.96	WPI-2371	PSS	N/A	$\begin{gathered} 42^{\circ} 49^{\prime} \\ 55.818^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 28^{\prime} \\ 2.052^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Nashua North	II		0.00	0.00	0.08	0.00	0.00	0.02	0.00	78	
Wright to Dracut Pipeline Segment	Hillsborough	Litchfield	J	27.01	27.01	LT-G-W003	PSS	N/A	$\begin{gathered} 42^{\circ} 49^{\prime} \\ 57.924^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 27^{\prime} \\ 57.288^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Litchfield	J	27.02	27.25	LT-G-W003	PSS	N/A	$\begin{gathered} 42^{\circ} 49^{\prime} \\ 57.695^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 27^{\prime} \\ 56.632^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Nashua North	II		0.00	0.00	1.98	0.00	0.00	0.27	0.00	1,194	
Wright to Dracut Pipeline Segment	Hillsborough	Litchfield	J	27.14	27.25	LT-G-W003	PFO	N/A	$\begin{gathered} 42^{\circ} 49^{\prime} \\ 58.819^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 27^{\prime} \\ 48.078^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	N/A		0.00	0.04	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Litchfield	J	27.26	27.27	LT-G-W003	PSS	N/A	$\begin{gathered} 42^{\circ} 50^{\prime} \\ 0.979^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 27^{\prime} \\ 39.8499^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	II		0.00	0.00	0.07	0.00	0.00	0.01	0.00	42	
Wright to Dracut Pipeline Segment	Hillsborough	Litchfield	J	27.27	27.27	LT-G-W003	PFO	N/A	$\begin{array}{r} 42^{\circ} 50^{\prime} \\ 0.879^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 71^{\circ} 27^{\prime} \\ 39.250^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Nashua North	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Litchfield	J	27.32	27.36	LT-G-W004	PEM	N/A	$\begin{array}{r} 42^{\circ} 50^{\prime} \\ 1.980^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 27^{\prime} \\ 35.855^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	II		0.20	0.00	0.00	0.00	0.00	0.00	0.00	166	
Wright to Dracut Pipeline Segment	Hillsborough	Litchfield	J	27.39	27.46	LT-G-W005	PSS	N/A	$\begin{gathered} 42^{\circ} 50^{\prime} \\ 3.251^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 27^{\prime} \\ 31.583^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	II		0.00	0.00	0.47	0.00	0.00	0.06	0.00	268	
Wright to Dracut Pipeline Segment	Hillsborough	Litchfield	J	27.42	27.46	LT-G-W005	PFO	N/A	$\begin{gathered} 42^{\circ} 50^{\prime} \\ 3.190^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 27^{\prime} \\ 29.136^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	N/A		0.00	0.08	0.00	0.00	0.03	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Litchfield	J	27.46	27.78	WPI-2388	PSS/PEM	N/A	$\begin{array}{r} 42^{\circ} 50^{\prime} \\ 3.665^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 27^{\prime} \\ 26.229^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	II		0.00	0.00	2.55	0.00	0.00	0.36	0.00	1,580	
Wright to Dracut Pipeline Segment	Hillsborough	Litchfield	J	27.48	27.71	WPI-2389	PFO	N/A	$\begin{array}{r} 42^{\circ} 50^{\prime} \\ 3.951^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 27^{\prime} \\ 24.939^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	N/A		0.00	0.17	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Litchfield	J	27.72	27.72	WPI-2388	PSS/PEM	N/A	$\begin{array}{r} 42^{\circ} 50^{\prime} \\ 8.403^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 71^{\circ} 27^{\prime \prime} \\ 8.932^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Nashua North	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Litchfield	J	27.72	27.72	LT-G-W008	PSS	N/A	$\begin{array}{r} 42^{\circ} 50^{\prime} \\ 8.403^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 27^{\prime} \\ 8.932^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Litchfield	J	27.72	27.80	LT-G-W008	PSS	N/A	$\begin{gathered} 42^{\circ} 50^{\prime} \\ 8.404^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 27^{\prime} \\ 8.930^{\prime \prime} \mathrm{W} \end{gathered}$	Nashua North	N/A		0.00	0.00	0.08	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Litchfield	J	27.76	27.76	WPI-2389	PFO	N/A	$\begin{array}{r} 42^{\circ} 50^{\prime} \\ 8.225^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 71^{\circ} 27^{\prime} \\ 6.244^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Nashua North	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Litchfield	J	27.78	27.79	WPI-2392	Other	N/A	$\begin{array}{r} 42^{\circ} 50^{\prime} \\ 8.664^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 71^{\circ} 27^{\prime} \\ 4.520^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Nashua North	II		0.00	0.00	0.00	0.04	0.00	0.00	0.00	48	
Wright to Dracut Pipeline Segment	Hillsborough	Litchfield	J	27.79	27.81	WPI-2393	PSS	N/A	$\begin{array}{r} 42^{\circ} 50^{\prime} \\ 9.075^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 71^{\circ} 27^{\prime} \\ 4.164^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Nashua North	II		0.00	0.00	0.08	0.00	0.00	0.02	0.00	92	
Wright to Dracut Pipeline Segment	Hillsborough	Litchfield	J	27.80	27.82	WPI-2394	PFO	N/A	$\begin{array}{r} 42^{\circ} 50^{\prime} \\ 8.933^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 27^{\prime} \\ 3.049^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	N/A		0.00	0.02	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Litchfield	J	28.32	28.35	WPI-2396	PFO	N/A	$\begin{gathered} \hline 42^{\circ} 50^{\prime} \\ 18.025^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 26^{\prime} \\ 29.134^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	II		0.00	0.19	0.00	0.00	0.07	0.00	0.00	98	
Wright to Dracut Pipeline Segment	Hillsborough	Litchfield	J	28.34	28.47	WPI-2397	PFO	N/A	$\begin{gathered} 42^{\circ} 50^{\prime} \\ 18.951^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 26^{\prime} \\ 27.925^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	II		0.00	1.15	0.00	0.00	0.46	0.00	0.00	666	
Wright to Dracut Pipeline Segment	Hillsborough	Litchfield	J	28.36	28.41	WPI-2398	PEM	N/A	$\begin{gathered} 42^{\circ} 50^{\prime} \\ 18.590^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 26^{\prime} \\ 26.117^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Litchfield	J	28.47	28.67	LT-L-W002	PSS	N/A	$\begin{gathered} 42^{\circ} 50^{\prime} \\ 20.946^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 26^{\prime} \\ 19.236^{\prime \prime} \mathrm{W} \end{gathered}$	Nashua North	II		0.00	0.00	1.57	0.00	0.00	0.21	0.00	903	

Table 2.3-8

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{aligned} & \text { Wetland } \\ & \mathbf{I D}^{3,4} \end{aligned}$	Wetland	State Wetland	Latitude	Longitude	Quadrangle	Crossing	Comments			Wetl	d Impac	(acres)			Crossing Length (feet) ${ }^{11}$	
						Construction ${ }^{8}$								Operation ${ }^{9}$								
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$		
Wright to Dracut Pipeline Segment	Hillsborough	Litchfield	J	28.65	28.66		LT-L-W002	PSS	N/A	$\begin{gathered} 42^{\circ} 50^{\prime} \\ 23.715^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 26^{\prime} \\ 7.169^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Hillsborough	Litchfield	J	28.71	28.77	LT-L-W002	PFO	N/A	$\begin{gathered} 42^{\circ} 50^{\prime} \\ 25.048^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 26^{\prime} \\ 3.009^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	II		0.00	0.33	0.00	0.00	0.07	0.00	0.00	107	
Wright to Dracut Pipeline Segment	Hillsborough	Litchfield	J	28.71	28.71	LT-L-W002	PSS	N/A	$\begin{array}{r} \hline 42^{\circ} 50^{\prime} \\ 25.089^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} \hline 71^{\circ} 26^{\prime} \\ 3.070^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Nashua North	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Litchfield	J	28.77	28.85	LT-L-W002	PSS	N/A	$\begin{gathered} 42^{\circ} 50^{\prime} \\ 24.454^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 25^{\prime} \\ 58.769^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	II		0.00	0.00	0.76	0.00	0.00	0.10	0.00	442	
Wright to Dracut Pipeline Segment	Rockingham	Londonderry	J	28.85	28.93	LT-L-W002	PSS	N/A	$\begin{array}{r} 42^{\circ} 50^{\prime} \\ 25.675^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 25 \prime \\ 53.0977^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	II		0.00	0.00	0.69	0.00	0.00	0.09	0.00	391	
Wright to Dracut Pipeline Segment	Rockingham	Londonderry	J	28.92	28.94	WPI-2405	PEM	N/A	$\begin{gathered} 42^{\circ} 50^{\prime} \\ 26.735^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 25 ' \\ 48.174^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	II		0.07	0.00	0.00	0.00	0.00	0.00	0.00	87	
Wright to Dracut Pipeline Segment	Rockingham	Londonderry	J	28.93	28.95	WPI-2406	PFO	N/A	$\begin{gathered} 42^{\circ} 50^{\prime} \\ 27.142^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 25^{\prime} \\ 48.034^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	N/A		0.00	0.07	0.00	0.00	0.01	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Rockingham	Londonderry	J	29.30	29.32	LD-L-W002	PEM	N/A	$\begin{array}{r} 42^{\circ} 50^{\prime} \\ 32.565^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 71^{\circ} 25^{\prime} \\ 22.735^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Nashua North	II		0.10	0.00	0.00	0.00	0.00	0.00	0.00	46	
Wright to Dracut Pipeline Segment	Rockingham	Londonderry	J	29.32	29.33	LD-L-W002	PEM	N/A	$\begin{gathered} 42^{\circ} 50^{\prime} \\ 32.424^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 25 ' \\ 21.576^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	II		0.11	0.00	0.00	0.00	0.00	0.00	0.00	68	
Wright to Dracut Pipeline Segment	Rockingham	Londonderry	J	30.07	30.08	LD-L-W003	PFO	N/A	$\begin{array}{r} \hline 42^{\circ} 50^{\prime} \\ 26.305^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{c\|} \hline 71^{\circ} 24^{\prime} \\ 37.673^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Nashua North	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Rockingham	Londonderry	J	30.09	30.12	LD-L-W003	PFO	N/A	$\begin{gathered} 42^{\circ} 50^{\prime} \\ 25.788^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 24^{\prime} \\ 37.229^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	II		0.00	0.12	0.00	0.00	0.07	0.00	0.00	96	
Wright to Dracut Pipeline Segment	Rockingham	Londonderry	J	30.22	30.23	LD-L-W007	PEM	N/A	$\begin{gathered} 42^{\circ} 50^{\prime} \\ 19.346^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 24^{\prime} \\ 32.901^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	N/A		0.02	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Rockingham	Londonderry	J	30.22	30.23	LD-L-W007	PFO	N/A	$\begin{gathered} 42^{\circ} 50^{\prime} \\ 19.780^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 24^{\prime} \\ 32.083^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	II		0.00	0.02	0.00	0.00	0.01	0.00	0.00	13	
Wright to Dracut Pipeline Segment	Rockingham	Londonderry	J	30.32	30.34	WPI-2415	PSS	N/A	$\begin{gathered} 42^{\circ} 50^{\prime} \\ 15.127^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 71^{\circ} 24^{\prime} \\ 29.446^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Nashua North	N/A		0.00	0.00	0.04	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Rockingham	Londonderry	J	30.50	30.63	WPI-2421	PFO	N/A	$\begin{array}{r} 42^{\circ} 50^{\prime} \\ 7.504^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 24^{\prime} \\ 21.567^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	II		0.00	0.99	0.00	0.00	0.43	0.00	0.00	629	
Wright to Dracut Pipeline Segment	Rockingham	Londonderry	J	30.50	30.50	WPI-2417	PSS	N/A	$\begin{array}{r} 42^{\circ} 50^{\prime} \\ 7.280^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 24^{\prime} \\ 22.566^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Rockingham	Londonderry	J	30.50	30.61	WPI-2423	PSS	N/A	$\begin{gathered} 42^{\circ} 50^{\prime} \\ 7.215^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 24^{\prime} \\ 22.509^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	N/A		0.00	0.00	0.09	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Rockingham	Londonderry	J	30.63	30.64	WPI-2423	PSS	N/A	$\begin{array}{r} 42^{\circ} 50^{\prime} \\ 1.613^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 24^{\prime} \\ 17.712^{\prime \prime} \mathrm{W} \end{gathered}$	Nashua North	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Rockingham	Londonderry	J	30.64	30.66	WPI-2427	Other	N/A	$\begin{gathered} 42^{\circ} 50^{\prime} \\ 0.899^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} \hline 71^{\circ} 24^{\prime} \\ 17.0177^{\prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	II		0.00	0.00	0.00	0.10	0.00	0.00	0.00	66	
Wright to Dracut Pipeline Segment	Rockingham	Londonderry	J	30.64	30.65	WPI-2426	Other	N/A	$\begin{gathered} 42^{\circ} 50^{\prime} \\ 0.822^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 24^{\prime} \\ 17.034^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	N/A		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Rockingham	Londonderry	J	30.65	30.66	WPI-2433	PEM	N/A	$\begin{gathered} 42^{\circ} 50^{\prime} \\ 0.4566^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 71^{\circ} 24^{\prime} \\ 16.644^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Nashua North	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Rockingham	Londonderry	J	30.66	30.67	WPI-2428	PSS	N/A	$\begin{gathered} 42^{\circ} 49^{\prime} \\ 59.941^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 24^{\prime} \\ 16.211^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Rockingham	Londonderry	J	30.70	30.76	WPI-2431	PSS	N/A	$\begin{gathered} 42^{\circ} 49^{\prime} \\ 58.482^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 24^{\prime} \\ 14.933^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	N/A		0.00	0.00	0.09	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Rockingham	Londonderry	J	30.75	30.84	WPI-2430	PFO	N/A	$\begin{gathered} 42^{\circ} 49^{\prime} \\ 56.362^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 24^{\prime} \\ 12.025^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	II		0.00	0.63	0.00	0.00	0.28	0.00	0.00	409	

Table 23-8

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\underset{\substack{\text { Wettand } \\ \mathbf{I D}^{3,4}}}{ }$	Wetland	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method	Comments	Wetland Impact (acres)				Operation ${ }^{9}$			Crossing ${ }_{(\text {feet })}{ }^{11}$ (feet)	
						Construction ${ }^{8}$																
				Begin	End									PEM	PFO	Pss	Other ${ }^{10}$	PFO	PsS	Other ${ }^{10}$		
Wright to Dracut Pipeline Segment	Rockingham	Londonderry	J	30.76	30.77		WPI-2432	Other	N/A	$\begin{gathered} 42^{\circ} 49^{\prime} \\ 55.625 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 24^{\prime} \\ 12.403^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	N/A		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Rockingham	Londonderry	J	30.77	30.78	WPI-2431	PSS	N/A	$\begin{gathered} 42^{\circ} 49^{\prime} \\ 55.359^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 24^{\prime} \\ 12.195^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Rockingham	Londonderry	J	30.78	30.80	WPI-2434	PEM	N/A	$\begin{gathered} 42^{\circ} 49^{\prime} \\ 54.946^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 24^{\prime} \\ 11.865^{\prime \prime} \mathrm{W} \end{gathered}$	Nashua North	N/A		0.02	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Rockingham	Londonderry	J	30.80	30.83	WPI-2435	PSS	N/A	$\begin{gathered} 42^{\circ} 49^{\prime} \\ 54.050^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 24^{\prime} \\ 11.155^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Rockingham	Londonderry	J	30.83	30.83	WPI-2434	PEM	N/A	$\begin{gathered} 42^{\circ} 49^{\prime} \\ 52.807^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 24^{\prime} \\ 9.857 " \mathrm{~W} \\ \hline \end{array}$	Nashua North	N/A		0.02	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Rockingham	Londonderry	J	30.83	30.90	WPI-2437	PFO	N/A	$\begin{gathered} 42^{\circ} 49^{\prime} \\ 52.747^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{aligned} & 71^{\circ} 24^{\prime} \\ & 9.392^{\prime \prime} \mathrm{W} \\ & \hline \end{aligned}$	Nashua North	II		0.00	0.49	0.00	0.00	0.23	0.00	0.00	337	
Wright to Dracut Pipeline Segment	Rockingham	Londonderry	J	30.83	30.88	WPI-2438	PSS	N/A	$\begin{gathered} 42^{\circ} 49^{\prime} \\ 52.649^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 24^{\prime} \\ 9.532^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	N/A		0.00	0.00	0.09	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Rockingham	Londonderry	J	30.89	30.94	WPI-2439	PEM	N/A	$\begin{gathered} 42^{\circ} 49^{\prime} \\ 50.138^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 24^{\prime} \\ 6.694^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Nashua North	II		0.32	0.00	0.00	0.00	0.00	0.00	0.00	201	
Wright to Dracut Pipeline Segment	Rockingham	Londonderry	J	30.93	30.95	WPI-2440	PSS	N/A	$\begin{array}{r} 42^{\circ} 49^{\prime} \\ 48.237^{\prime \prime} \mathrm{N} \end{array}$	$\begin{array}{r} 71^{\circ} 24^{\prime} \\ 6.2566^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Nashua North	II		0.00	0.00	0.08	0.00	0.00	0.01	0.00	13	
Wright to Dracut Pipeline Segment	Rockingham	Londonderry	J	31.22	31.24	WPI-2443	Other	N/A	$\begin{gathered} 42^{\circ} 49^{\prime} \\ 36.473^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 23^{\prime} \\ 52.752^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	II		0.00	0.00	0.00	0.08	0.00	0.00	0.00	61	
Wright to Dracut Pipeline Segment	Rockingham	Londonderry	J	31.23	31.25	WPI-2444	PEM	N/A	$\begin{gathered} 42^{\circ} 49^{\prime} \\ 35.864^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 23^{\prime} \\ 52.564^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	N/A		0.06	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Rockingham	Londonderry	J	31.24	31.24	WPI-2441	PFO	N/A	$\begin{gathered} 42^{\circ} 49^{\prime} \\ 35.891 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 23 \prime \\ 52.393^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Nashua North	II		0.00	0.01	0.00	0.00	0.01	0.00	0.00	4	
Wright to Dracut Pipeline Segment	Rockingham	Londonderry	J	31.37	31.39	WPI-2447	Other	N/A	$\begin{gathered} 42^{\circ} 49^{\prime} \\ 30.593 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 23^{\prime} \\ 46.363^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Nashua North	II		0.00	0.00	0.00	0.18	0.00	0.00	0.00	118	
Wright to Dracut Pipeline Segment	Hillsborough	Hudson	J	31.39	31.40	WPI-2451	Other	N/A	$\begin{gathered} 42^{\circ} 49^{\prime} \\ 26.708^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 23^{\prime} \\ 50.116^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	N/A		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Rockingham	Londonderry	J	31.40	31.42	WPI-2448	Other	N/A	$\begin{gathered} 42^{\circ} 49^{\prime} \\ 29.675 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 23^{\prime} \\ 44.635^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Nashua North	II		0.00	0.00	0.00	0.13	0.00	0.00	0.00	89	
Wright to Dracut Pipeline Segment	Hillsborough	Hudson	J	31.41	31.43	WPI-2448	Other	N/A	$\begin{gathered} 42^{\circ} 49^{\prime} \\ 28.821 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 23^{\prime} \\ 44.972^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	II		0.00	0.00	0.00	0.16	0.00	0.00	0.00	78	
Wright to Dracut Pipeline Segment	Hillsborough	Hudson	J	31.57	31.63	WPI-2455	PFO	N/A	$\begin{gathered} 42^{\circ} 49^{\prime} \\ 22.529^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 23^{\prime} \\ 37.1566^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	II		0.00	0.31	0.00	0.00	0.18	0.00	0.00	278	
Wright to Dracut Pipeline Segment	Hillsborough	Hudson	J	31.77	31.79	WPI-2457	PSS	N/A	$\begin{gathered} 42^{\circ} 49^{\prime} \\ 14.380^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 23^{\prime} \\ 28.549^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	N/A		0.00	0.00	0.06	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Hudson	J	31.87	31.99	WPI-2459	PFO	N/A	$\begin{gathered} 42^{\circ} 49^{\prime} \\ 10.908^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 23^{\prime} \\ 23.065^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	II		0.00	0.47	0.00	0.00	0.33	0.00	0.00	567	
Wright to Dracut Pipeline Segment	Hillsborough	Hudson	J	31.88	31.99	WPI-2461	PSS	N/A	$\begin{gathered} 42^{\circ} 49^{\prime} \\ 10.059^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 23^{\prime} \\ 22.864^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	N/A		0.00	0.00	0.50	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Hudson	J	32.11	32.15	WPI-2465	PSS	N/A	$\begin{gathered} \hline 42^{\circ} 49^{\prime} \\ 0.811^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 23^{\prime} \\ 12.2322^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	II		0.00	0.00	0.24	0.00	0.00	0.04	0.00	160	
Wright to Dracut Pipeline Segment	Hillsborough	Hudson	J	32.12	32.15	WPI-2466	PFO	N/A	$\begin{gathered} 42^{\circ} 49^{\prime} \\ 0.689^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 23^{\prime} \\ 11.522^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	N/A		0.00	0.03	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Hudson	J	32.18	32.19	WPI-2467	Other	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 58.2811^{\prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 23^{\prime} \\ 8.825^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	II		0.00	0.00	0.00	0.02	0.00	0.00	0.00	27	
Wright to Dracut Pipeline Segment	Hillsborough	Hudson	J	32.32	32.37	WPI-2470	Other	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 52.955^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 23^{\prime} \\ 2.435^{\prime \prime} \mathrm{W} \end{gathered}$	Nashua North	II		0.00	0.00	0.00	0.39	0.00	0.00	0.00	256	

Table 2.3-8

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{aligned} & \text { Wetland } \\ & \mathbf{I D}^{3,4} \end{aligned}$	Wetland	State Wetland	Latitude	Longitude	Quadrangle	Crossing	Comments			Wetl	d Impac	(acres)			$\begin{aligned} & \text { Crossing } \\ & \text { Length } \\ & \text { (feet }{ }^{11} \end{aligned}$	
						Construction ${ }^{8}$								Operation ${ }^{9}$								
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$		
Wright to Dracut Pipeline Segment	Hillsborough	Hudson	J	32.37	32.38		HD-T-W001	PEM	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 50.5933^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 23^{\prime} \\ 0.698^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	II		0.03	0.00	0.00	0.00	0.00	0.00	0.00	7
Wright to Dracut Pipeline Segment	Hillsborough	Hudson	J	32.52	32.54	HD-Y-W001	PFO	N/A	$\begin{array}{r} 42^{\circ} 48^{\prime} \\ 45.070^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 22^{\prime} \\ 53.334^{\prime \prime} \mathrm{W} \end{gathered}$	Nashua North	N/A		0.00	0.02	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Hudson	J	32.55	32.56	HD-G-W005	PEM	N/A	$\begin{array}{r} 42^{\circ} 48^{\prime} \\ 42.993^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 22^{\prime} \\ 52.760^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	N/A		0.02	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Hudson	J	32.65	32.69	WPI-2473	PSS	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 39.2533^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 22^{\prime} \\ 48.186^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	N/A		0.00	0.00	0.10	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Hudson	J	32.88	32.91	HD-G-W003	PSS	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 30.019^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 22^{\prime} \\ 37.743^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	N/A		0.00	0.00	0.07	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Hudson	J	32.90	32.91	HD-G-W003	PSS	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 29.316^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 22^{\prime} \\ 36.964^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	N/A		0.00	0.00	0.02	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Hudson	J	32.93	32.96	WPI-2476	PFO	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 28.743^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 22^{\prime} \\ 34.856^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	N/A		0.00	0.08	0.00	0.00	0.04	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Hudson	J	32.95	32.96	WPI-2477	PSS	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 27.797^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 22^{\prime} \\ 34.173^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	II		0.00	0.00	0.07	0.00	0.00	0.01	0.00	65	
Wright to Dracut Pipeline Segment	Hillsborough	Hudson	J	32.96	32.97	HD-G-W002	PEM	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 27.2044^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 22^{\prime} \\ 33.616^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Nashua North	N/A		0.03	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Hudson	J	32.96	32.96	WPI-2476	PFO	N/A	$\begin{array}{r} \hline 42^{\circ} 48^{\prime \prime} \\ 27.4699^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 22^{\prime} \\ 33.443^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Hudson	J	32.96	32.96	HD-G-W002	PFO	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 27.469^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 22^{\prime} \\ 33.443^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Hudson	J	32.96	32.97	HD-G-W002	PFO	N/A	$\begin{array}{r} 42^{\circ} 48^{\prime} \\ 27.468^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 22^{\prime} \\ 33.442^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	II		0.00	0.02	0.00	0.00	0.01	0.00	0.00	26	
Wright to Dracut Pipeline Segment	Hillsborough	Hudson	J	33.00	33.02	WPI-2479	PEM	N/A	$\begin{array}{r} 42^{\circ} 48^{\prime} \\ 25.292^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 22^{\prime} \\ 32.301^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	N/A		0.07	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Hudson	J	33.02	33.05	WPI-2478	PSS	N/A	$\begin{array}{r} 42^{\circ} 48^{\prime \prime} \\ 24.688^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 22^{\prime} \\ 30.838^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	II		0.00	0.00	0.17	0.00	0.00	0.02	0.00	88	
Wright to Dracut Pipeline Segment	Hillsborough	Hudson	J	33.03	33.08	WPI-2478	PSS	N/A	$\begin{array}{r} 42^{\circ} 48^{\prime} \\ 24.3744^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 22^{\prime} \\ 30.010^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	II		0.00	0.00	0.22	0.00	0.00	0.01	0.00	130	
Wright to Dracut Pipeline Segment	Hillsborough	Hudson	J	33.04	33.04	WPI-2478	PSS	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 24.232^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 22^{\prime} \\ 29.852^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Hudson	J	33.04	33.04	HD-G-W001	PSS	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 24.2322^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 22^{\prime} \\ 29.852^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Hudson	J	33.04	33.04	HD-G-W001	PSS	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 24.231 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 22^{\prime} \\ 29.851^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Hudson	J	33.04	33.05	WPI-2478	PSS	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 24.005^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 22^{\prime} \\ 29.823^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Hudson	J	33.04	33.05	HD-G-W001	PSS	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 24.005^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 22^{\prime} \\ 29.823^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Hudson	J	33.04	33.06	HD-G-W001	PSS	N/A	$\begin{array}{r} 42^{\circ} 48^{\prime} \\ 24.005^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 22^{\prime} \\ 29.821^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	II		0.00	0.00	0.06	0.00	0.00	0.01	0.00	55	
Wright to Dracut Pipeline Segment	Hillsborough	Hudson	J	33.07	33.10	WPI-2479	PEM	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 22.335^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 22^{\prime} \\ 29.046^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	II		0.16	0.00	0.00	0.00	0.00	0.00	0.00	75	
Wright to Dracut Pipeline Segment	Hillsborough	Hudson	J	33.08	33.12	WPI-2480	PFO	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 22.697^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 22^{\prime} \\ 28.149^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	II		0.00	0.10	0.00	0.00	0.05	0.00	0.00	53	
Wright to Dracut Pipeline Segment	Hillsborough	Hudson	J	33.10	33.10	WPI-2481	PSS	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 21.283^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 22^{\prime} \\ 27.741^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	

Table 2.3-8

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\underset{\substack{\text { Wetland } \\ \mathbf{I D}^{3,4}}}{ }$	$\begin{aligned} & \text { Wetland } \\ & \text { Class }^{5} \end{aligned}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing	Comments	Wetland Impact (acres)				Operation ${ }^{9}$			Crossing Length (feet) ${ }^{11}$	
						Construction ${ }^{8}$																
				Begin	End									PEM	PFO	Pss	Other ${ }^{10}$	PFO	PsS	Other ${ }^{10}$		
Wright to Dracut Pipeline Segment	Hillsborough	Hudson	J	33.31	33.32		WPI-2486	PEM	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 12.981^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 22^{\prime} \\ 18.365^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	II		0.06	0.00	0.00	0.00	0.00	0.00	0.00	51
Wright to Dracut Pipeline Segment	Hillsborough	Hudson	J	33.35	33.39	WPI-2486	PEM	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 11.197^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 22^{\prime} \\ 16.797^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	II		0.24	0.00	0.00	0.00	0.00	0.00	0.00	123	
Wright to Dracut Pipeline Segment	Hillsborough	Hudson	J	33.50	33.54	WPI-2493	PEM	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 4.832^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 22^{\prime} \\ 10.740^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	II		0.23	0.00	0.00	0.00	0.00	0.00	0.00	156	
Wright to Dracut Pipeline Segment	Hillsborough	Hudson	J	33.51	33.53	WPI-2492	Other	N/A	$\begin{array}{r} \hline 42^{\circ} 48^{\prime} \\ 3.876^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 22^{\prime} \\ 10.842^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	N/A		0.00	0.00	0.00	0.04	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Hudson	J	33.58	33.65	WPI-2494	PSS	N/A	$\begin{array}{r} 42^{\circ} 48^{\prime} \\ 0.780^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{aligned} & 71^{\circ} 22^{\prime} \\ & 7.794^{\prime \prime} \mathrm{W} \\ & \hline \end{aligned}$	Windham	II		0.00	0.00	0.37	0.00	0.00	0.04	0.00	146	
Wright to Dracut Pipeline Segment	Hillsborough	Hudson	J	33.62	33.65	WPI-2495	PEM	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 59.241^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 22^{\prime} \\ 6.148^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	N/A		0.10	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Hudson	J	33.73	33.76	WPI-2498	PSS	N/A	$\begin{array}{r} 42^{\circ} 47^{\prime} \\ 54.872^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 71^{\circ} 22^{\prime} \\ 1.486^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Windham	II		0.00	0.00	0.15	0.00	0.00	0.02	0.00	85	
Wright to Dracut Pipeline Segment	Hillsborough	Hudson	J	33.80	33.83	WPI-2503	PSS	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 51.776^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 21^{\prime} \\ 58.439^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	II		0.00	0.00	0.14	0.00	0.00	0.01	0.00	43	
Wright to Dracut Pipeline Segment	Hillsborough	Hudson	J	33.84	33.88	WPI-2505	PSS	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 50.561^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 21^{\prime} \\ 56.239^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	II		0.00	0.00	0.18	0.00	0.00	0.03	0.00	118	
Wright to Dracut Pipeline Segment	Rockingham	Windham	J	33.95	33.99	HD-L-W001	PSS	N/A	$\begin{array}{r} 42^{\circ} 47^{\prime} \\ 45.6499^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 21^{\prime} \\ 51.406^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	II		0.00	0.00	0.10	0.00	0.00	0.01	0.00	15	
Wright to Dracut Pipeline Segment	Rockingham	Windham	J	33.99	34.00	HD-L-W001	PSS	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 44.664^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 21^{\prime} \\ 49.342^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	II		0.00	0.00	0.04	0.00	0.00	0.01	0.00	22	
Wright to Dracut Pipeline Segment	Rockingham	Windham	J	34.00	34.02	HD-L-W001	PEM	N/A	$\begin{array}{r} 42^{\circ} 47^{\prime} \\ 44.350^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 71^{\circ} 21^{\prime} \\ 48.619^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Windham	II		0.13	0.00	0.00	0.00	0.00	0.00	0.00	85	
Wright to Dracut Pipeline Segment	Rockingham	Windham	J	34.03	34.04	WPI-2517	PSS/PEM	N/A	$\begin{array}{r} 42^{\circ} 47^{\prime} \\ 43.287^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 21^{\prime} \\ 47.839^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	N/A		0.00	0.00	0.03	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Rockingham	Windham	J	34.26	34.28	WPI-2519	Other	N/A	$\begin{array}{r} 42^{\circ} 47^{\prime} \\ 33.1344^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 21^{\prime} \\ 38.405^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	N/A		0.00	0.00	0.00	0.07	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Rockingham	Windham	J	34.31	34.33	WD-K-W004	PSS	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 31.251^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 21^{\prime} \\ 36.279^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	II		0.00	0.00	0.09	0.00	0.00	0.01	0.00	23	
Wright to Dracut Pipeline Segment	Rockingham	Windham	J	34.33	34.37	WD-K-W004	PEM	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 30.804^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 21^{\prime} \\ 34.884^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	II		0.22	0.00	0.00	0.00	0.00	0.00	0.00	99	
Wright to Dracut Pipeline Segment	Rockingham	Windham	J	34.34	34.39	WD-K-W004	PSS	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 30.172^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 21^{\prime} \\ 34.254^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	II		0.00	0.00	0.27	0.00	0.00	0.02	0.00	226	
Wright to Dracut Pipeline Segment	Rockingham	Windham	J	34.35	34.35	WD-K-W004	PFO	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 29.809^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 21^{\prime} \\ 33.891^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Rockingham	Windham	J	34.38	34.39	WPI-2521	PEM	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 28.294^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 21^{\prime} \\ 34.964^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	N/A		0.04	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Rockingham	Windham	J	34.40	34.41	WPI-2523	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 27.1633^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 21^{\prime} \\ 35.528^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	N/A		0.00	0.00	0.08	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Rockingham	Windham	J	34.70	34.71	WPI-2531	PFO	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 16.774^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 21^{\prime} \\ 20.892^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	II		0.00	0.02	0.00	0.00	0.01	0.00	0.00	8	
Wright to Dracut Pipeline Segment	Rockingham	Windham	J	34.72	34.73	WD-D-W003	PSS	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 15.884^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 21^{\prime} \\ 20.004^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	II		0.00	0.00	0.02	0.00	0.00	0.01	0.00	8	
Wright to Dracut Pipeline Segment	Rockingham	Windham	J	34.97	34.98	WD-D-W001	PSS	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 5.161^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 21^{\prime} \\ 10.134^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	N/A		0.00	0.00	0.04	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Rockingham	Windham	J	34.99	35.00	WD-D-W002	PFO	N/A	$\begin{aligned} & 42^{\circ} 47^{\prime} \\ & 4.357^{\prime \prime} \mathrm{N} \end{aligned}$	$\begin{gathered} 71^{\circ} 21^{\prime} \\ 8.952^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	II		0.00	0.01	0.00	0.00	0.01	0.00	0.00	48	

Table 2.3-8

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\underset{\substack{\text { Wetland } \\ \mathbf{I D}^{3,4}}}{ }$	Wetland	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing	Comments	Wetland Impact (acres)				Operation ${ }^{9}$			Crossing Length (feet) ${ }^{11}$	
						Construction ${ }^{8}$																
				Begin	End									PEM	PFO	Pss	Other ${ }^{10}$	PFO	PsS	Other ${ }^{10}$		
Wright to Dracut Pipeline Segment	Rockingham	Windham	J	35.00	35.01		WD-D-W002	PSS	N/A	$\begin{gathered} \hline 42^{\circ} 47^{\prime} \\ 4.013^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 21^{\prime} \\ 8.671^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	II		0.00	0.00	0.05	0.00	0.00	0.01	0.00	19
Wright to Dracut Pipeline Segment	Rockingham	Windham	J	35.01	35.02	WD-D-W002	PSS	N/A	$\begin{array}{r} 42^{\circ} 47^{\prime} \\ 3.240^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 21^{\prime} \\ 8.350^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Rockingham	Windham	J	35.59	35.61	WPI-2554	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 38.642^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 20^{\prime} \\ 49.794^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	II		0.00	0.10	0.00	0.00	0.02	0.00	0.00	6	
Wright to Dracut Pipeline Segment	Rockingham	Windham	J	35.60	35.61	WPI-2555	PSS	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 38.286^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 20^{\prime} \\ 48.616^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	II		0.00	0.00	0.03	0.00	0.00	0.01	0.00	61	
Wright to Dracut Pipeline Segment	Rockingham	Windham	J	35.73	35.77	WPI-2558	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 32.681^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 20^{\prime} \\ 42.992^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Windham	II		0.00	0.15	0.00	0.00	0.04	0.00	0.00	98	
Wright to Dracut Pipeline Segment	Rockingham	Windham	J	35.73	35.75	WPI-2557	PSS	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 32.839^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 20^{\prime} \\ 42.781^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	N/A		0.00	0.00	0.05	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Rockingham	Windham	J	36.01	36.06	WPI-2568	PEM	N/A	$\begin{aligned} & 4.02^{\circ} 46^{\prime} \\ & 21.139^{\prime \prime} \mathrm{N} \end{aligned}$	$\begin{gathered} 71^{\circ} 20^{\prime} \\ 31.328^{\prime \prime} \mathrm{W} \end{gathered}$	Windham	II		0.17	0.00	0.00	0.00	0.00	0.00	0.00	253	
Wright to Dracut Pipeline Segment	Rockingham	Windham	J	36.01	36.06	WPI-2567	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 20.859 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 20^{\prime} \\ 31.394^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	N/A		0.00	0.14	0.00	0.00	0.05	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	36.49	36.50	WPI-2572	PFO	N/A	$\begin{array}{r} 42^{\circ} 46^{\prime} \\ 8.323^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 20^{\prime} \\ 8.892^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	36.51	36.52	WPI-2575	PFO	N/A	$\begin{array}{r} 42^{\circ} 46^{\prime} \\ 8.163^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 20^{\prime} \\ 7.262^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	II		0.00	0.09	0.00	0.00	0.03	0.00	0.00	50	
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	36.55	36.60	WPI-2580	PFO	N/A	$\begin{array}{r} 42^{\circ} 46^{\prime} \\ 6.027^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 71^{\circ} 20^{\prime} \\ 6.146^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Windham	II		0.00	0.42	0.00	0.00	0.17	0.00	0.00	246	
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	37.22	37.23	WPI-2605	PEM	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 35.913 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 19^{\prime} \\ 43.139^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	II		0.03	0.00	0.00	0.00	0.00	0.00	0.00	13	
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	37.23	37.24	WPI-2608	PSS	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 35.607^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 19^{\prime} \\ 42.652^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	N/A		0.00	0.00	0.02	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	37.35	37.35	WPI-2611	PSS	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 30.470^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 19 ' \\ 38.657 " \mathrm{~W} \\ \hline \end{gathered}$	Windham	II		0.00	0.00	0.04	0.00	0.00	0.01	0.00	23	
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	37.37	37.41	WPI-2612	PSS	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 29.143^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 19^{\prime} \\ 38.051^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	II		0.00	0.00	0.15	0.00	0.00	0.02	0.00	85	
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	37.39	37.40	WPI-2613	PEM	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 28.4377^{\prime \prime} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 19^{\prime} \\ 37.391^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	N/A		0.03	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	37.74	37.75	PH-Y-W007	PSS	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 12.734^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 19^{\prime} \\ 25.588^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	N/A		0.00	0.00	0.04	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	37.74	37.74	PH-K-W001	PSS	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 13.106^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 19^{\prime} \\ 26.457^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	37.79	37.84	PH-Y-W006	PFO	N/A	$\begin{array}{r} 42^{\circ} 45^{\prime} \\ 9.909^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 19^{\prime} \\ 29.530^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	N/A		0.00	0.31	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	37.87	37.89	PH-Y-W003	PFO	N/A	$\begin{array}{r} 42^{\circ} 45^{\prime} \\ 7.065^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 19^{\prime} \\ 25.041^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	II		0.00	0.08	0.00	0.00	0.04	0.00	0.00	51	
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	37.87	37.89	PH-Y-W003	PSS	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 7.084^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 19^{\prime} \\ 25.006^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	37.99	38.01	PH-Y-W002	PFO	N/A	$\begin{aligned} & \hline 42^{\circ} 45^{\prime} \\ & 1.1544^{\prime \prime} \mathrm{N} \end{aligned}$	$\begin{gathered} 71^{\circ} 19^{\prime} \\ 21.573^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	II		0.00	0.10	0.00	0.00	0.04	0.00	0.00	63	
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	37.99	38.00	PH-Y-W002	PSS	N/A	$\begin{array}{r} 42^{\circ} 45^{\prime} \\ 1.504 " \mathrm{~N} \end{array}$	$\begin{gathered} 71^{\circ} 19^{\prime} \\ 20.685^{\prime \prime} \mathrm{W} \end{gathered}$	Windham	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	38.06	38.08	PH-Y-W001	PFO	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 58.580^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 19^{\prime} \\ 18.340^{\prime \prime} \mathrm{W} \end{gathered}$	Lowell	II		0.00	0.12	0.00	0.00	0.05	0.00	0.00	79	

Table 2.3-8

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\underset{\substack{\text { Wetland } \\ \mathbf{I D}^{3,4}}}{ }$	$\begin{aligned} & \text { Wetland } \\ & \text { Class }^{5} \end{aligned}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing	Comments	Wetland Impact (acres)				Operation ${ }^{9}$			Crossing Length (feet) ${ }^{11}$	
						Construction ${ }^{8}$																
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PsS	Other ${ }^{10}$		
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	38.06	38.08		PH-Y-W001	PSS	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 58.448^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 19^{\prime} \\ 18.234^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	II		0.00	0.00	0.04	0.00	0.00	0.01	0.00	31
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	38.11	38.12	PH-Y-W001	PSS	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 56.090^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 19^{\prime} \\ 17.511^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	II		0.00	0.00	0.05	0.00	0.00	0.01	0.00	24	
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	38.18	38.23	PH-X-W005	PSS	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 53.133^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 19^{\prime} \\ 14.524^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	II		0.00	0.00	0.31	0.00	0.00	0.05	0.00	215	
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	38.25	38.26	PH-X-W005	PEM	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 49.899^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 19^{\prime} \\ 11.811^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	II		0.02	0.00	0.00	0.00	0.00	0.00	0.00	8	
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	38.25	38.33	PH-X-W005	PFO	N/A	$\begin{array}{r} 42^{\circ} 44^{\prime} \\ 49.834^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 19 ' \\ 12.493^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	II		0.00	0.35	0.00	0.00	0.02	0.00	0.00	85	
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	38.54	38.57	WPI-2625	PSS	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 36.953^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 19^{\prime} \\ 0.446^{\prime \prime} \mathrm{W} \end{gathered}$	Lowell	N/A		0.00	0.00	0.12	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	38.63	38.67	WPI-2627	PSS	Prime	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 33.130^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 18^{\prime} \\ 57.912^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	II		0.00	0.00	0.19	0.00	0.00	0.03	0.00	117	
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	38.64	38.65	WPI-2629	PEM	Prime	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 32.396^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 18^{\prime} \\ 57.321^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	38.65	38.72	WPI-2629	PEM	Prime	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 31.858^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 18^{\prime} \\ 56.887^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	II		0.48	0.00	0.00	0.00	0.00	0.00	0.00	314	
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	38.71	38.72	PH-Y-W008	PSS	Prime	$\begin{array}{r} 42^{\circ} 44^{\prime} \\ 28.819^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 18^{\prime} \\ 55.609 " \mathrm{~W} \\ \hline \end{gathered}$	Lowell	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	38.72	38.74	WPI-2630	PEM	Prime	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 28.955^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 18^{\prime} \\ 54.549^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	II		0.07	0.00	0.00	0.00	0.00	0.00	0.00	60	
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	38.72	38.79	PH-Y-W008	PSS	Prime	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 28.575^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 18^{\prime} \\ 55.090^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	II		0.00	0.00	0.47	0.00	0.00	0.07	0.00	293	
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	38.79	38.80	PH-Y-W008	PSS	Prime	$\begin{array}{r} 42^{\circ} 44^{\prime} \\ 25.928^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 71^{\circ} 18^{\prime} \\ 52.112^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Lowell	II		0.00	0.00	0.04	0.00	0.00	0.01	0.00	24	
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	39.12	39.12	WPI-2640	PSS	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 11.103^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 18^{\prime} \\ 39.668^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	39.15	39.24	WPI-2640	PSS	N/A	$\begin{array}{r} 42^{\circ} 44^{\prime} \\ 9.465^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 18^{\prime} \\ 38.942^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	II		0.00	0.00	0.40	0.00	0.00	0.05	0.00	205	
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	39.18	39.19	WPI-2641	PEM	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 8.506^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 18^{\prime} \\ 37.970^{\prime \prime} \mathrm{W} \end{gathered}$	Lowell	N/A		0.05	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	39.18	39.21	WPI-2642	PFO	N/A	$\begin{array}{r} \hline 42^{\circ} 44^{\prime} \\ 8.214^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 18^{\prime} \\ 38.562^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	II		0.00	0.07	0.00	0.00	0.03	0.00	0.00	15	
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	39.20	39.21	WPI-2641	PEM	N/A	$\begin{array}{r} 4.21^{\circ} 44^{\prime} \\ 7.347 " \mathrm{~N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 18^{\prime} \\ 37.183^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	N/A		0.04	0.00	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	39.42	39.43	WPI-2644	PFO	N/A	$\begin{gathered} 42^{\circ} 43^{\prime} \\ 57.211^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 18^{\prime} \\ 29.676^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	N/A		0.00	0.02	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	39.42	39.43	WPI-2643	PSS	N/A	$\begin{gathered} 42^{\circ} 43^{\prime} \\ 57.511^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 18^{\prime} \\ 29.443^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	II		0.00	0.00	0.02	0.00	0.00	0.01	0.00	19	
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	39.48	39.49	WPI-2643	PSS	N/A	$\begin{array}{r} 42^{\circ} 43^{\prime} \\ 56.766^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 18^{\prime} \\ 25.911^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	39.74	39.76	WPI-2650	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 43^{\prime} \\ 45.770^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 18^{\prime} \\ 16.398^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	II		0.00	0.00	0.11	0.00	0.00	0.02	0.00	71	
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	39.75	39.76	WPI-2651	PSS	N/A	$\begin{gathered} 42^{\circ} 43^{\prime} \\ 45.269^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 18^{\prime} \\ 16.0033^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Lowell	N/A		0.00	0.00	0.02	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	39.89	39.89	WPI-2655	PEM	N/A	$\begin{gathered} 42^{\circ} 43^{\prime} \\ 35.992^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 18^{\prime} \\ 17.593^{\prime \prime} \mathrm{W} \end{gathered}$	Lowell	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0	

Table 2.3-8

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{aligned} & \text { Wetland } \\ & \mathbf{I D}^{3,4} \end{aligned}$	Wetland Class ${ }^{5}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing	Comments			Wetl	d Impac	Operation ${ }^{9}$			CrossingLength(feet 11	
						Construction ${ }^{8}$																
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$		
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	39.89	39.89		WPI-2656	Other	N/A	$\begin{gathered} 42^{\circ} 43^{\prime} \\ 35.848^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 18^{\prime} \\ 17.581^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	N/A		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	39.97	39.98	WPI-2659	PSS	N/A	$\begin{gathered} 42^{\circ} 43^{\prime} \\ 35.369^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 18^{\prime} \\ 7.873^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Lowell	N/A		0.00	0.00	0.04	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	40.41	40.43	WPI-2669	PSS	N/A	$\begin{gathered} 42^{\circ} 43^{\prime} \\ 15.942^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 17^{\prime} \\ 56.424^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	N/A		0.00	0.00	0.04	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	40.45	40.49	WPI-2670	PFO	N/A	$\begin{gathered} 42^{\circ} 43^{\prime} \\ 13.426^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 17^{\prime} \\ 55.642^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	N/A		0.00	0.14	0.00	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	40.50	40.51	WPI-2671	PSS	N/A	$\begin{gathered} 42^{\circ} 43^{\prime} \\ 11.869^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 17^{\prime} \\ 52.669^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	40.58	40.62	WPI-2676	PSS	N/A	$\begin{gathered} 42^{\circ} 43^{\prime} \\ 8.331^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 17^{\prime} \\ 49.407^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	N/A		0.00	0.00	0.07	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	41.26	41.28	WPI-2688	Other	N/A	$\begin{gathered} 42^{\circ} 42^{\prime} \\ 38.664 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 17^{\prime} \\ 23.288^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	N/A		0.00	0.00	0.00	0.05	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	41.39	41.41	WPI-2690	PSS	N/A	$\begin{gathered} 42^{\circ} 42^{\prime} \\ 33.5833^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 17^{\prime} \\ 16.969^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	N/A		0.00	0.00	0.03	0.00	0.00	0.00	0.00	0	
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	41.42	41.50	PH-Y-W009	PFO	N/A	$\begin{gathered} 42^{\circ} 42^{\prime} \\ 31.966^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 17^{\prime} \\ 16.733^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	II		0.00	0.55	0.00	0.00	0.19	0.00	0.00	265	
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	41.56	41.57	PH-Y-W009	PFO	N/A	$\begin{gathered} 42^{\circ} 42^{\prime} \\ 25.972^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 17^{\prime} \\ 11.747^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	II		0.00	0.07	0.00	0.00	0.02	0.00	0.00	28	
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	41.62	41.63	PH-Y-W009	PFO	N/A	$\begin{gathered} 42^{\circ} 42^{\prime} \\ 23.030^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 17^{\prime} \\ 9.198^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	II		0.00	0.02	0.00	0.00	0.01	0.00	0.00	10	
Wright to Dracut Pipeline Segment	Hillsborough	Pelham	J	41.63	41.63	PH-Y-W009	PSS	N/A	$\begin{array}{r} 42^{\circ} 42^{\prime} \\ 23.198^{\prime \prime} \mathrm{F} \\ \hline \end{array}$	$\begin{array}{r} 71^{\circ} 17^{\prime} \\ 8.018^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Lowell	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Haverhill Lateral	Rockingham	Salem	P	6.95	6.96	WPI-3081	PFO	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 37.715^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 12^{\prime} \\ 40.811^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	II		0.00	0.03	0.00	0.00	0.03	0.00	0.00	43	
Haverhill Lateral	Rockingham	Salem	P	7.01	7.04	WPI-3084	PFO	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 37.336^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 12^{\prime} \\ 35.4555^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.06	0.00	0.00	0.00	0.00	0.00	0	
Haverhill Lateral	Rockingham	Salem	P	7.01	7.04	WPI-3084	PFO	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 39.309^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 12^{\prime} \\ 37.472^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	II		0.00	0.12	0.00	0.00	0.12	0.00	0.00	167	
Haverhill Lateral	Rockingham	Salem	P	7.05	7.16	WPI-3086	PFO	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 40.822^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 12^{\prime} \\ 35.5544^{\prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	II		0.00	0.40	0.00	0.00	0.40	0.00	0.00	582	
Haverhill Lateral	Rockingham	Salem	P	7.05	7.08	WPI-3086	PFO	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 38.726^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 12 \prime \\ 33.103^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.05	0.00	0.00	0.00	0.00	0.00	0	
Haverhill Lateral	Rockingham	Salem	P	7.10	7.18	WPI-3086	PFO	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 40.426^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 12^{\prime} \\ 30.5477^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.14	0.00	0.00	0.00	0.00	0.00	0	
Haverhill Lateral	Rockingham	Salem	P	7.13	7.14	WPI-3088	Other	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 43.565 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 12^{\prime} \\ 30.914^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0	
Haverhill Lateral	Rockingham	Salem	P	7.16	7.20	WPI-3088	Other	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 44.369^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 12^{\prime} \\ 29.552^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	II		0.00	0.00	0.00	0.15	0.00	0.00	0.00	227	
Haverhill Lateral	Rockingham	Salem	P	7.20	7.21	WPI-3086	PFO	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 45.579^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 12^{\prime} \\ 26.863^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	II		0.00	0.04	0.00	0.00	0.04	0.00	0.00	56	
Haverhill Lateral	Rockingham	Salem	P	7.22	7.23	WPI-3095	PSS	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 46.168^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 12^{\prime} \\ 25.866^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	II		0.00	0.00	0.05	0.00	0.00	0.01	0.00	36	
Haverhill Lateral	Rockingham	Salem	P	7.25	7.27	WPI-3095	PSS	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 45.497 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 12^{\prime} \\ 21.519^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.00	0.05	0.00	0.00	0.00	0.00	0	
Haverhill Lateral	Rockingham	Salem	P	7.27	7.38	WPI-3095	PSS	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 48.262^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 12^{\prime} \\ 23.676^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	II		0.00	0.00	0.86	0.00	0.00	0.04	0.00	606	

Table 2.3-8

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{gathered} \text { Wetland } \\ \mathbf{I D}^{3,4} \end{gathered}$	Wetland	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method ${ }^{7}$	Comments			Wetl	d Impac	Operation ${ }^{9}$			Crossing Length (feet) ${ }^{11}$	
						Construction ${ }^{8}$																
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$		
Haverhill Lateral	Rockingham	Salem	P	7.34	7.38		WPI-3100	PFO	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 50.802^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 12^{\prime} \\ 20.128^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.18	0.00	0.00	0.00	0.00	0.00	0
Haverhill Lateral	Rockingham	Salem	P	7.51	7.57	WPI-3103	PEM	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 54.407^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 12^{\prime} \\ 8.096^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	II		0.48	0.00	0.00	0.00	0.00	0.00	0.00	68	
Haverhill Lateral	Rockingham	Salem	P	7.62	7.63	WPI-3106	PFO	N/A	$\begin{array}{r} 42^{\circ} 44^{\prime} \\ 59.856^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 12^{\prime} \\ 5.729^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Haverhill Lateral	Rockingham	Salem	P	7.62	7.66	WPI-3106	PFO	N/A	$\begin{array}{r} 42^{\circ} 45^{\prime} \\ 0.045^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 12^{\prime} \\ 5.612^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Salem Depot	II		0.00	0.14	0.00	0.00	0.00	0.00	0.00	35	
Haverhill Lateral	Rockingham	Salem	P	7.67	7.70	WPI-3107	Other	N/A	$\begin{array}{r} 42^{\circ} 45^{\prime} \\ 2.462^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 12^{\prime} \\ 4.159^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Salem Depot	N/A		0.00	0.00	0.00	0.06	0.00	0.00	0.00	0	
Haverhill Lateral	Rockingham	Salem	P	8.27	8.28	SA-X-W001	PSS	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 28.846^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 11^{\prime} \\ 43.086^{\prime \prime} \mathrm{W} \end{gathered}$	Salem Depot	II		0.00	0.00	0.11	0.00	0.00	0.00	0.00	73	
Haverhill Lateral	Rockingham	Salem	P	8.28	8.45	WPI-3118	PFO	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 29.534^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 11^{\prime} \\ 43.150^{\prime \prime} \mathrm{W} \end{gathered}$	Salem Depot	II		0.00	1.49	0.00	0.00	0.00	0.00	0.00	843	
Haverhill Lateral	Rockingham	Salem	P	8.63	8.81	WPI-3124	PFO	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 41.839^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 11^{\prime} \\ 24.466^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Salem Depot	II		0.00	0.88	0.00	0.00	0.08	0.00	0.00	65	
Haverhill Lateral	Rockingham	Salem	P	8.91	8.93	WPI-3128	PFO	N/A	$\begin{array}{r} 42^{\circ} 45^{\prime} \\ 48.245^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 71^{\circ} 11^{\prime} \\ 6.7666^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Salem Depot	N/A		0.00	0.03	0.00	0.00	0.00	0.00	0.00	0	
Haverhill Lateral	Rockingham	Salem	P	8.93	8.99	WPI-3130	PFO	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 49.073^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 11^{\prime} \\ 5.301^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Salem Depot	II		0.00	0.21	0.00	0.00	0.00	0.00	0.00	263	
Haverhill Lateral	Rockingham	Salem	P	8.94	8.99	WPI-3131	PEM	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 49.544^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 11^{\prime} \\ 5.012^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Salem Depot	II		0.24	0.00	0.00	0.00	0.00	0.00	0.00	8	
Fitchburg Lateral Extension	Hillsborough	Mason	Q	0.30	0.33	WPI-3196	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 13.329^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 12.901^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	II		0.00	0.10	0.00	0.00	0.04	0.00	0.00	51	
Fitchburg Lateral Extension	Hillsborough	Mason	Q	0.33	0.34	WPI-3197	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 12.202^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 13.116^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	II		0.00	0.08	0.00	0.00	0.03	0.00	0.00	38	
Fitchburg Lateral Extension	Hillsborough	Mason	Q	0.35	0.36	WPI-3198	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 10.859^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{aligned} & 71^{\circ} 44^{\prime} \\ & 13.013^{\prime \prime} \mathrm{W} \end{aligned}$	Milford	II		0.00	0.02	0.00	0.00	0.01	0.00	0.00	6	
Fitchburg Lateral Extension	Hillsborough	Mason	Q	0.66	0.71	WPI-3199	PFO	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 55.116^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 17.418^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	II		0.00	0.19	0.00	0.00	0.09	0.00	0.00	124	
Fitchburg Lateral Extension	Hillsborough	Mason	Q	0.72	0.73	WPI-3200	Other	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 51.953 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 17.996^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	N/A		0.00	0.00	0.00	0.04	0.00	0.00	0.00	0	
Fitchburg Lateral Extension	Hillsborough	Mason	Q	0.87	0.90	WPI-3202	PFO	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 44.241^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 17.759^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	II		0.00	0.18	0.00	0.00	0.07	0.00	0.00	114	
Fitchburg Lateral Extension	Hillsborough	Mason	Q	0.89	0.94	WPI-3203	PSS	N/A	$\begin{array}{r} 42^{\circ} 45^{\prime} \\ 43.483^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 17.847^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	II		0.00	0.00	0.14	0.00	0.00	0.02	0.00	95	
Fitchburg Lateral Extension	Hillsborough	Mason	Q	0.94	0.94	WPI-3204	Other	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 40.7744^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 18.163^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	N/A		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0	
Fitchburg Lateral Extension	Hillsborough	Mason	Q	1.05	1.05	WPI-3206	PSS	N/A	$\begin{array}{r} 42^{\circ} 45^{\prime} \\ 35.647^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 71^{\circ} 44^{\prime} \\ 21.682^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Milford	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Fitchburg Lateral Extension	Hillsborough	Mason	Q	1.10	1.12	WPI-3207	PFO	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 33.684^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 24.452^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	II		0.00	0.19	0.00	0.00	0.07	0.00	0.00	110	
Fitchburg Lateral Extension	Hillsborough	Mason	Q	2.36	2.43	WPI-3210	PFO	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 30.906^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 18.967^{\prime \prime} \mathrm{W} \end{gathered}$	Townsend	II		0.00	0.39	0.00	0.00	0.13	0.00	0.00	190	
Fitchburg Lateral Extension	Hillsborough	Mason	Q	2.44	2.49	WPI-3210	PFO	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 26.527^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 19.105^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Townsend	II		0.00	0.31	0.00	0.00	0.10	0.00	0.00	154	
Fitchburg Lateral Extension	Hillsborough	Mason	Q	2.57	2.59	WPI-3211	PFO	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 19.745^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 17.541^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Townsend	II		0.00	0.09	0.00	0.00	0.02	0.00	0.00	32	

Table 23-8

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{aligned} & \text { Wetland } \\ & \mathbf{I D}^{3,4} \end{aligned}$	Wetland Class ${ }^{5}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing	Comments			Wetla	d Impac	Operation ${ }^{9}$			Crossing Length(feet) 11 (feet)	
						Construction ${ }^{8}$																
				Begin	End									PEM	PFO	Pss	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$		
Fitchburg Lateral Extension	Hillsborough	Mason	Q	2.58	2.61		WPI-3212	PFO	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 19.300^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 17.504^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Townsend	II		0.00	0.16	0.00	0.00	0.07	0.00	0.00	104
Fitchburg Lateral Extension	Hillsborough	Mason	Q	2.66	2.69	WPI-3213	PFO	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 15.145^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 17.163^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Townsend	II		0.00	0.12	0.00	0.00	0.04	0.00	0.00	63	
$\begin{gathered} \hline \text { Fitchburg Lateral } \\ \text { Extension } \\ \hline \end{gathered}$	Hillsborough	Mason	Q	2.67	2.70	WPI-3213	PFO	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 14.317^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 17.0955^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Townsend	II		0.00	0.07	0.00	0.00	0.03	0.00	0.00	50	
Fitchburg Lateral Extension	Hillsborough	Mason	Q	2.73	2.77	WPI-3213	PFO	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 11.268^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 18.1944^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Townsend	II		0.00	0.07	0.00	0.00	0.03	0.00	0.00	37	
Fitchburg Lateral Extension	Hillsborough	Mason	Q	2.75	2.82	WPI-3213	PFO	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 10.479^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 18.426^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Townsend	II		0.00	0.19	0.00	0.00	0.04	0.00	0.00	90	
$\begin{gathered} \hline \text { Fitchburg Lateral } \\ \text { Extension } \\ \hline \end{gathered}$	Hillsborough	Mason	Q	2.81	2.88	WPI-3213	PFO	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 7.524^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 18.268^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Townsend	II		0.00	0.38	0.00	0.00	0.02	0.00	0.00	205	
Fitchburg Lateral Extension	Hillsborough	Mason	Q	2.90	2.94	WPI-3213	PFO	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 2.926^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 20.650^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Townsend	II		0.00	0.29	0.00	0.00	0.11	0.00	0.00	158	
Fitchburg Lateral Extension	Hillsborough	Mason	Q	3.38	3.43	NWI-1172	PFO	N/A	$\begin{gathered} 42^{\circ} 43^{\prime} \\ 40.865^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 31.4299^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Townsend	II		0.00	0.38	0.00	0.00	0.17	0.00	0.00	237	
Fitchburg Lateral Extension	Hillsborough	Mason	Q	3.43	3.48	WPI-3224	PFO	N/A	$\begin{gathered} 42^{\circ} 43^{\prime} \\ 39.616^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 34.569^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Townsend	II		0.00	0.42	0.00	0.00	0.16	0.00	0.00	233	
$\begin{gathered} \hline \text { Fitchburg Lateral } \\ \text { Extension } \\ \hline \end{gathered}$	Hillsborough	Mason	Q	3.52	3.52	WPI-3225	Other	N/A	$\begin{gathered} 42^{\circ} 43^{\prime} \\ 35.907^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 38.485^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Townsend	N/A		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0	
Fitchburg Lateral Extension	Hillsborough	Mason	Q	3.58	3.61	WPI-3228	PEM	N/A	$\begin{gathered} 42^{\circ} 43^{\prime} \\ 32.672^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 38.736^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Townsend	N/A		0.08	0.00	0.00	0.00	0.00	0.00	0.00	0	
$\begin{gathered} \text { Fitchburg Lateral } \\ \text { Extension } \\ \hline \end{gathered}$	Hillsborough	Mason	Q	3.60	3.67	WPI-3229	PSS	N/A	$\begin{gathered} 42^{\circ} 43^{\prime} \\ 31.569^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 38.412^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Townsend	II		0.00	0.00	0.54	0.00	0.00	0.08	0.00	348	
Fitchburg Lateral Extension	Hillsborough	Mason	Q	3.65	3.67	WPI-3230	PSS	N/A	$\begin{array}{r} 42^{\circ} 43^{\prime} \\ 28.744^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 39.129{ }^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Townsend	N/A		0.00	0.00	0.02	0.00	0.00	0.00	0.00	0	
Fitchburg Lateral Extension	Hillsborough	Mason	Q	3.67	3.73	WPI-3232	PFO/PSS	N/A	$\begin{gathered} 42^{\circ} 43^{\prime} \\ 27.927^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 38.196^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Townsend	II		0.00	0.38	0.00	0.00	0.17	0.00	0.00	242	
Fitchburg Lateral Extension	Hillsborough	Mason	Q	3.69	3.70	WPI-3233	Other	N/A	$\begin{gathered} 42^{\circ} 43^{\prime} \\ 27.308{ }^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 39.754^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Townsend	II		0.00	0.00	0.00	0.04	0.00	0.00	0.00	23	
Fitchburg Lateral Extension	Hillsborough	Mason	Q	3.97	4.01	WPI-3234	PFO	N/A	$\begin{gathered} 42^{\circ} 43^{\prime} \\ 16.537^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 52.645^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Townsend	II		0.00	0.33	0.00	0.00	0.12	0.00	0.00	180	
Fitchburg Lateral Extension	Hillsborough	Mason	Q	4.01	4.12	WPI-3235	PFO	N/A	$\begin{gathered} 42^{\circ} 43^{\prime} \\ 14.822^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 54.696^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Townsend	II		0.00	1.00	0.00	0.00	0.40	0.00	0.00	580	
Fitchburg Lateral Extension	Hillsborough	Mason	Q	4.12	4.12	WPI-3235	PFO	N/A	$\begin{gathered} 42^{\circ} 43^{\prime} \\ 10.816^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 45^{\prime} \\ 0.004^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Ashby	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Fitchburg Lateral Extension	Hillsborough	Mason	Q	4.51	4.51	WPI-3238	Other	N/A	$\begin{gathered} 42^{\circ} 42^{\prime} \\ 55.157^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 16.701^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashby	N/A		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0	
Fitchburg Lateral Extension	Hillsborough	Mason	Q	4.66	4.70	WPI-3239	PFO	N/A	$\begin{gathered} 42^{\circ} 42^{\prime} \\ 48.267^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 21.703^{\prime \prime} \mathrm{W} \end{gathered}$	Ashby	II		0.00	0.32	0.00	0.00	0.13	0.00	0.00	195	
Fitchburg Lateral Extension	Hillsborough	Mason	Q	4.72	4.72	WPI-3240	Other	N/A	$\begin{gathered} 42^{\circ} 42^{\prime} \\ 46.248^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 45 \prime \\ 25.071^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashby	N/A		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0	
Fitchburg Lateral Extension	Hillsborough	Mason	Q	4.75	4.78	WPI-3239	PFO	N/A	$\begin{gathered} 42^{\circ} 42^{\prime} \\ 44.480^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 26.180^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashby	II		0.00	0.26	0.00	0.00	0.10	0.00	0.00	142	
Fitchburg Lateral Extension	Hillsborough	Mason	Q	4.81	4.82	WPI-3239	PFO	N/A	$\begin{gathered} 42^{\circ} 42^{\prime} \\ 41.435^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 45^{\prime} \\ 26.033^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashby	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Pipeline Subtotal														11.88	59.35	33.09	10.53	20.62	3.95	0.00	59,546	

Table 23-8

Table 23-8

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{gathered} \text { Wetland } \\ \mathbf{I D}^{3,4} \end{gathered}$	Wetland Class ${ }^{5}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method ${ }^{7}$	Comments	Wetland Impact (acres)							$\begin{aligned} & \text { Crossing } \\ & \text { Length } \\ & \text { (feet) }^{11} \end{aligned}$	
						Construction ${ }^{8}$								Operation ${ }^{9}$								
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$		
NED-J-0500	Hillsborough	Pelham	J	37.31			WPI-2612	PSS	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 27.726^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 19^{\prime} \\ 37.198^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	v		0.00	0.00	0.01	0.00	0.00	0.00	0.00	N/A
NED-P-0100	Rockingham	Salem	P	7.5		WPI-3103	PEM	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 52.973^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 12^{\prime} \\ 7.539^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lawrence	V		0.60	0.00	0.00	0.00	0.00	0.00	0.00	N/A	
NED-P-0100	Rockingham	Salem	P	7.5		WPI-3103	PEM	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 55.7922^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{aligned} & 71^{\circ} 12^{\prime} \\ & 8.6977^{\prime \prime} \mathrm{W} \\ & \hline \end{aligned}$	Lawrence	v		0.02	0.00	0.00	0.00	0.00	0.00	0.00	N/A	
Contractor Yards Subtotal														13.42	6.99	9.66	0.45	0.00	0.00	0.00	0	
Access Roads																						
NED-TAR-H-2101	Cheshire	Winchester	I	0.3		NWI-1400	PFO	N/A	$\begin{gathered} 42^{\circ} 43^{\prime} \\ 38.726^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 22^{\prime} \\ 13.380^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Mount Grace	v		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
NED-TAR-I-0003	Cheshire	Winchester	I	3.3		WC-X-W004	PFO	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 19.410^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 20^{\prime} \\ 48.993^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	West Swanzey	V		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
NED-TAR-I-0003	Cheshire	Winchester	I	3.3		WC-X-W004	PFO	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 21.3433^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 20^{\prime} \\ 47.959^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	West Swanzey	V		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
NED-TAR-I-0003	Cheshire	Winchester	I	3.30		WC-X-W004	PFO	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 21.658^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 72^{\circ} 20^{\prime} \\ 47.718^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	West Swanzey	V		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
NED-TAR-I-0003	Cheshire	Winchester	I	3.3		WC-X-W004	PFO	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 21.8344^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 20^{\prime} \\ 47.748^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	West Swanzey	V		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
NED-TAR-I-0003	Cheshire	Winchester	I	3.3		WC-X-W004	PFO	N/A	$\begin{array}{r} 42^{\circ} 45^{\prime} \\ 22.0311^{\prime \prime} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 20^{\prime} \\ 47.101^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	West Swanzey	V		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
NED-TAR-I-0500	Cheshire	Richmond	I	7.6		WPI-1689	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 58.555^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 17^{\prime} \\ 39.126^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	West Swanzey	V		0.00	0.00	0.09	0.00	0.00	0.00	0.00	130	
NED-TAR-I-0500	Cheshire	Richmond	I	7.6		WPI-1691	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 6.153^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 16^{\prime} \\ 47.595^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	West Swanzey	v		0.00	0.00	0.04	0.00	0.00	0.00	0.00	60	
NED-TAR-I-0500	Cheshire	Richmond	I	7.6		WPI-1693	Other	N/A	$\begin{array}{r} 42^{\circ} 47^{\prime} \\ 6.108^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 16^{\prime} \\ 47.211^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	West Swanzey	V		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0	
NED-TAR-I-0600	Cheshire	Richmond	I	9.3		WPI-1702	Other	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 23.958^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 14^{\prime} \\ 53.344^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	v		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0	
NED-TAR-I-0600	Cheshire	Richmond	I	9.3		WPI-1706	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 25.656^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 72^{\circ} 14^{\prime} \\ 40.534^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Troy	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	10	
NED-TAR-I-0600	Cheshire	Richmond	I	9.3		WPI-1708	Other	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 26.544^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 14^{\prime} \\ 35.198^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	v		0.00	0.00	0.00	0.06	0.00	0.00	0.00	90	
NED-TAR-I-0600	Cheshire	Richmond	I	9.3		WPI-1709	PSS/PEM	N/A	$\begin{array}{r} 42^{\circ} 47^{\prime \prime} \\ 28.901^{\prime \prime} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 14^{\prime} \\ 21.512^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	V		0.00	0.00	0.02	0.00	0.00	0.00	0.00	20	
NED-TAR-I-0600	Cheshire	Richmond	I	9.3		WPI-1712	PSS/PEM	N/A	$\begin{gathered} \hline 42^{\circ} 47^{\prime} \\ 36.966^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 13^{\prime} \\ 34.760^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
NED-TAR-I-0600	Cheshire	Richmond	I	9.3		WPI-1712	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 37.026^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 13^{\prime} \\ 34.574^{\prime \prime} \mathrm{W} \end{gathered}$	Troy	V		0.00	0.00	0.04	0.00	0.00	0.00	0.00	65	
NED-TAR-I-0600	Cheshire	Richmond	I	9.3		WPI-1713	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 37.935^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 72^{\circ} 13^{\prime} \\ 28.865^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Troy	V		0.00	0.00	0.18	0.00	0.00	0.00	0.00	250	
NED-TAR-I-0600	Cheshire	Richmond	I	9.3		WPI-1714	Other	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 38.579^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 13^{\prime} \\ 25.617^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	V		0.00	0.00	0.00	0.07	0.00	0.00	0.00	120	
NED-TAR-I-0600	Cheshire	Richmond	1	9.3		WPI-1713	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 38.526^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 13^{\prime} \\ 25.096^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	V		0.00	0.00	0.02	0.00	0.00	0.00	0.00	10	
NED-TAR-I-0600	Cheshire	Troy	I	9.3		WPI-1716	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 39.616^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 13^{\prime} \\ 18.548^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	V		0.00	0.00	0.05	0.00	0.00	0.00	0.00	75	

Table 2.3-8

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\underset{\substack{\text { Wetland } \\ \mathbf{I D}^{3,4}}}{ }$	WetlandClass 5	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method ${ }^{7}$	Comments			Wetl	dimpact	(acres)			$\begin{aligned} & \text { Crossing } \\ & \text { Length } \\ & \text { (feet) }{ }^{11} \end{aligned}$	
						Construction ${ }^{8}$								Operation ${ }^{9}$								
				Begin	End									PEM	PFO	PsS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$		
NED-TAR-I-0600	Cheshire	Troy	I	9.34			WPI-1717	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 40.423^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 13^{\prime} \\ 11.162^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	V		0.00	0.00	0.38	0.00	0.00	0.00	0.00	580
NED-TAR-I-0600	Cheshire	Troy	I	9.34		WPI-1719	PSS/PEM	N/A	$\begin{array}{r} 42^{\circ} 47^{\prime} \\ 42.554^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 13^{\prime} \\ 3.084^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	V		0.00	0.00	0.06	0.00	0.00	0.00	0.00	115	
NED-TAR-I-0600	Cheshire	Troy	I	9.34		WPI-1720	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 41.975^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 13^{\prime} \\ 1.092^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	V		0.00	0.00	0.04	0.00	0.00	0.00	0.00	60	
NED-TAR-I-0600	Cheshire	Troy	I	9.34		WPI-1723	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 42.595^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 12^{\prime} \\ 56.188^{\prime \prime} \mathrm{W} \end{gathered}$	Troy	V		0.00	0.00	0.02	0.00	0.00	0.00	0.00	25	
NED-TAR-I-0600	Cheshire	Troy	I	9.34		WPI-1721	Other	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 42.500^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 12^{\prime} \\ 55.845^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	V		0.00	0.00	0.00	0.03	0.00	0.00	0.00	45	
NED-TAR-I-0600	Cheshire	Troy	I	9.34		WPI-1723	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 42.431^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 12^{\prime} \\ 55.262^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	20	
NED-TAR-I-0600	Cheshire	Troy	I	9.34		WPI-1725	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 42.910^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 12^{\prime} \\ 52.255^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	v		0.00	0.00	0.06	0.00	0.00	0.00	0.00	105	
NED-TAR-I-0600	Cheshire	Troy	I	9.34		WPI-1726	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 43.304^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 12^{\prime} \\ 50.135^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	V		0.00	0.00	0.06	0.00	0.00	0.00	0.00	90	
NED-TAR-I-0600	Cheshire	Troy	I	9.34		WPI-1727	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 44.995^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 12^{\prime} \\ 41.073^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	V		0.00	0.00	0.02	0.00	0.00	0.00	0.00	35	
NED-TAR-I-0600	Cheshire	Troy	I	9.34		WPI-1729	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 44.978^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 72^{\circ} 12^{\prime} \\ 40.320^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Troy	V		0.00	0.00	0.03	0.00	0.00	0.00	0.00	50	
NED-TAR-I-0600	Cheshire	Troy	I	9.34		WPI-1731	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 47.895^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 12^{\prime} \\ 26.178^{\prime \prime} \mathrm{W} \end{gathered}$	Troy	V		0.00	0.00	0.07	0.00	0.00	0.00	0.00	100	
NED-TAR-I-0600	Cheshire	Troy	I	9.34		WPI-1732	PSS/PEM	N/A	$\begin{array}{r} 42^{\circ} 47^{\prime} \\ 48.098^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 12 \prime \\ 24.568^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	V		0.00	0.00	0.04	0.00	0.00	0.00	0.00	60	
NED-TAR-I-0600	Cheshire	Troy	I	9.34		WPI-1733	Other	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 49.142^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 12^{\prime} \\ 14.504^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	V		0.00	0.00	0.00	0.07	0.00	0.00	0.00	115	
NED-TAR-I-0600	Cheshire	Troy	I	9.34		WPI-1735	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 51.405^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 72^{\circ} 12^{\prime} \\ 6.643^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Troy	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	25	
NED-TAR-I-0600	Cheshire	Troy	I	9.34		WPI-1734	Other	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 51.498^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 72^{\circ} 12^{\prime} \\ 6.480^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Troy	V		0.00	0.00	0.00	0.02	0.00	0.00	0.00	40	
NED-TAR-I-0600	Cheshire	Troy	I	9.34		WPI-1735	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 51.287^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 12^{\prime} \\ 5.845^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	20	
NED-TAR-I-0600	Cheshire	Fitzwilliam	I	9.34		WPI-1739	Other	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 57.032^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 72^{\circ} 11^{\prime} \\ 26.854^{\prime \prime} \mathrm{C} \\ \hline \end{array}$	Troy	V		0.00	0.00	0.00	0.02	0.00	0.00	0.00	0	
NED-TAR-I-0600	Cheshire	Fitzwilliam	I	9.34		WPI-1740	Other	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 57.291^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 11^{\prime} \\ 26.312^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	V		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0	
NED-TAR-I-0600	Cheshire	Fitzwilliam	I	9.34		TR-X-W002	PEM	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 58.928^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 11^{\prime} \\ 22.034^{\prime \prime} \mathrm{W} \end{gathered}$	Troy	V		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0	
NED-TAR-I-0600	Cheshire	Fitzwilliam	I	9.34		WPI-1741	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 1.195^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 11^{\prime} \\ 11.246^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
NED-TAR-I-0700	Cheshire	Fitzwilliam	I	15.27		WPI-1759	PSS	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 16.885^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 9^{\prime} \\ 5.632^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	V		0.00	0.00	0.05	0.00	0.00	0.00	0.00	60	
NED-TAR-I-0700	Cheshire	Fitzwilliam	I	15.27		WPI-1761	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 16.732^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 9^{\prime} \\ 2.689^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
NED-TAR-I-0700	Cheshire	Fitzwilliam	I	15.27		WPI-1760	PSS	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 16.7833^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 9^{\prime} \\ 2.3377^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Troy	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
NED-TAR-I-1100	Cheshire	Fitzwilliam	I	18.90		WPI-1812	PEM	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 11.344^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 6^{\prime} \\ 5.855 " \mathrm{~W} \\ \hline \end{gathered}$	Monadnock Mountain	V		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0	

Table 2.3-8

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{gathered} \text { Wetland } \\ \mathbf{I D}^{3,4} \end{gathered}$	Wetland Class ${ }^{5}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method ${ }^{7}$	Comments			Wetla	d Impac	Operation ${ }^{9}$			$\begin{aligned} & \text { Crossing } \\ & \text { Length } \\ & \text { (feet) } \end{aligned}$	
						Construction ${ }^{8}$																
				Begin	End									PEM	PFO	Pss	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$		
NED-TAR-I-1500	Cheshire	Rindge	I	23.15			WPI-1887	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 23.734^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 2^{\prime} \\ 5.991 " \mathrm{~W} \\ \hline \end{gathered}$	Winchendon	V		0.00	0.00	0.11	0.00	0.00	0.00	0.00	160
NED-TAR-I-1500	Cheshire	Rindge	I	23.15		WPI-1888	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 23.600^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 2^{\prime} \\ 3.356^{\prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	V		0.00	0.00	0.26	0.00	0.00	0.00	0.00	375	
NED-TAR-I-1500	Cheshire	Rindge	I	23.15		WPI-1888	PSS/PEM	N/A	$\begin{array}{r} 42^{\circ} 44^{\prime} \\ 23.7322^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 1^{\prime} \\ 56.156^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	V		0.00	0.00	0.44	0.00	0.00	0.00	0.00	625	
NED-TAR-I-1500	Cheshire	Rindge	I	23.15		WPI-1890	Other	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 23.639^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 1^{\prime} \\ 55.990^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	V		0.00	0.00	0.00	0.05	0.00	0.00	0.00	140	
NED-TAR-I-1500	Cheshire	Rindge	I	23.15		WPI-1893	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 22.172^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 1^{\prime} \\ 44.343^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	V		0.00	0.00	0.03	0.00	0.00	0.00	0.00	0	
NED-TAR-I-1500	Cheshire	Rindge	I	23.15		WPI-1891	PFO	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 23.382^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 1^{\prime} \\ 43.179^{\prime \prime} \mathrm{W} \end{gathered}$	Winchendon	V		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
NED-TAR-I-1500	Cheshire	Rindge	I	23.15		WPI-1891	PFO	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 23.321^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 1^{\prime} \\ 41.744^{\prime \prime} \mathrm{W} \end{gathered}$	Winchendon	V		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
NED-TAR-I-1500	Cheshire	Rindge	I	23.15		WPI-1895	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 23.275^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 1^{\prime} \\ 41.513^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	V		0.00	0.00	0.05	0.00	0.00	0.00	0.00	0	
NED-TAR-I-1500	Cheshire	Rindge	I	23.15		WPI-1895	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 22.885^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 1^{\prime} \\ 40.518^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	V		0.00	0.00	0.02	0.00	0.00	0.00	0.00	0	
NED-TAR-I-1500	Cheshire	Rindge	I	23.15		WPI-1899	PSS	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 21.978^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 1^{\prime} \\ 32.215^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	V		0.00	0.00	0.07	0.00	0.00	0.00	0.00	70	
NED-TAR-I-1500	Cheshire	Rindge	I	23.15		WPI-1897	Other	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 21.721^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 1^{\prime} \\ 32.113^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	V		0.00	0.00	0.00	0.06	0.00	0.00	0.00	125	
NED-TAR-I-1600	Cheshire	Rindge	I	23.79		WPI-1902	PSS/PEM	N/A	$\begin{array}{r} 42^{\circ} 44^{\prime} \\ 22.091^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 1^{\prime} \\ 23.878^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	V		0.00	0.00	0.16	0.00	0.00	0.00	0.00	240	
NED-TAR-I-1600	Cheshire	Rindge	I	23.79		WPI-1903	PSS	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 21.783^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 1^{\prime} \\ 20.654^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
NED-TAR-I-1600	Cheshire	Rindge	I	23.79		WPI-1903	PSS	N/A	$\begin{array}{r} 42^{\circ} 44^{\prime} \\ 21.454^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 1^{\prime} \\ 20.359^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	V		0.00	0.00	0.03	0.00	0.00	0.00	0.00	40	
NED-TAR-I-1600	Cheshire	Rindge	I	23.79		WPI-1907	PFO/PSS	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 21.327^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 1^{\prime} \\ 11.003^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	V		0.00	0.00	0.04	0.00	0.00	0.00	0.00	35	
NED-TAR-I-1600	Cheshire	Rindge	I	23.79		WPI-1905	PSS	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 21.330^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 1^{\prime} \\ 11.020^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	V		0.00	0.00	0.15	0.00	0.00	0.00	0.00	250	
NED-TAR-I-1600	Cheshire	Rindge	I	23.79		WPI-1910	PSS	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 21.345^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 1^{\prime} \\ 7.600^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	V		0.00	0.00	0.10	0.00	0.00	0.00	0.00	150	
NED-TAR-I-1700	Cheshire	Rindge	I	24.20		WPI-1912	PSS	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 21.004^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 0^{\prime} \\ 44.774^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	V		0.00	0.00	0.09	0.00	0.00	0.00	0.00	135	
NED-TAR-I-1700	Cheshire	Rindge	I	24.20		WPI-1914	PSS	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 20.8099^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 0^{\prime} \\ 42.891^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	15	
NED-TAR-I-1700	Cheshire	Rindge	I	24.20		WPI-1918	PEM	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 20.445^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 0^{\prime} \\ 37.480^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	V		0.07	0.00	0.00	0.00	0.00	0.00	0.00	115	
NED-TAR-I-1800	Cheshire	Rindge	I	24.62		WPI-1920	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 19.654^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 0^{\prime} \\ 24.597^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	V		0.00	0.00	0.14	0.00	0.00	0.00	0.00	250	
NED-TAR-I-1800	Cheshire	Rindge	I	24.62		WPI-1923	PSS	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 19.091^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 0^{\prime} \\ 15.557^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	V		0.00	0.00	0.13	0.00	0.00	0.00	0.00	225	
NED-TAR-I-1800	Cheshire	Rindge	I	24.62		WPI-1924	Other	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 19.059^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 0^{\prime} \\ 14.222^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	V		0.00	0.00	0.00	0.01	0.00	0.00	0.00	15	
NED-TAR-I-1800	Cheshire	Rindge	1	24.62		WPI-1926	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 19.107^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 0^{\prime} \\ 12.699^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	V		0.00	0.00	0.02	0.00	0.00	0.00	0.00	10	

Table 2.3-8

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{gathered} \text { Wetland } \\ \mathbf{I D}^{3,4} \end{gathered}$	WetlandClass 5	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method ${ }^{7}$	Comments			Wetl	dimpact	Operation ${ }^{9}$			$\begin{aligned} & \text { Crossing } \\ & \text { Length } \\ & \text { (feet) }{ }^{11} \end{aligned}$	
						Construction 8																
				Begin	End									PEM	PFO	PsS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$		
NED-TAR-I-1800	Cheshire	Rindge	I	24.62			WPI-1928	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 19.100^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 0^{\prime} \\ 12.185^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
NED-TAR-I-1800	Cheshire	Rindge	I	24.62		WPI-1931	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 18.958^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 0^{\prime} \\ 12.014^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	V		0.00	0.00	0.02	0.00	0.00	0.00	0.00	45	
NED-TAR-I-1800	Cheshire	Rindge	I	24.62		WPI-1935	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 18.793^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 0^{\prime} \\ 11.488^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	V		0.00	0.00	0.02	0.00	0.00	0.00	0.00	25	
NED-TAR-I-1800	Cheshire	Rindge	I	24.62		WPI-1937	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 18.789^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 0^{\prime} \\ 11.086^{\prime \prime} \mathrm{W} \end{gathered}$	Winchendon	V		0.00	0.00	0.06	0.00	0.00	0.00	0.00	60	
NED-TAR-I-1800	Cheshire	Rindge	I	24.62		WPI-1938	PEM	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 18.851^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 0^{\prime} \\ 10.143^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	V		0.02	0.00	0.00	0.00	0.00	0.00	0.00	60	
NED-TAR-I-1800	Cheshire	Rindge	I	24.62		WPI-1939	PEM	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 18.760^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 0^{\prime} \\ 9.400^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	V		0.01	0.00	0.00	0.00	0.00	0.00	0.00	10	
NED-TAR-I-1800	Cheshire	Rindge	I	24.62		WPI-1942	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 18.947^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 0^{\prime} \\ 9.250^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Winchendon	v		0.00	0.00	0.05	0.00	0.00	0.00	0.00	90	
NED-TAR-I-1900	Cheshire	Rindge	I	25.19		NWI-1401	Other	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 22.288^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 59^{\prime} \\ 36.980^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashburnham	V		0.00	0.00	0.00	0.07	0.00	0.00	0.00	110	
NED-TAR-I-1900	Cheshire	Rindge	I	25.19		WPI-1946	PEM	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 34.116^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 59 ' \\ 15.888^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashburnham	V		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0	
NED-TAR-I-1900	Cheshire	Rindge	I	25.19		WPI-1944	PSS	N/A	$\begin{array}{r} 42^{\circ} 44^{\prime} \\ 34.2577^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 59 ' \\ 15.820^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashburnham	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
NED-TAR-I-1900	Cheshire	Rindge	I	25.19		WPI-1946	PEM	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 34.586^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 59^{\prime} \\ 15.662^{\prime \prime} \mathrm{W} \end{gathered}$	Ashburnham	V		0.22	0.00	0.00	0.00	0.00	0.00	0.00	330	
NED-TAR-I-1900	Cheshire	Rindge	I	25.19		WPI-1945	PSS	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 35.893^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 59^{\prime} \\ 15.344^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashburnham	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
NED-TAR-I-1900	Cheshire	Rindge	I	25.19		WPI-1947	PSS	N/A	$\begin{array}{r} 42^{\circ} 44^{\prime} \\ 37.814^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 59^{\prime} \\ 13.707^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Ashburnham	V		0.00	0.00	0.03	0.00	0.00	0.00	0.00	45	
NED-TAR-I-2000	Cheshire	Rindge	I	26.03		WPI-1948	Other	N/A	$\begin{gathered} 42^{\circ} 44^{\prime} \\ 50.933^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 59^{\prime} \\ 5.393 " \mathrm{~W} \\ \hline \end{gathered}$	Ashburnham	V		0.00	0.00	0.00	0.03	0.00	0.00	0.00	0	
NED-TAR-I-2000	Cheshire	Rindge	I	26.03		WPI-1951	PEM	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 8.185^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 58^{\prime} \\ 53.262^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	V		0.07	0.00	0.00	0.00	0.00	0.00	0.00	105	
NED-TAR-I-2100	Cheshire	Rindge	I	26.74		WPI-1953	PSS	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 14.898^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 58^{\prime} \\ 41.919^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	$\begin{gathered} \hline \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	V		0.00	0.00	0.05	0.00	0.00	0.00	0.00	75	
NED-TAR-I-2100	Cheshire	Rindge	I	26.74		WPI-1957	PSS	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 19.345^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 58^{\prime} \\ 27.839 " \mathrm{~W} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	V		0.00	0.00	0.18	0.00	0.00	0.00	0.00	300	
NED-TAR-I-2100	Cheshire	Rindge	I	26.74		WPI-1958	Other	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 19.917^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 58^{\prime} \\ 26.451 " \mathrm{~W} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	V		0.00	0.00	0.00	0.03	0.00	0.00	0.00	0	
NED-TAR-I-2100	Cheshire	Rindge	I	26.74		WPI-1961	PSS	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 21.3344^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 58^{\prime} \\ 22.592^{\prime \prime} \mathrm{W} \end{gathered}$	$\begin{aligned} & \text { Peterborough } \\ & \text { South } \end{aligned}$	V		0.00	0.00	0.19	0.00	0.00	0.00	0.00	220	
NED-TAR-I-2100	Cheshire	Rindge	I	26.74		WPI-1960	Other	N/A	$\begin{array}{r} 42^{\circ} 45^{\prime} \\ 21.358^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 71^{\circ} 58^{\prime} \\ 22.329^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	$\begin{aligned} & \text { Peterborough } \\ & \text { South } \\ & \hline \end{aligned}$	V		0.00	0.00	0.00	0.04	0.00	0.00	0.00	110	
NED-TAR-I-2100	Cheshire	Rindge	1	26.74		WPI-1965	PFO	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 26.301^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 58^{\prime} \\ 7.374^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	V		0.00	0.00	0.05	0.00	0.00	0.00	0.00	55	
NED-TAR-I-2100	Cheshire	Rindge	I	26.74		WPI-1966	PSS	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 26.230^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 58^{\prime} \\ 7.318^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	V		0.00	0.00	0.16	0.00	0.00	0.00	0.00	245	
NED-TAR-J-0100	Hillsborough	New Ipswich	J	0.25		WPI-1992	PSS	N/A	$\begin{array}{r} 42^{\circ} 46^{\prime} \\ 0.8455^{\prime N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 56^{\prime} \\ 15.079 " \mathrm{~W} \\ \hline \end{gathered}$	$\begin{gathered} \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	V		0.00	0.00	0.12	0.00	0.00	0.00	0.00	125	
NED-TAR-J-0100	Hillsborough	New Ipswich	J	0.25		WPI-1995	Other	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 1.878^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 566^{\prime} \\ 13.861^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Peterborough } \\ & \text { South } \\ & \hline \end{aligned}$	V		0.00	0.00	0.00	0.02	0.00	0.00	0.00	50	

Table 2.3-8

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{gathered} \text { Wettand } \\ \mathbf{I D}^{3,4} \end{gathered}$	WetlandClass 5	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method ${ }^{7}$	Comments			Wetl	dimpact	(acres)			$\begin{aligned} & \text { Crossing } \\ & \text { Length } \\ & \text { (feet) }{ }^{11} \end{aligned}$	
						Construction ${ }^{8}$								Operation ${ }^{9}$								
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$		
NED-TAR-J-0100	Hillsborough	New Ipswich	J	0.25			WPI-1996	Other	N/A	$\begin{gathered} \hline 42^{\circ} 46^{\prime} \\ 1.682^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 56^{\prime} \\ 13.687^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	V		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0
NED-TAR-J-0100	Hillsborough	New Ipswich	J	0.25		WPI-1997	Other	N/A	$\begin{array}{r} 42^{\circ} 46^{\prime} \\ 2.394^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 56^{\prime} \\ 13.517^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Peterborough } \\ & \text { South } \end{aligned}$	V		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0	
NED-TAR-J-0100	Hillsborough	New Ipswich	J	0.25		WPI-1992	PSS	N/A	$\begin{array}{r} 42^{\circ} 46^{\prime} \\ 2.922^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 56^{\prime} \\ 12.267^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	V		0.00	0.00	0.05	0.00	0.00	0.00	0.00	85	
NED-TAR-J-0100	Hillsborough	New Ipswich	J	0.25		WPI-1998	Other	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 2.975^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 56^{\prime} \\ 12.193^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { Peterborough } \\ & \text { South } \\ & \hline \end{aligned}$	V		0.00	0.00	0.00	0.01	0.00	0.00	0.00	15	
NED-TAR-J-0100	Hillsborough	New Ipswich	J	0.25		WPI-1999	Other	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 3.095 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 56^{\prime} \\ 11.833^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	v		0.00	0.00	0.00	0.04	0.00	0.00	0.00	70	
NED-TAR-J-0100	Hillsborough	New Ipswich	J	0.25		WPI-2000	PSS	N/A	$\begin{array}{r} 42^{\circ} 46^{\prime} \\ 6.541^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 56^{\prime} \\ 0.835{ }^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Peterborough } \\ & \text { South } \\ & \hline \end{aligned}$	v		0.00	0.00	0.06	0.00	0.00	0.00	0.00	5	
NED-TAR-J-0100	Hillsborough	New Ipswich	J	0.25		WPI-2001	Other	N/A	$\begin{array}{r} 42^{\circ} 46^{\prime} \\ 6.701 " \mathrm{~N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 56^{\prime} \\ 0.817^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Peterborough } \\ & \text { South } \\ & \hline \end{aligned}$	V		0.00	0.00	0.00	0.02	0.00	0.00	0.00	45	
NED-TAR-J-0100	Hillsborough	New Ipswich	J	0.25		WPI-2000	PSS	N/A	$\begin{array}{r} 42^{\circ} 46^{\prime} \\ 7.555^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 55^{\prime} \\ 59.696^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Peterborough } \\ & \text { South } \\ & \hline \end{aligned}$	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	70	
NED-TAR-J-0100	Hillsborough	New Ipswich	J	0.25		WPI-2002	Other	N/A	$\begin{array}{r} 42^{\circ} 46^{\prime} \\ 6.852^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 55^{\prime} \\ 59.439{ }^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	V		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0	
NED-TAR-J-0100	Hillsborough	New Ipswich	J	0.25		WPI-2005	Other	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 7.237^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 55 ' \\ 57.557 " \mathrm{~W} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	V		0.00	0.00	0.00	0.01	0.00	0.00	0.00	15	
NED-TAR-J-0100	Hillsborough	New Ipswich	J	0.25		WPI-2004	Other	N/A	$\begin{array}{r} 42^{\circ} 46^{\prime} \\ 6.982^{\prime \prime} \mathrm{N} \end{array}$	$\begin{gathered} 71^{\circ} 55^{\prime} \\ 57.4011^{\prime \prime} \mathrm{W} \end{gathered}$	$\begin{aligned} & \text { Peterborough } \\ & \text { South } \\ & \hline \end{aligned}$	V		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0	
NED-TAR-J-0100	Hillsborough	New Ipswich	J	0.25		WPI-2006	Other	N/A	$\begin{array}{r} 42^{\circ} 46^{\prime} \\ 6.974^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 55^{\prime} \\ 56.716^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	V		0.00	0.00	0.00	0.02	0.00	0.00	0.00	50	
NED-TAR-J-0100	Hillsborough	New Ipswich	J	0.25		WPI-2007	Other	N/A	$\begin{gathered} \hline 42^{\circ} 46^{\prime} \\ 7.457{ }^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 55^{\prime} \\ 56.041^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	V		0.00	0.00	0.00	0.03	0.00	0.00	0.00	40	
NED-TAR-J-0100	Hillsborough	New Ipswich	J	0.25		WPI-2012	PSS	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 12.937^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 55^{\prime} \\ 40.313^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	$\begin{gathered} \text { Peterborough } \\ \text { South } \end{gathered}$	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	35	
NED-TAR-J-0100	Hillsborough	New Ipswich	J	0.25		WPI-2012	PSS	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 13.221^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 55 ' \\ 39.531 " \mathrm{~W} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	45	
NED-TAR-J-0100	Hillsborough	New Ipswich	J	0.25		WPI-2012	PSS	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 13.584^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 55 ' \\ 38.530^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	V		0.00	0.00	0.08	0.00	0.00	0.00	0.00	5	
NED-TAR-J-0100	Hillsborough	New Ipswich	J	0.25		WPI-2014	Other	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 13.849^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 55^{\prime} \\ 37.978^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Peterborough } \\ & \text { South } \\ & \hline \end{aligned}$	V		0.00	0.00	0.00	0.04	0.00	0.00	0.00	110	
NED-TAR-J-0100	Hillsborough	New Ipswich	J	0.25		WPI-2015	PEM	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 17.299^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 55 ' \\ 25.054 " \mathrm{~W} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	V		0.01	0.00	0.00	0.00	0.00	0.00	0.00	15	
NED-TAR-J-0100	Hillsborough	New Ipswich	J	0.25		WPI-2018	Other	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 17.6877^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 55 ' \\ 24.752^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Peterborough } \\ & \text { South } \end{aligned}$	V		0.00	0.00	0.00	0.11	0.00	0.00	0.00	165	
NED-TAR-J-0100	Hillsborough	New Ipswich	J	0.25		WPI-2019	PEM	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 18.419^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 55^{\prime} \\ 22.806^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	$\begin{gathered} \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	V		0.13	0.00	0.00	0.00	0.00	0.00	0.00	210	
NED-TAR-J-0200	Hillsborough	New Ipswich	J	1.22		WPI-2020	PEM	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 23.895^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 55 ' \\ 4.242^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	V		0.02	0.00	0.00	0.00	0.00	0.00	0.00	40	
NED-TAR-J-0200	Hillsborough	New Ipswich	J	1.22		WPI-2024	PSS	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 27.192^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 54^{\prime} \\ 54.369{ }^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
NED-TAR-J-0200	Hillsborough	New Ipswich	J	1.22		WPI-2022	PSS	N/A	$\begin{array}{r} 42^{\circ} 46^{\prime} \\ 27.505^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 71^{\circ} 54^{\prime} \\ 54.327^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	$\begin{aligned} & \text { Peterborough } \\ & \text { South } \\ & \hline \end{aligned}$	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
NED-TAR-J-0200	Hillsborough	New Ipswich	J	1.22		WPI-2023	Other	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 27.273^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 54^{\prime} \\ 54.203^{\prime \prime} \mathrm{W} \end{gathered}$	Peterborough South	V		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0	

Table 2.3-8

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{gathered} \text { Wetland } \\ \mathbf{I D}^{3,4} \end{gathered}$	WetlandClass 5	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method ${ }^{7}$	Comments			Wetl	dimpact	(acres)			$\begin{aligned} & \text { Crossing } \\ & \text { Length } \\ & \text { (feet) }{ }^{11} \end{aligned}$	
						Construction ${ }^{8}$								Operation ${ }^{9}$								
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$		
NED-TAR-J-0200	Hillsborough	New Ipswich	J	1.22			WPI-2024	PSS	N/A	$\begin{gathered} \hline 42^{\circ} 46^{\prime} \\ 27.352^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 54^{\prime} \\ 53.817^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Peterborough South	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0
NED-TAR-J-0200	Hillsborough	New Ipswich	J	1.22		WPI-2024	PSS	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 27.431^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 544^{\prime} \\ 53.670^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Peterborough } \\ & \text { South } \\ & \hline \end{aligned}$	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
NED-TAR-J-0200	Hillsborough	New Ipswich	J	1.22		WPI-2027	Other	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 31.455^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 54^{\prime} \\ 42.399^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	V		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0	
NED-TAR-J-0200	Hillsborough	New Ipswich	J	1.22		WPI-2030	PEM	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 31.637^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 54^{\prime} \\ 42.103^{\prime \prime} \mathrm{W} \end{gathered}$	$\begin{aligned} & \text { Peterborough } \\ & \text { South } \\ & \hline \end{aligned}$	V		0.13	0.00	0.00	0.00	0.00	0.00	0.00	75	
NED-TAR-J-0200	Hillsborough	New Ipswich	J	1.22		WPI-2030	PEM	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 32.257^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{aligned} & 71^{\circ} 54^{\prime} \\ & 41.529^{\prime \prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { Peterborough } \\ & \text { South } \end{aligned}$	v		0.01	0.00	0.00	0.00	0.00	0.00	0.00	135	
NED-TAR-J-0200	Hillsborough	New Ipswich	J	1.22		WPI-2029	Other	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 32.074^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 54^{\prime} \\ 41.715^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Peterborough } \\ & \text { South } \\ & \hline \end{aligned}$	v		0.00	0.00	0.00	0.02	0.00	0.00	0.00	25	
NED-TAR-J-0301	Hillsborough	New Ipswich	J	2.31		WPI-2037	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 37.722^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 54^{\prime} \\ 1.983^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Peterborough } \\ & \text { South } \\ & \hline \end{aligned}$	V		0.00	0.00	0.06	0.00	0.00	0.00	0.00	90	
NED-TAR-J-0302	Hillsborough	New Ipswich	J	3.00		WPI-2045	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 42.061^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 53^{\prime} \\ 5.514^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	$\begin{gathered} \text { Peterborough } \\ \text { South } \\ \hline \end{gathered}$	V		0.00	0.00	0.05	0.00	0.00	0.00	0.00	85	
NED-TAR-J-0500	Hillsborough	New Ipswich	J	4.32		WPI-2082	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 50.915 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 51^{\prime} \\ 33.185^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
NED-TAR-J-0500	Hillsborough	New Ipswich	J	4.32		WPI-2081	PSS	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 50.843^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 51^{\prime} \\ 33.154^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	V		0.00	0.00	0.02	0.00	0.00	0.00	0.00	20	
NED-TAR-J-0500	Hillsborough	New Ipswich	J	4.32		WPI-2084	Other	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 50.785^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 51^{\prime} \\ 32.920^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	V		0.00	0.00	0.00	0.02	0.00	0.00	0.00	50	
NED-TAR-J-0500	Hillsborough	New Ipswich	J	4.32		WPI-2083	Other	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 50.918^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 51^{\prime} \\ 32.900^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	V		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0	
NED-TAR-J-0500	Hillsborough	New Ipswich	J	4.32		WPI-2082	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 50.874^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 51^{\prime} \\ 32.728^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Greenville	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
NED-TAR-J-0500	Hillsborough	New Ipswich	J	4.32		WPI-2086	Other	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 51.745^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 51^{\prime} \\ 23.695^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	v		0.00	0.00	0.00	0.02	0.00	0.00	0.00	65	
NED-TAR-J-0800	Hillsborough	Mason	J	8.07		WPI-2105	Other	N/A	$\begin{array}{r} 42^{\circ} 47^{\prime} \\ 6.816^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 47^{\prime} \\ 8.987^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	V		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0	
NED-TAR-J-0800	Hillsborough	Mason	J	8.07		WPI-2120	PSS	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 54.975^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 46^{\prime} \\ 11.575^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
NED-TAR-J-0800	Hillsborough	Mason	J	8.07		WPI-2122	PSS	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 55.561^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 46^{\prime} \\ 10.199^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Greenville	V		0.00	0.00	0.29	0.00	0.00	0.00	0.00	430	
NED-TAR-J-0800	Hillsborough	Mason	J	8.07		WPI-2124	Other	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 53.261^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 46^{\prime} \\ 2.837{ }^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Greenville	V		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0	
NED-TAR-J-0800	Hillsborough	Mason	J	8.07		WPI-2124	Other	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 53.208^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{aligned} & 71^{\circ} 46^{\prime} \\ & 2.589^{\prime \prime} \mathrm{W} \end{aligned}$	Greenville	V		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0	
NED-TAR-J-0801	Hillsborough	Mason	J	0.25		WPI-2166	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 30.082^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 22.235^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	V		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
NED-TAR-J-0900	Hillsborough	Mason	J	10.86		WPI-3195	PSS	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 30.841^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 9.810^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	V		0.00	0.00	0.28	0.00	0.00	0.00	0.00	400	
NED-TAR-J-0900	Hillsborough	Mason	J	10.86		WPI-2168	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 29.373^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 4.048^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	V		0.00	0.02	0.00	0.00	0.00	0.00	0.00	0	
NED-TAR-J-0900	Hillsborough	Mason	J	10.86		WPI-2169	PSS	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 30.799^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 44^{\prime} \\ 3.242^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	V		0.00	0.00	0.05	0.00	0.00	0.00	0.00	85	
NED-TAR-J-0900	Hillsborough	Mason	J	10.86		WPI-2170	PEM	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 31.115^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 43^{\prime} \\ 56.211^{\prime \prime} \mathrm{W} \end{gathered}$	Milford	V		0.11	0.00	0.00	0.00	0.00	0.00	0.00	170	

Table 2.3-8

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\underset{\substack{\text { Wetland } \\ \mathbf{I D}^{3,4}}}{ }$	WetlandClass 5	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method ${ }^{7}$	Comments			Wetl	dimpact	Operation ${ }^{9}$			$\begin{aligned} & \text { Crossing } \\ & \text { Length } \\ & \text { (feet) }{ }^{11} \end{aligned}$	
						Construction 8																
				Begin	End									PEM	PFO	PsS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$		
NED-TAR-J-0900	Hillsborough	Mason	J	10.86			WPI-2173	PSS	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 33.089^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 43^{\prime} \\ 44.970^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	V		0.00	0.00	0.04	0.00	0.00	0.00	0.00	60
NED-TAR-J-0900	Hillsborough	Mason	J	10.86		WPI-2174	PSS	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 33.7577^{\prime \prime} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 43^{\prime} \\ 31.406^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Milford	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
NED-TAR-J-0900	Hillsborough	Mason	J	10.86		WPI-2175	Other	N/A	$\begin{array}{r} 42^{\circ} 46^{\prime} \\ 33.331^{\prime \prime} \mathrm{N} \end{array}$	$\begin{gathered} 71^{\circ} 43^{\prime} \\ 31.038^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	V		0.00	0.00	0.00	0.02	0.00	0.00	0.00	40	
NED-TAR-J-0900	Hillsborough	Mason	J	10.86		WPI-2178	PSS	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 36.054^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{aligned} & 71^{\circ} 43^{\prime} \\ & 9.650 " \mathrm{~W} \end{aligned}$	Milford	V		0.00	0.00	0.04	0.00	0.00	0.00	0.00	60	
NED-TAR-J-1000	Hillsborough	Milford	J	12.03		WPI-2182	PFO	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 33.512^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 42^{\prime} \\ 53.318^{\prime \prime} \mathrm{W} \end{gathered}$	Milford	V		0.00	0.04	0.00	0.00	0.00	0.00	0.00	65	
NED-TAR-J-1000	Hillsborough	Milford	J	12.03		WPI-2189	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 37.245 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 42^{\prime} \\ 46.401^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	v		0.00	0.00	0.05	0.00	0.00	0.00	0.00	65	
NED-TAR-J-1000	Hillsborough	Milford	J	12.03		WPI-2192	Other	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 37.537^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 42^{\prime} \\ 39.972^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	v		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0	
NED-TAR-J-1000	Hillsborough	Milford	J	12.03		WPI-2194	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 37.2833^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 42^{\prime} \\ 38.739^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	V		0.00	0.00	0.04	0.00	0.00	0.00	0.00	40	
NED-TAR-J-1000	Hillsborough	Milford	J	12.03		WPI-2193	Other	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 37.5977^{\prime \prime} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 42^{\prime} \\ 38.606^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	V		0.00	0.00	0.00	0.03	0.00	0.00	0.00	60	
NED-TAR-J-1000	Hillsborough	Milford	J	12.03		WPI-2199	PSS	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 39.167^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 42^{\prime} \\ 14.294^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Milford	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
NED-TAR-J-1000	Hillsborough	Brookline	J	12.03		WPI-2220	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 47^{\prime} \\ 5.084^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 40^{\prime} \\ 47.242^{\prime \prime} \mathrm{W} \end{gathered}$	Milford	V		0.00	0.00	0.03	0.00	0.00	0.00	0.00	45	
NED-TAR-J-1205	Hillsborough	Merrimack	J	21.53		NWI-1306	PEM	N/A	$\begin{gathered} 42^{\circ} 48^{\prime} \\ 17.913^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 32^{\prime} \\ 53.827^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	South Merrimack	V		0.05	0.00	0.00	0.00	0.00	0.00	0.00	75	
NED-TAR-J-2200	Hillsborough	Litchfield	J	26.45		WPI-2363	Other	N/A	$\begin{array}{r} 42^{\circ} 49^{\prime} \\ 49.705^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 71^{\circ} 28^{\prime} \\ 33.178^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Nashua North	V		0.00	0.00	0.00	0.08	0.00	0.00	0.00	110	
NED-TAR-J-2200	Hillsborough	Litchfield	J	26.45		WPI-2365	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 49^{\prime} \\ 50.158^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 28^{\prime} \\ 31.710^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Nashua North	v		0.00	0.00	0.38	0.00	0.00	0.00	0.00	550	
NED-TAR-J-2200	Hillsborough	Litchfield	J	26.45		WPI-2365	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 49^{\prime} \\ 51.025 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 28^{\prime} \\ 22.727^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Nashua North	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	20	
NED-TAR-J-2200	Hillsborough	Litchfield	J	26.45		WPI-2368	Other	N/A	$\begin{gathered} 42^{\circ} 49^{\prime} \\ 51.055 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 28^{\prime} \\ 22.024^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	V		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0	
NED-TAR-J-2300	Rockingham	Londonderry	J	29.16		LD-L-W002	PEM	N/A	$\begin{gathered} 42^{\circ} 50^{\prime} \\ 36.127^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 25^{\prime} \\ 19.093^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	V		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0	
NED-TAR-J-2500	Hillsborough	Hudson	J	31.00		WPI-2450	PEM	N/A	$\begin{gathered} 42^{\circ} 49^{\prime} \\ 28.223 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 23^{\prime} \\ 45.954^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Nashua North	V		0.10	0.00	0.00	0.00	0.00	0.00	0.00	150	
NED-TAR-J-2500	Hillsborough	Hudson	J	31.00		WPI-2448	Other	N/A	$\begin{gathered} 42^{\circ} 49^{\prime} \\ 28.4477^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 23^{\prime} \\ 45.677^{\prime \prime} \mathrm{W} \end{gathered}$	Nashua North	V		0.00	0.00	0.00	0.04	0.00	0.00	0.00	35	
NED-TAR-J-2500	Hillsborough	Hudson	J	31.00		WPI-2456	PSS	N/A	$\begin{gathered} 42^{\circ} 49^{\prime} \\ 14.704^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 23^{\prime} \\ 30.914^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Nashua North	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
NED-TAR-J-2500	Hillsborough	Hudson	J	31.00		WPI-2456	PSS	N/A	$\begin{gathered} 42^{\circ} 49^{\prime} \\ 14.566^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 23^{\prime} \\ 30.716^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
NED-TAR-J-2500	Hillsborough	Hudson	J	31.00		WPI-2457	PSS	N/A	$\begin{gathered} 42^{\circ} 49^{\prime} \\ 14.088^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 23^{\prime} \\ 29.609{ }^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Nashua North	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
NED-TAR-J-2801	Rockingham	Windham	J	34.41		WPI-2523	PSS/PEM	N/A	$\begin{array}{r} 42^{\circ} 47^{\prime} \\ 26.674^{\prime \prime} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 21^{\prime} \\ 35.435^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
NED-TAR-J-3300	Rockingham	Windham	J	35.51		WPI-2555	PSS	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 39.006^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 20^{\prime} \\ 47.747^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	v		0.00	0.00	0.01	0.00	0.00	0.00	0.00	10	

a Kinder Morgan company

Table 2.3-8

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{gathered} \text { Wetland } \\ \mathbf{I D}^{3,4} \end{gathered}$	Wetland Class ${ }^{5}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method	Comments			Wetl	d Impact	(acres)			$\begin{aligned} & \text { Crossing } \\ & \text { Length } \\ & \text { (feet) } \end{aligned}$	
						Construction ${ }^{8}$								Operation ${ }^{9}$								
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PsS	Other ${ }^{10}$		
NED-TAR-J-3400	Rockingham	Windham	J	35.74			WPI-2560	Other	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 27.592^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 20^{\prime} \\ 49.000^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	V		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0
NED-TAR-J-3400	Hillsborough	Pelham	J	35.74		WPI-2570	Other	N/A	$\begin{gathered} 42^{\circ} 46^{\prime} \\ 7.538^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 20^{\prime} \\ 16.599^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	V		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0	
NED-TAR-J-3500	Hillsborough	Pelham	J	36.72		WPI-2591	PSS	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 54.068^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 19 ' \\ 59.425 " \mathrm{~W} \\ \hline \end{gathered}$	Windham	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
NED-TAR-J-3500	Hillsborough	Pelham	J	36.72		WPI-2591	PSS	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 53.710^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 19^{\prime} \\ 59.688^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	v		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
NED-TAR-J-3500	Hillsborough	Pelham	J	36.72		WPI-2588	PSS	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 52.313^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 20^{\prime} \\ 0.130^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
NED-TAR-J-3500	Hillsborough	Pelham	J	36.72		WPI-2591	PSS	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 51.725^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 19^{\prime} \\ 59.791^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
NED-TAR-J-3500	Hillsborough	Pelham	J	36.72		WPI-2597	PSS	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 51.380^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 71^{\circ} 20^{\prime} \\ 0.042^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Windham	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
NED-TAR-J-3500	Hillsborough	Pelham	J	36.72		WPI-2595	PSS	N/A	$\begin{gathered} 42^{\circ} 45^{\prime} \\ 51.054 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 19^{\prime} \\ 59.8655^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windham	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	5	
NED-TAR-J-3800	Hillsborough	Pelham	J	39.39		WPI-2643	PSS	N/A	$\begin{array}{r} 42^{\circ} 43^{\prime} \\ 58.514^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 18^{\prime} \\ 28.952^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	V		0.00	0.00	0.07	0.00	0.00	0.00	0.00	105	
NED-PAR-J-3800	HillSborough	Pelham	J	39.76		WPI-2653	PSS	N/A	$\begin{array}{r} 42^{\circ} 43^{\prime} \\ 42.0022^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 18^{\prime} \\ 15.2155^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	v		0.00	0.00	0.01	0.00	0.00	0.01	0.00	0	
NED-TAR-J-3800	Hillsborough	Pelham	J	39.39		WPI-2659	PSS	N/A	$\begin{gathered} 42^{\circ} 43^{\prime} \\ 34.397^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 18^{\prime} \\ 8.849^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	V		0.00	0.00	0.02	0.00	0.00	0.00	0.00	0	
NED-TAR-J-4000	Hillsborough	Pelham	J	40.73		WPI-2681	Other	N/A	$\begin{gathered} 42^{\circ} 43^{\prime} \\ 2.875^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 71^{\circ} 17^{\prime} \\ 42.209^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	V		0.00	0.00	0.00	0.01	0.00	0.00	0.00	0	
NED-TAR-J-4000	Hillsborough	Pelham	J	40.73		WPI-2684	PSS	N/A	$\begin{array}{r} 42^{\circ} 43^{\prime} \\ 2.724^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 71^{\circ} 17^{\prime} \\ 40.861^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Lowell	V		0.00	0.00	0.05	0.00	0.00	0.00	0.00	110	
NED-TAR-J-4000	Hillsborough	Pelham	J	40.73		WPI-2687	PSS/PEM	N/A	$\begin{gathered} 42^{\circ} 42^{\prime} \\ 37.362^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 71^{\circ} 17^{\prime} \\ 18.557^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Lowell	V		0.00	0.00	0.02	0.00	0.00	0.00	0.00	25	
NED-TAR-J-4000	Hillsborough	Pelham	J	40.73		WPI-2690	PSS	N/A	$\begin{gathered} 42^{\circ} 42^{\prime} \\ 33.063^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 71^{\circ} 17^{\prime} \\ 14.760^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Lowell	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
Access Roads Subtotal														0.99	0.15	6.11	1.27	0.00	0.01	0.00	11,690	
New Hampshire Total ${ }^{12}$														26.29	66.93	48.86	12.25	20.85	3.96	0.00	71,236	

Table 23-8

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{gathered} \text { Wetland } \\ \mathbf{I D}^{3,4} \end{gathered}$	Wetland Class ${ }^{5}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method ${ }^{7}$	Comments	Wetland Impact (acres)							Crossing$\substack{\text { Length } \\ \text { (feet) })^{11}}$
						Construction ${ }^{8}$								Operation ${ }^{\text {9 }}$							
				Begin	End									PEM	PFO	Pss	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$	

available data was used where there was no parcel access and no photo interpreted aerial coverage. The publically available data is from the USFWS - NWI (2014).
Each segment is associated with its own set of mileposts beginning at MP 0.00
Mileposts for Contractor Yards and Access Roads are given as nearest MP, which indicates the point at which the Access Road or Contractor Yard connects with the pipeline construction ROW, or closest MP to the construction ROW if there is no direct connection.
Wetland ID in the form of NWI-XXX are USFWS-NWI wetlands and wetland ID in the form WPI-XXX are photo interpreted wetlands. All other wetland ID's are surveyed wetlands.
4 Wetlands identified as "Unnamed" are wetlands delineated by AECOM that have yet to be assigned a unique Wetland ID.
5 Wetland classification is in accordance with Cowardin et al 1979: PEM = Palustrine Emergent Wetland; PSS = Palustrine Scrub-Shrub; PFO = Palustrine Forested Wetland; PUB = Palustrine Unconsolidated Bottom; Other = accommodates all other wetland class types.
6 Prime wetlands are defined under RSA 482-A:15.

 easement and does not include overlap with TGP's existing pipelines. The existing permanent easement for TGP's existing pipelines are not included in the operational wetland impacts.
10 Wetland type not classified by NWI as PEM, PSS, or PFO
11 Crossing length of 0 feet indicates that a wetland is impacted by only workspace (not the pipeline centerline),
12 The totals shown in this table may not equal the sum of addends due to rounding.
a Kinder Morgan company

Table 2.3-9
Wetlands Associated With the Project in C

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{gathered} \text { Wetland } \\ \mathbf{I D}^{3,4} \end{gathered}$	Wetland Class ${ }^{5}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method	Comments	Wetland Impact (acres)							Crossing Length (feet) ${ }^{11}$	
						Construction ${ }^{8}$								Operation ${ }^{9}$								
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	Pss	Other ${ }^{10}$		
Pipeline Facilities																						
300 Line CT Loop	Hartford	Farmington	S	0.07	0.09		WPI-3356	PFO	N/A	$\begin{gathered} 41^{\circ} 44^{\prime} \\ 45.787^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 40.442^{\prime \prime} \mathrm{W} \end{gathered}$	New Britain	II		0.00	0.14	0.00	0.00	0.04	0.00	0.00	84
300 Line CT Loop	Hartford	West Hartford	S	0.34	0.35	WPI-3359	PEM	N/A	$\begin{gathered} 41^{\circ} 45^{\prime} \\ 0.1700^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 47 \prime \\ 43.012^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0	
300 Line CT Loop	Hartford	Farmington	S	0.35	0.35	WPI-3359	PEM	N/A	$\begin{array}{r} 41^{\circ} 45^{\prime} \\ 0.374^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 72^{\circ} 47^{\prime} \\ 43.351^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Avon	II		0.01	0.00	0.00	0.00	0.00	0.00	0.00	10	
300 Line CT Loop	Hartford	Farmington	S	0.35	0.36	WPI-3359	PEM	N/A	$\begin{gathered} 41^{\circ} 45^{\prime} \\ 0.547{ }^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 43.416^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	II		0.01	0.00	0.00	0.00	0.00	0.00	0.00	31	
300 Line CT Loop	Hartford	West Hartford	S	0.35	0.36	WPI-3359	PEM	N/A	$\begin{array}{r} 41^{\circ} 45^{\prime} \\ 0.500^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 43.111^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	N/A		0.02	0.00	0.00	0.00	0.00	0.00	0.00	0	
300 Line CT Loop	Hartford	Farmington	S	0.35	0.36	WPI-3360	PSS	N/A	$\begin{array}{r} 41^{\circ} 45^{\prime} \\ 0.387 " \mathrm{~N} \\ \hline \end{array}$	$\begin{array}{c\|} \hline 72^{\circ} 47^{\prime} \\ 43.427^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Avon	N/A		0.00	0.00	0.02	0.00	0.00	0.01	0.00	0	
300 Line CT Loop	Hartford	Farmington	S	0.35	0.36	WPI-3361	PSS	N/A	$\begin{gathered} 41^{\circ} 45^{\prime} \\ 0.573^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 43.483^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	N/A		0.00	0.00	0.01	0.00	0.00	0.01	0.00	0	
300 Line CT Loop	Hartford	Farmington	S	0.36	0.36	WPI-3362	PSS	N/A	$\begin{gathered} 41^{\circ} 45^{\prime} \\ 0.902^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 43.582^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	N/A		0.00	0.00	0.01	0.00	0.00	0.01	0.00	0	
300 Line CT Loop	Hartford	Farmington	S	0.50	0.52	WPI-3365	PSS	N/A	$\begin{gathered} 41^{\circ} 45^{\prime} \\ 7.837{ }^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 46.362^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	II		0.00	0.00	0.08	0.00	0.00	0.01	0.00	4	
300 Line CT Loop	Hartford	West Hartford	S	0.50	0.51	WPI-3365	PSS	N/A	$\begin{gathered} 41^{\circ} 45 ' \\ 8.235^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 45.880^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	II		0.00	0.00	0.01	0.00	0.00	0.01	0.00	23	
300 Line CT Loop	Hartford	West Hartford	S	0.51	0.52	WPI-3367	PEM	N/A	$\begin{gathered} 41^{\circ} 45^{\prime} \\ 8.443^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 72^{\circ} 47^{\prime} \\ 45.534^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Avon	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0	
300 Line CT Loop	Hartford	West Hartford	S	0.51	0.52	WPI-3365	PSS	N/A	$\begin{gathered} 41^{\circ} 45 ' \\ 8.569^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 45.939^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	II		0.00	0.00	0.01	0.00	0.00	0.01	0.00	19	
300 Line CT Loop	Hartford	Farmington	S	0.64	0.65	WPI-3368	PSS	N/A	$\begin{gathered} 41^{\circ} 45^{\prime} \\ 14.958^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 72^{\circ} 47^{\prime} \\ 47.683^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Avon	II		0.00	0.00	0.05	0.00	0.00	0.01	0.00	20	
300 Line CT Loop	Hartford	Farmington	S	0.71	0.72	WPI-3372	PEM	N/A	$\begin{gathered} 41^{\circ} 45 ' \\ 18.471^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 48.010^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	II		0.04	0.00	0.00	0.00	0.00	0.00	0.00	21	
300 Line CT Loop	Hartford	Farmington	S	0.71	0.73	WPI-3373	PFO/PSS	N/A	$\begin{gathered} 41^{\circ} 45^{\prime} \\ 18.800^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 47 \prime \\ 48.279^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	II		0.00	0.04	0.00	0.00	0.03	0.00	0.00	93	
300 Line CT Loop	Hartford	Farmington	S	0.72	0.73	WPI-3375	PEM	N/A	$\begin{gathered} 41^{\circ} 45^{\prime} \\ 19.293^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 477^{\prime} \\ 47.897^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0	
300 Line CT Loop	Hartford	West Hartford	S	0.72	0.73	WPI-3372	PEM	N/A	$\begin{gathered} 41^{\circ} 45^{\prime} \\ 19.156^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 47.745^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0	
300 Line CT Loop	Hartford	West Hartford	S	0.72	0.74	WPI-3375	PEM	N/A	$\begin{gathered} 41^{\circ} 45^{\prime} \\ 19.336^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 72^{\circ} 47 \prime \\ 47.772^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Avon	N/A		0.02	0.00	0.00	0.00	0.00	0.00	0.00	0	
300 Line CT Loop	Hartford	West Hartford	S	0.73	0.73	WPI-3373	PFO/PSS	N/A	$\begin{gathered} 41^{\circ} 45^{\prime} \\ 19.558^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 47.805^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
300 Line CT Loop	Hartford	West Hartford	S	1.06	1.08	WPI-3379	PEM	N/A	$\begin{gathered} 41^{\circ} 45^{\prime} \\ 36.421^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 72^{\circ} 47^{\prime} \\ 43.643^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Avon	II		0.07	0.00	0.00	0.00	0.00	0.00	0.00	73	
300 Line CT Loop	Hartford	West Hartford	S	1.06	1.07	WPI-3378	PFO	N/A	$\begin{gathered} 41^{\circ} 45^{\prime} \\ 36.322^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 43.968^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	N/A		0.00	0.05	0.00	0.00	0.01	0.00	0.00	0	
300 Line CT Loop	Hartford	West Hartford	S	1.07	1.23	WPI-3380	PSS	N/A	$\begin{gathered} 41^{\circ} 45^{\prime} \\ 37.107^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 43.696^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	II		0.00	0.00	0.43	0.00	0.00	0.03	0.00	182	
300 Line CT Loop	Hartford	West Hartford	S	1.12	1.17	WPI-3382	PEM	N/A	$\begin{gathered} 41^{\circ} 45^{\prime} \\ 39.415^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 43.111^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	II		0.10	0.00	0.00	0.00	0.00	0.00	0.00	218	

Table 2.3-9
Wetlands Associated With the Project in Connecticu

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{aligned} & \text { Wetland } \\ & \mathbf{I D}^{3,4} \end{aligned}$	Wetland Class ${ }^{5}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method	Comments	Wetland Impact (acres)							Crossing Length (feet) ${ }^{11}$	
						Construction ${ }^{8}$								Operation ${ }^{9}$								
				Begin	End									PEM	PFO	Pss	Other ${ }^{10}$	PFO	Pss	Other ${ }^{10}$		
300 Line CT Loop	Hartford	West Hartford	S	1.12	1.18		WPI-3381	PFO	N/A	$\begin{gathered} 41^{\circ} 45^{\prime} \\ 39.373^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 43.122^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	II		0.00	0.25	0.00	0.00	0.08	0.00	0.00	47
300 Line CT Loop	Hartford	West Hartford	S	1.23	1.29	WPI-3385	Other	N/A	$\begin{gathered} 41^{\circ} 45^{\prime} \\ 44.865 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 47^{\prime \prime} \\ 42.285^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	II		0.00	0.00	0.00	0.18	0.00	0.00	0.00	183	
300 Line CT Loop	Hartford	West Hartford	S	1.24	1.26	WPI-3386	PFO	N/A	$\begin{gathered} 41^{\circ} 45^{\prime} \\ 45.654 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{array}{r} 72^{\circ} 47^{\prime \prime} \\ 42.243^{\prime \prime} \\ \hline \end{array}$	Avon	II		0.00	0.02	0.00	0.00	0.01	0.00	0.00	2	
300 Line CT Loop	Hartford	West Hartford	S	1.24	1.30	WPI-3388	PFO/PSS	N/A	$\begin{gathered} 41^{\circ} 45^{\prime} \\ 45.823^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 42.228^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	II		0.00	0.24	0.00	0.00	0.07	0.00	0.00	72	
300 Line CT Loop	Hartford	West Hartford	S	1.25	1.26	WPI-3387	PFO	N/A	$\begin{gathered} 41^{\circ} 45^{\prime} \\ 45.898^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 72^{\circ} 47^{\prime \prime} \\ 42.318^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Avon	N/A		0.00	0.03	0.00	0.00	0.01	0.00	0.00	0	
300 Line CT Loop	Hartford	West Hartford	S	1.45	1.66	WPI-3394	PEM	N/A	$\begin{gathered} 41^{\circ} 45^{\prime} \\ 55.847 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 37.182^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	II		0.59	0.00	0.00	0.00	0.00	0.00	0.00	987	
300 Line CT Loop	Hartford	West Hartford	S	1.45	1.66	WPI-3392	PFO	N/A	$\begin{gathered} 41^{\circ} 45^{\prime} \\ 55.707^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 37.605^{\prime \prime} \mathrm{W} \end{gathered}$	Avon	N/A		0.00	0.62	0.00	0.00	0.21	0.00	0.00	0	
300 Line CT Loop	Hartford	West Hartford	S	1.65	1.71	WPI-3397	PFO	N/A	$\begin{array}{r} 41^{\circ} 46^{\prime} \\ 5.397^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 32.888^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	II		0.00	0.54	0.00	0.00	0.16	0.00	0.00	275	
300 Line CT Loop	Hartford	West Hartford	S	1.66	1.68	WPI-3396	PEM	N/A	$\begin{array}{r} 41^{\circ} 46^{\prime} \\ 6.276^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 72^{\circ} 47^{\prime \prime} \\ 34.064^{\prime \prime} \mathrm{C} \\ \hline \end{array}$	Avon	N/A		0.05	0.00	0.00	0.00	0.00	0.00	0.00	0	
300 Line CT Loop	Hartford	West Hartford	S	1.68	1.70	WPI-3398	PEM	N/A	$\begin{gathered} 41^{\circ} 46^{\prime} \\ 7.355^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 47^{\prime \prime} \\ 33.356^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	N/A		0.04	0.00	0.00	0.00	0.00	0.00	0.00	0	
300 Line CT Loop	Hartford	West Hartford	S	1.76	1.77	WPI-3401	PFO	N/A	$\begin{gathered} 41^{\circ} 46^{\prime} \\ 11.3033^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 72^{\circ} 47^{\prime \prime} \\ 33.271^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Avon	N/A		0.00	0.01	0.00	0.00	0.01	0.00	0.00	0	
300 Line CT Loop	Hartford	West Hartford	S	1.76	1.78	WPI-3402	Other	N/A	$\begin{gathered} 41^{\circ} 46^{\prime} \\ 11.407^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 33.298^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	II		0.00	0.00	0.00	0.04	0.00	0.00	0.00	49	
300 Line CT Loop	Hartford	West Hartford	S	1.78	1.85	WPI-3403	PFO	N/A	$\begin{gathered} 41^{\circ} 46^{\prime} \\ 12.346^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 72^{\circ} 47^{\prime \prime} \\ 32.741^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Avon	N/A		0.00	0.21	0.00	0.00	0.01	0.00	0.00	0	
300 Line CT Loop	Hartford	West Hartford	S	1.92	1.95	WPI-3405	PFO	N/A	$\begin{gathered} 41^{\circ} 46^{\prime} \\ 20.027 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{array}{r} 72^{\circ} 47^{\prime \prime} \\ 32.070^{\prime \prime} \mathrm{C} \\ \hline \end{array}$	Avon	N/A		0.00	0.04	0.00	0.00	0.00	0.00	0.00	0	
300 Line CT Loop	Hartford	West Hartford	S	2.24	2.26	WPI-3414	PFO	N/A	$\begin{gathered} 41^{\circ} 46^{\prime} \\ 36.075^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 32.910^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	II		0.00	0.09	0.00	0.00	0.02	0.00	0.00	33	
300 Line CT Loop	Hartford	West Hartford	S	2.24	2.25	WPI-3412	PSS	N/A	$\begin{gathered} 41^{\circ} 46^{\prime} \\ 36.060^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 47^{\prime \prime} \\ 32.966^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	N/A		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
300 Line CT Loop	Hartford	West Hartford	S	2.25	2.26	WPI-3413	PFO	N/A	$\begin{gathered} 41^{\circ} 46^{\prime} \\ 36.630^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 32.917^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	II		0.00	0.02	0.00	0.00	0.02	0.00	0.00	24	
300 Line CT Loop	Hartford	West Hartford	S	2.47	2.49	WPI-3416	PFO	N/A	$\begin{array}{r} 41^{\circ} 46^{\prime} \\ 48.172^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 477^{\prime} \\ 34.3699^{\prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	N/A		0.00	0.05	0.00	0.00	0.01	0.00	0.00	0	
300 Line CT Loop	Hartford	West Hartford	S	2.48	2.49	WPI-3419	PSS	N/A	$\begin{array}{r} 41^{\circ} 46^{\prime} \\ 48.408^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{\|c} 72^{\circ} 47^{\prime} \\ 34.836^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Avon	II		0.00	0.00	0.03	0.00	0.00	0.01	0.00	20	
300 Line CT Loop	Hartford	West Hartford	S	2.49	2.52	WPI-3418	PFO	N/A	$\begin{array}{r} 41^{\circ} 46^{\prime} \\ 48.737^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 72^{\circ} 47^{\prime} \\ 34.374^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Avon	II		0.00	0.19	0.00	0.00	0.07	0.00	0.00	99	
300 Line CT Loop	Hartford	West Hartford	S	2.50	2.52	WPI-3419	PSS	N/A	$\begin{gathered} 41^{\circ} 46^{\prime} \\ 49.633^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 35.218^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	II		0.00	0.00	0.03	0.00	0.00	0.01	0.00	36	
300 Line CT Loop	Hartford	West Hartford	S	2.51	2.53	WPI-3417	PFO	N/A	$\begin{gathered} 41^{\circ} 46^{\prime} \\ 50.336^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 34.601 \mathrm{~W} \\ \hline \end{gathered}$	Avon	II		0.00	0.03	0.00	0.00	0.02	0.00	0.00	40	
300 Line CT Loop	Hartford	West Hartford	S	2.52	2.54	WPI-3420	PEM	N/A	$\begin{gathered} 41^{\circ} 46^{\prime} \\ 50.1533^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 35.5944^{\prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0	

Table 2.3-9
Wetlands Associated With the Project in Connecticu

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\underset{\substack{\text { Wetland } \\ \mathbf{I D}^{3,4}}}{\substack{\text { an }}}$	Wetland Class ${ }^{5}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method	Comments	Wetland Impact (acres)							Crossing$\begin{gathered}\text { Length } \\ \text { (feet) }\end{gathered}{ }^{11}$	
						Construction ${ }^{8}$								Operation ${ }^{9}$								
				Begin	End									PEM	PFO	Pss	Other ${ }^{10}$	PFO	Pss	Other ${ }^{10}$		
300 Line CT Loop	Hartford	West Hartford	S	2.64	2.66		WPI-3427	PFO	N/A	$\begin{gathered} 41^{\circ} 46^{\prime} \\ 56.426^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 32.176^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	II		0.00	0.03	0.00	0.00	0.01	0.00	0.00	31
300 Line CT Loop	Hartford	West Hartford	S	2.64	2.67	WPI-3426	PFO	N/A	$\begin{gathered} 41^{\circ} 46^{\prime} \\ 56.666^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 32.115^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	II		0.00	0.05	0.00	0.00	0.01	0.00	0.00	2	
300 Line CT Loop	Hartford	West Hartford	S	2.66	2.67	WPI-3428	PEM	N/A	$\begin{gathered} 41^{\circ} 46^{\prime} \\ 57.439^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 72^{\circ} 47^{\prime} \\ 32.819^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Avon	II		0.03	0.00	0.00	0.00	0.00	0.00	0.00	30	
300 Line CT Loop	Hartford	West Hartford	S	3.00	3.01	WPI-3438	PEM	N/A	$\begin{gathered} 41^{\circ} 47^{\prime} \\ 15.356^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 31.588^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	N/A		0.02	0.00	0.00	0.00	0.00	0.00	0.00	0	
300 Line CT Loop	Hartford	West Hartford	S	3.01	3.04	WPI-3443	PEM	N/A	$\begin{gathered} 41^{\circ} 47^{\prime} \\ 15.866^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 31.786^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	II		0.05	0.00	0.00	0.00	0.00	0.00	0.00	3	
300 Line CT Loop	Hartford	West Hartford	S	3.01	3.02	WPI-3439	PFO	N/A	$\begin{gathered} 41^{\circ} 47^{\prime} \\ 15.400^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 31.461^{\prime \prime} \mathrm{W} \end{gathered}$	Avon	II		0.00	0.02	0.00	0.00	0.02	0.00	0.00	49	
300 Line CT Loop	Hartford	West Hartford	S	3.01	3.02	WPI-3440	PFO	N/A	$\begin{gathered} 41^{\circ} 47^{\prime} \\ 15.504^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 31.196^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	N/A		0.00	0.03	0.00	0.00	0.00	0.00	0.00	0	
300 Line CT Loop	Hartford	West Hartford	S	3.02	3.04	WPI-3444	PFO	N/A	$\begin{gathered} 41^{\circ} 47^{\prime} \\ 16.146^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 31.527^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	II		0.00	0.05	0.00	0.00	0.05	0.00	0.00	114	
300 Line CT Loop	Hartford	West Hartford	S	3.04	3.15	WPI-3447	PSS	N/A	$\begin{gathered} 41^{\circ} 47^{\prime} \\ 17.001^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 31.398^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	II		0.00	0.00	0.47	0.00	0.00	0.13	0.00	563	
300 Line CT Loop	Hartford	West Hartford	S	3.15	3.30	WPI-3453	PEM	N/A	$\begin{gathered} 41^{\circ} 47^{\prime} \\ 22.678^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 30.462^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	II		0.48	0.00	0.00	0.00	0.00	0.00	0.00	554	
300 Line CT Loop	Hartford	West Hartford	S	3.15	3.24	WPI-3452	PFO	N/A	$\begin{gathered} 41^{\circ} 47^{\prime} \\ 22.606^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 30.053^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	N/A		0.00	0.31	0.00	0.00	0.05	0.00	0.00	0	
300 Line CT Loop	Hartford	West Hartford	S	3.22	3.28	WPI-3455	PFO	N/A	$\begin{gathered} 41^{\circ} 47^{\prime} \\ 26.046^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 28.882^{\prime \prime} \mathrm{W} \end{gathered}$	Avon	II		0.00	0.27	0.00	0.00	0.10	0.00	0.00	96	
300 Line CT Loop	Hartford	West Hartford	S	3.27	3.30	WPI-3458	PFO	N/A	$\begin{gathered} 41^{\circ} 47^{\prime} \\ 29.078^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 28.043^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	II		0.00	0.17	0.00	0.00	0.06	0.00	0.00	106	
300 Line CT Loop	Hartford	West Hartford	S	3.30	3.34	WPI-3459	PFO	N/A	$\begin{gathered} 41^{\circ} 47^{\prime} \\ 30.310^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 27.258^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	II		0.00	0.20	0.00	0.00	0.09	0.00	0.00	178	
300 Line CT Loop	Hartford	West Hartford	S	3.33	3.34	WPI-3460	PFO	N/A	$\begin{gathered} 41^{\circ} 47^{\prime} \\ 31.334^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 25.583^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	N/A		0.00	0.01	0.00	0.00	0.01	0.00	0.00	0	
300 Line CT Loop	Hartford	West Hartford	S	3.36	3.36	WPI-3461	PEM	N/A	$\begin{gathered} 41^{\circ} 47^{\prime} \\ 32.170^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 22.623^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	N/A		0.03	0.00	0.00	0.00	0.00	0.00	0.00	0	
300 Line CT Loop	Hartford	Bloomfield	S	4.65	4.70	WPI-3465	PFO	N/A	$\begin{gathered} 41^{\circ} 48^{\prime} \\ 34.9311^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 36.874^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	II		0.00	0.23	0.00	0.00	0.05	0.00	0.00	76	
300 Line CT Loop	Hartford	Bloomfield	S	4.67	4.82	WPI-3466	PEM	N/A	$\begin{gathered} 41^{\circ} 48^{\prime} \\ 35.996^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 37.4744^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	II		0.60	0.00	0.00	0.00	0.00	0.00	0.00	549	
300 Line CT Loop	Hartford	Bloomfield	S	4.84	4.87	WPI-3467	PSS	N/A	$\begin{gathered} 41^{\circ} 48^{\prime} \\ 44.683 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 34.190^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	II		0.00	0.00	0.08	0.00	0.00	0.02	0.00	83	
300 Line CT Loop	Hartford	Bloomfield	S	4.86	4.89	WPI-3470	PFO	N/A	$\begin{array}{r} 41^{\circ} 48^{\prime} \\ 45.469^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 32.874^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	II		0.00	0.09	0.00	0.00	0.03	0.00	0.00	30	
300 Line CT Loop	Hartford	Bloomfield	S	4.87	4.89	WPI-3469	PSS	N/A	$\begin{gathered} 41^{\circ} 48^{\prime} \\ 45.802^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 33.779^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	II		0.00	0.00	0.07	0.00	0.00	0.02	0.00	71	
300 Line CT Loop	Hartford	Bloomfield	S	5.67	5.74	WPI-3471	PFO	N/A	$\begin{gathered} 41^{\circ} 49^{\prime} \\ 22.479^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 10.958^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	II		0.00	0.50	0.00	0.00	0.18	0.00	0.00	322	
300 Line CT Loop	Hartford	Bloomfield	S	5.80	5.82	WPI-3472	PFO	N/A	$\begin{gathered} 41^{\circ} 49^{\prime} \\ 26.678^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{aligned} & 72^{\circ} 47^{\prime} \\ & 3.931^{\prime \prime} \mathrm{W} \end{aligned}$	Avon	II		0.00	0.18	0.00	0.00	0.06	0.00	0.00	107	

Table 2.3-9
Wetlands Associated With the Project in Connecticu

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{gathered} \text { Wetland } \\ \mathbf{I D}^{3,4} \end{gathered}$	Wetland Class ${ }^{5}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method	Comments	Wetland Impact (acres)							Crossing$\begin{aligned} & \text { Length } \\ & (\text { feet })^{11}\end{aligned}$	
						Construction ${ }^{8}$								Operation ${ }^{9}$								
				Begin	End									PEM	PFO	PSs	Other ${ }^{10}$	PFO	Pss	Other ${ }^{10}$		
300 Line CT Loop	Hartford	Bloomfield	S	6.56	6.57		BL-O-W001	PFO	N/A	$\begin{array}{r} 41^{\circ} 50^{\prime} \\ 2.0555^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 46^{\prime} \\ 55.210^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0
300 Line CT Loop	Hartford	Bloomfield	S	6.72	6.74	BL-O-W003	PFO	N/A	$\begin{gathered} 41^{\circ} 50^{\prime} \\ 7.603{ }^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 46^{\prime} \\ 46.972^{\prime \prime} \mathrm{W} \end{gathered}$	Avon	II		0.00	0.09	0.00	0.00	0.02	0.00	0.00	19	
300 Line CT Loop	Hartford	Bloomfield	S	7.12	7.14	BL-B-W007	PEM	N/A	$\begin{gathered} 41^{\circ} 50^{\prime} \\ 23.413^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 46^{\prime} \\ 30.976^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	II		0.06	0.00	0.00	0.00	0.00	0.00	0.00	25	
300 Line CT Loop	Hartford	Bloomfield	S	7.28	7.28	BL-B-W006	PEM	N/A	$\begin{gathered} 41^{\circ} 50^{\prime} \\ 31.296^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 46^{\prime} \\ 26.964^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0	
300 Line CT Loop	Hartford	Bloomfield	S	7.28	7.40	BL-B-W006	PFO	N/A	$\begin{gathered} 41^{\circ} 50^{\prime} \\ 31.571^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 46^{\prime} \\ 26.627 " \mathrm{~W} \\ \hline \end{gathered}$	Avon	II		0.00	0.68	0.00	0.00	0.24	0.00	0.00	416	
300 Line CT Loop	Hartford	Bloomfield	S	7.33	7.39	BL-B-W006	PEM	N/A	$\begin{gathered} 41^{\circ} 50 ' \\ 33.583 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 46^{\prime} \\ 25.257 " \mathrm{~W} \\ \hline \end{gathered}$	Avon	N/A		0.06	0.00	0.00	0.00	0.00	0.00	0.00	0	
300 Line CT Loop	Hartford	Bloomfield	S	7.40	7.41	BL-B-W005	PEM	N/A	$\begin{gathered} 41^{\circ} 50^{\prime} \\ 36.880^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 46^{\prime} \\ 23.935^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0	
300 Line CT Loop	Hartford	Bloomfield	S	7.43	7.43	BL-B-W005	PEM	N/A	$\begin{gathered} 41^{\circ} 50^{\prime} \\ 38.072^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 46^{\prime} \\ 22.473^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0	
300 Line CT Loop	Hartford	Bloomfield	S	7.43	7.46	BL-B-W005	PFO	N/A	$\begin{gathered} 41^{\circ} 50^{\prime} \\ 38.1033^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 46^{\prime} \\ 22.378^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	II		0.00	0.16	0.00	0.00	0.04	0.00	0.00	68	
300 Line CT Loop	Hartford	Bloomfield	S	7.44	7.44	BL-B-W005	PEM	N/A	$\begin{gathered} 41^{\circ} 50^{\prime} \\ 38.568^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 46^{\prime} \\ 21.866^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0	
300 Line CT Loop	Hartford	Bloomfield	S	7.46	7.51	BL-B-W005	PFO	N/A	$\begin{gathered} 41^{\circ} 50^{\prime} \\ 38.8577^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 46^{\prime} \\ 20.167^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	II		0.00	0.37	0.00	0.00	0.13	0.00	0.00	224	
300 Line CT Loop	Hartford	Bloomfield	S	7.49	7.50	BL-B-W005	PEM	N/A	$\begin{gathered} 41^{\circ} 50^{\prime} \\ 40.332^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 46^{\prime} \\ 19.702^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0	
300 Line CT Loop	Hartford	Bloomfield	S	7.63	7.78	BL-B-W004	PFO	N/A	$\begin{gathered} 41^{\circ} 50^{\prime} \\ 43.154 " \mathrm{~N} \end{gathered}$	$\begin{gathered} 72^{\circ} 46^{\prime} \\ 10.276^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	II		0.00	1.08	0.00	0.00	0.43	0.00	0.00	751	
300 Line CT Loop	Hartford	Bloomfield	S	7.63	7.64	BL-B-W004	PFO	N/A	$\begin{array}{r} 41^{\circ} 50^{\prime} \\ 42.750^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 72^{\circ} 46^{\prime} \\ 9.981 " \mathrm{~W} \\ \hline \end{array}$	Avon	N/A		0.00	0.02	0.00	0.00	0.00	0.00	0.00	0	
300 Line CT Loop	Hartford	Bloomfield	S	7.96	8.00	BL-B-W002	PEM	N/A	$\begin{gathered} 41^{\circ} 50^{\prime} \\ 58.991 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 46^{\prime} \\ 5.607 " \mathrm{~W} \\ \hline \end{gathered}$	Avon	N/A		0.02	0.00	0.00	0.00	0.00	0.00	0.00	0	
300 Line CT Loop	Hartford	Bloomfield	S	7.96	7.98	BL-B-W002	PEM	N/A	$\begin{gathered} 41^{\circ} 50^{\prime} \\ 58.991 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 46^{\prime} \\ 5.607 " \mathrm{~W} \\ \hline \end{gathered}$	Avon	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0	
300 Line CT Loop	Hartford	Bloomfield	S	7.96	7.98	BL-B-W005	PEM	N/A	$\begin{gathered} 41^{\circ} 50^{\prime} \\ 58.991 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{array}{r} 72^{\circ} 46^{\prime} \\ 5.607{ }^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Avon	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0	
300 Line CT Loop	Hartford	Bloomfield	S	7.97	7.98	BL-O-W005	PEM	N/A	$\begin{gathered} 41^{\circ} 50^{\prime} \\ 59.941^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 46^{\prime} \\ 5.758^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0	
300 Line CT Loop	Hartford	Bloomfield	S	7.98	7.98	BL-B-W005	PEM	N/A	$\begin{array}{r} 41^{\circ} 51^{\prime} \\ 0.121^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 72^{\circ} 46^{\prime} \\ 5.6577^{\prime} \mathrm{W} \\ \hline \end{array}$	Avon	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0	
300 Line CT Loop	Hartford	Bloomfield	S	8.03	8.06	BL-B-W002	PEM	N/A	$\begin{array}{r} \hline 41^{\circ} 51^{\prime} \\ 2.759^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 46^{\prime} \\ 5.369^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	N/A		0.03	0.00	0.00	0.00	0.00	0.00	0.00	0	
300 Line CT Loop	Hartford	Bloomfield	S	8.07	8.13	BL-B-W002	PEM	N/A	$\begin{array}{r} 41^{\circ} 51^{\prime} \\ 4.8455^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{r} 72^{\circ} 46^{\prime} \\ 4.817^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Avon	N/A		0.07	0.00	0.00	0.00	0.00	0.00	0.00	0	
300 Line CT Loop	Hartford	Bloomfield	S	8.13	8.17	WPI-3484	PFO	N/A	$\begin{aligned} & 41^{\circ} 51^{\prime} \\ & 7.772^{\prime \prime} \mathrm{N} \\ & \hline \end{aligned}$	$\begin{array}{r} 72^{\circ} 46^{\prime} \\ 2.963^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Avon	II		0.00	0.25	0.00	0.00	0.08	0.00	0.00	109	
300 Line CT Loop	Hartford	Bloomfield	S	8.47	8.61	BL-B-W001	PEM	N/A	$\begin{gathered} 41^{\circ} 51^{\prime} \\ 22.168^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 45^{\prime} \\ 49.743^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	II		1.19	0.00	0.00	0.00	0.00	0.00	0.00	725	

Table 2.3-9
Wetlands Associated With the P_{1}

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{gathered} \text { Wetland } \\ \mathbf{I D}^{3,4} \end{gathered}$	Wetland Class ${ }^{5}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method	Comments	Wetland Impact (acres)							Crossing Length (feet) ${ }^{11}$	
						Construction ${ }^{8}$								Operation ${ }^{9}$								
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$		
300 Line CT Loop	Hartford	Bloomfield	S	8.47	8.48		BL-B-W001	PFO	N/A	$\begin{gathered} 41^{\circ} 51^{\prime} \\ 21.633^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 45^{\prime} \\ 49.058^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	N/A		0.00	0.03	0.00	0.00	0.01	0.00	0.00	0
300 Line CT Loop	Hartford	Bloomfield	S	8.49	8.54	BL-B-W001	PFO	N/A	$\begin{gathered} 41^{\circ} 51^{\prime} \\ 22.491 " \mathrm{~N} \end{gathered}$	$\begin{gathered} 72^{\circ} 45^{\prime} \\ 47.868^{\prime \prime} \mathrm{W} \end{gathered}$	Avon	N/A		0.00	0.03	0.00	0.00	0.00	0.00	0.00	0	
300 Line CT Loop	Hartford	Bloomfield	S	8.61	8.62	BL-B-W001	PEM	N/A	$\begin{gathered} 41^{\circ} 51^{\prime} \\ 28.366^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{array}{c\|} \hline 72^{\circ} 45^{\prime} \\ 44.880 \mathrm{~W} \\ \hline \end{array}$	Avon	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0	
300 Line CT Loop	Hartford	Bloomfield	S	8.63	8.63	BL-B-W001	PFO	N/A	$\begin{gathered} 41^{\circ} 51^{\prime} \\ 28.739^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 45^{\prime} \\ 43.546^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
300 Line CT Loop	Hartford	Bloomfield	S	8.67	8.74	BL-P-W002	PEM	N/A	$\begin{gathered} 41^{\circ} 51^{\prime} \\ 30.900^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 72^{\circ} 45^{\prime} \\ 42.256^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Avon	II		0.12	0.00	0.00	0.00	0.00	0.00	0.00	28	
300 Line CT Loop	Hartford	Bloomfield	S	8.67	8.67	BL-P-W002	PFO	N/A	$\begin{gathered} 41^{\circ} 51^{\prime} \\ 30.880^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 45^{\prime} \\ 42.257 \mathrm{~W} \\ \hline \end{gathered}$	Avon	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
300 Line CT Loop	Hartford	Bloomfield	S	8.74	9.01	BL-P-W001	PEM	N/A	$\begin{gathered} 41^{\circ} 51^{\prime} \\ 33.900^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 45^{\prime} \\ 40.364^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	II		2.41	0.00	0.00	0.00	0.00	0.00	0.00	1,415	
300 Line CT Loop	Hartford	Bloomfield	S	9.01	9.02	BL-P-W001	PEM	N/A	$\begin{gathered} 41^{\circ} 51^{\prime} \\ 47.488^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 45^{\prime} \\ 33.586^{\prime \prime} \mathrm{W} \end{gathered}$	Avon	II		0.03	0.00	0.00	0.00	0.00	0.00	0.00	38	
300 Line CT Loop	Hartford	Bloomfield	S	9.03	9.06	BL-P-W001	PEM	N/A	$\begin{gathered} 41^{\circ} 51^{\prime} \\ 48.678^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 45^{\prime} \\ 34.023^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	II		0.21	0.00	0.00	0.00	0.00	0.00	0.00	113	
300 Line CT Loop	Hartford	Bloomfield	S	9.05	9.52	BL-P-W001	PFO	N/A	$\begin{gathered} 41^{\circ} 51^{\prime} \\ 49.295^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 45^{\prime} \\ 32.523^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	II		0.00	4.20	0.00	0.00	1.39	0.00	0.00	2,424	
300 Line CT Loop	Hartford	Bloomfield	S	9.51	9.68	BL-P-W001	PEM	N/A	$\begin{gathered} 41^{\circ} 52^{\prime} \\ 11.071^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 45^{\prime} \\ 18.808^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	II		1.46	0.00	0.00	0.00	0.00	0.00	0.00	864	
300 Line CT Loop	Hartford	Bloomfield	S	9.55	9.56	BL-P-W001	PFO	N/A	$\begin{gathered} 41^{\circ} 52^{\prime} \\ 12.816^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 45^{\prime} \\ 17.369^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
300 Line CT Loop	Hartford	Bloomfield	S	9.68	9.68	WPI-3504	PEM	N/A	$\begin{gathered} 41^{\circ} 52^{\prime} \\ 19.243^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 45^{\prime} \\ 16.141^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	II		0.01	0.00	0.00	0.00	0.00	0.00	0.00	13	
300 Line CT Loop	Hartford	Bloomfield	S	9.68	9.69	BL-P-W005	PFO	N/A	$\begin{gathered} 41^{\circ} 52^{\prime} \\ 19.521^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 45^{\prime} \\ 16.128^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	II		0.00	0.03	0.00	0.00	0.02	0.00	0.00	30	
300 Line CT Loop	Hartford	Bloomfield	S	9.70	9.89	NWI-1176	PFO	N/A	$\begin{gathered} 41^{\circ} 52^{\prime} \\ 20.244^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 45^{\prime} \\ 16.094^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	II		0.00	1.66	0.00	0.00	0.67	0.00	0.00	1,024	
300 Line CT Loop	Hartford	Bloomfield	S	9.70	9.72	BL-P-W005	PFO	N/A	$\begin{gathered} 41^{\circ} 52^{\prime} \\ 20.513^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 45^{\prime} \\ 16.081^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	N/A		0.00	0.02	0.00	0.00	0.01	0.00	0.00	0	
300 Line CT Loop	Hartford	Bloomfield	S	9.89	9.90	NWI-1176	PFO	N/A	$\begin{gathered} 41^{\circ} 52^{\prime} \\ 29.994^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 45^{\prime} \\ 14.417 " \mathrm{~W} \\ \hline \end{gathered}$	Tariffville	II		0.00	0.07	0.00	0.00	0.03	0.00	0.00	42	
300 Line CT Loop	Hartford	Bloomfield	S	9.92	10.00	NWI-1176	PFO	N/A	$\begin{gathered} 41^{\circ} 52^{\prime} \\ 31.451 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 45^{\prime} \\ 13.414^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Tariffville	II		0.00	0.43	0.00	0.00	0.09	0.00	0.00	145	
300 Line CT Loop	Hartford	Bloomfield	S	10.01	10.10	BL-P-W005	PFO	N/A	$\begin{gathered} 41^{\circ} 52^{\prime} \\ 34.982^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 72^{\circ} 45^{\prime} \\ 9.043^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Tariffville	II		0.00	0.25	0.00	0.00	0.07	0.00	0.00	101	
300 Line CT Loop	Hartford	Bloomfield	S	10.03	10.03	BL-P-W005	PFO	N/A	$\begin{array}{r} 41^{\circ} 52^{\prime} \\ 35.831 " \mathrm{~N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 45^{\prime} \\ 8.611^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Tariffville	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
300 Line CT Loop	Harfford	Bloomfield	S	10.10	10.14	BL-P-W005	PFO	N/A	$\begin{array}{r} 41^{\circ} 52^{\prime} \\ 38.9099^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 45^{\prime} \\ 6.892^{\prime} \mathrm{W} \\ \hline \end{gathered}$	Tariffville	N/A		0.00	0.04	0.00	0.00	0.00	0.00	0.00	0	
300 Line CT Loop	Hartford	Bloomfield	S	10.12	10.14	BL-P-W005	PFO	N/A	$\begin{gathered} 41^{\circ} 52^{\prime} \\ 39.815^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 72^{\circ} 45^{\prime} \\ 6.5877^{\prime} \mathrm{W} \\ \hline \end{array}$	Tariffville	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
300 Line CT Loop	Hartford	Bloomfield	S	10.16	10.18	BL-P-W005	PFO	N/A	$\begin{gathered} 41^{\circ} 52^{\prime} \\ 41.732^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 45^{\prime} \\ 5.941^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Tariffville	II		0.00	0.11	0.00	0.00	0.05	0.00	0.00	68	

Table 2.3-9
Wetlands Associated With the Project in Connecticu

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{gathered} \text { Wetland } \\ \mathbf{I D}^{3,4} \end{gathered}$	Wetland Class ${ }^{5}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method ${ }^{7}$	Comments	Wetland Impact (acres)							Crossing Length (feet) ${ }^{11}$	
						Construction ${ }^{8}$								Operation ${ }^{9}$								
				Begin	End									PEM	PFO	PSS	Other ${ }^{10}$	PFO	PSS	Other ${ }^{10}$		
300 Line CT Loop	Hartford	Bloomfield	S	10.17	10.19		BL-P-W006	PFO	N/A	$\begin{gathered} 41^{\circ} 52^{\prime} \\ 42.375^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{r} 72^{\circ} 45^{\prime} \\ 5.410^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Tariffville	II		0.00	0.06	0.00	0.00	0.04	0.00	0.00	70
300 Line CT Loop	Hartford	Bloomfield	S	10.19	10.21	BL-P-W006	PEM	N/A	$\begin{gathered} 41^{\circ} 52^{\prime} \\ 43.130^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 72^{\circ} 45^{\prime} \\ 4.854^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Tariffville	II		0.04	0.00	0.00	0.00	0.00	0.00	0.00	29	
300 Line CT Loop	Hartford	Bloomfield	S	10.24	10.31	BL-P-W006	PEM	N/A	$\begin{gathered} 41^{\circ} 52^{\prime} \\ 45.327^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 45^{\prime} \\ 3.075^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Tariffville	II		0.41	0.00	0.00	0.00	0.00	0.00	0.00	223	
300 Line CT Loop	Hartford	Bloomfield	S	10.29	10.36	BL-P-W006	PEM	N/A	$\begin{gathered} 41^{\circ} 52^{\prime} \\ 46.154 " \mathrm{~N} \end{gathered}$	$\begin{gathered} 72^{\circ} 45^{\prime} \\ 0.000 " \mathrm{~W} \end{gathered}$	Windsor Locks	II		0.57	0.00	0.00	0.00	0.00	0.00	0.00	320	
300 Line CT Loop	Hartford	Bloomfield	S	10.98	11.00	BL-N-W006	PEM	N/A	$\begin{gathered} 41^{\circ} 53^{\prime} \\ 14.7544^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 44^{\prime} \\ 32.433^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windsor Locks	II		0.05	0.00	0.00	0.00	0.00	0.00	0.00	47	
300 Line CT Loop	Hartford	Bloomfield	S	10.98	11.00	BL-N-W006	PFO	N/A	$\begin{gathered} 41^{\circ} 53 ' \\ 14.489^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 44^{\prime} \\ 32.004^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windsor Locks	II		0.00	0.03	0.00	0.00	0.01	0.00	0.00	17	
300 Line CT Loop	Hartford	Bloomfield	S	11.12	11.14	BL-N-W007	PEM	N/A	$\begin{gathered} 41^{\circ} 53 ' \\ 18.351^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 44^{\prime} \\ 24.165^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windsor Locks	II		0.06	0.00	0.00	0.00	0.00	0.00	0.00	50	
300 Line CT Loop	Hartford	Bloomfield	S	11.12	11.14	BL-N-W007	PEM	N/A	$\begin{gathered} 41^{\circ} 53^{\prime} \\ 18.5066^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 44^{\prime} \\ 23.754^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windsor Locks	II		0.04	0.00	0.00	0.00	0.00	0.00	0.00	10	
300 Line CT Loop	Hartford	Windsor	S	11.28	11.36	BL-N-W003	PFO	N/A	$\begin{gathered} 41^{\circ} 53^{\prime} \\ 22.641^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 44^{\prime} \\ 14.454^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windsor Locks	IV		0.00	0.50	0.00	0.00	0.27	0.00	0.00	394	
300 Line CT Loop	Hartford	Windsor	S	11.29	11.34	BL-N-W003	PFO	N/A	$\begin{gathered} 41^{\circ} 53^{\prime} \\ 21.250^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 44^{\prime} \\ 10.895^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windsor Locks	N/A		0.00	0.14	0.00	0.00	0.00	0.00	0.00	0	
300 Line CT Loop	Hartford	Windsor	S	11.40	11.41	BL-N-W002	PFO	N/A	$\begin{gathered} 41^{\circ} 53^{\prime} \\ 27.3066^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 44^{\prime} \\ 10.013^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windsor Locks	IV		0.00	0.06	0.00	0.00	0.03	0.00	0.00	50	
300 Line CT Loop	Hartford	Windsor	S	12.50	12.51	WPI-3514	PFO	N/A	$\begin{gathered} 41^{\circ} 54^{\prime} \\ 17.466^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 43^{\prime} \\ 41.845^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windsor Locks	II		0.00	0.06	0.00	0.00	0.02	0.00	0.00	37	
300 Line CT Loop	Hartford	Windsor	S	12.87	12.95	WPI-3516	PEM	N/A	$\begin{gathered} 41^{\circ} 54^{\prime} \\ 35.368^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 43^{\prime} \\ 33.052^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windsor Locks	II		0.44	0.00	0.00	0.00	0.00	0.00	0.00	364	
300 Line CT Loop	Hartford	Windsor	S	12.90	12.92	WPI-3517	PEM	N/A	$\begin{gathered} 41^{\circ} 54^{\prime} \\ 36.842^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 43^{\prime} \\ 31.951^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windsor Locks	N/A		0.03	0.00	0.00	0.00	0.00	0.00	0.00	0	
300 Line CT Loop	Hartford	Windsor	S	12.92	12.93	WPI-3517	PEM	N/A	$\begin{gathered} 41^{\circ} 54^{\prime} \\ 37.539^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 43^{\prime} \\ 31.047^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windsor Locks	N/A		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0	
300 Line CT Loop	Hartford	Windsor	S	12.94	12.97	WPI-3520	PFO	N/A	$\begin{gathered} 41^{\circ} 54^{\prime} \\ 38.7933^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{aligned} & 72^{\circ} 43^{\prime} \\ & 31.166^{\prime \prime} \mathrm{W} \end{aligned}$	Windsor Locks	N/A		0.00	0.09	0.00	0.00	0.01	0.00	0.00	0	
300 Line CT Loop	Hartford	Windsor	S	12.95	12.97	WPI-3519	PEM	N/A	$\begin{gathered} 41^{\circ} 54^{\prime} \\ 38.726 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 43^{\prime} \\ 30.187^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windsor Locks	II		0.07	0.00	0.00	0.00	0.00	0.00	0.00	88	
300 Line CT Loop	Hartford	Windsor	S	12.95	12.98	WPI-3518	PEM	N/A	$\begin{gathered} 41^{\circ} 54^{\prime} \\ 38.896^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 43^{\prime} \\ 30.007 \mathrm{~W} \\ \hline \end{gathered}$	Windsor Locks	II		0.06	0.00	0.00	0.00	0.00	0.00	0.00	29	
300 Line CT Loop	Hartford	Windsor	S	12.97	13.00	WPI-3521	PFO	N/A	$\begin{gathered} 41^{\circ} 54^{\prime} \\ 39.711^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 43^{\prime} \\ 29.707 \mathrm{~W} \\ \hline \end{gathered}$	Windsor Locks	II		0.00	0.25	0.00	0.00	0.09	0.00	0.00	156	
300 Line CT Loop	Hartford	Windsor	S	13.04	13.06	WPI-3522	PFO	N/A	$\begin{gathered} 41^{\circ} 54^{\prime} \\ 43.268^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 43^{\prime} \\ 27.996^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windsor Locks	N/A		0.00	0.03	0.00	0.00	0.00	0.00	0.00	0	
300 Line CT Loop	Hartford	Windsor	S	13.61	13.70	WPI-3525	PSS	N/A	$\begin{gathered} 41^{\circ} 55^{\prime} \\ 11.199^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 43^{\prime} \\ 17.401^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windsor Locks	N/A		0.00	0.00	0.41	0.00	0.00	0.01	0.00	0	
300 Line CT Loop	Hartford	Windsor	S	13.97	13.99	WI-P-W001	PEM	N/A	$\begin{gathered} 41^{\circ} 55 \prime \\ 29.604 " \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 43^{\prime} \\ 12.466^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windsor Locks	II		0.08	0.00	0.00	0.00	0.00	0.00	0.00	22	
300 Line CT Loop	Hartford	Windsor	S	14.11	14.20	EG-P-W001	PFO	N/A	$\begin{gathered} 41^{\circ} 55^{\prime} \\ 35.832^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 43^{\prime} \\ 7.633^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windsor Locks	II		0.00	0.79	0.00	0.00	0.27	0.00	0.00	470	

Table 2.3-9
Wetlands Associated With the Project in Connecticu

Facility Name	County	Town	Segment ${ }^{1}$	Milepost ${ }^{2}$		$\begin{gathered} \text { Wetland } \\ \mathbf{I D}^{3,4} \end{gathered}$	Wetland Class ${ }^{5}$	State Wetland Classification ${ }^{6}$	Latitude	Longitude	Quadrangle	Crossing Method ${ }^{7}$	Comments	Wetland Impact (acres)							$\begin{aligned} & \text { Crossing } \\ & \text { Length } \\ & \text { (feet) } \end{aligned}$	
						Construction ${ }^{8}$								Operation ${ }^{9}$								
				Begin	End									PEM	PFO	Pss	Other ${ }^{10}$	PFO	Pss	Other ${ }^{10}$		
300 Line CT Loop	Hartford	East Granby	S	14.19	14.23		EG-P-W001	PFO	N/A	$\begin{array}{\|c\|} \hline 41^{\circ} 55^{\prime} \\ 39.621^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 43^{\prime} \\ 4.1677^{\prime} \mathrm{W} \\ \hline \end{gathered}$	Windsor Locks	II		0.00	0.26	0.00	0.00	0.07	0.00	0.00	121
300 Line CT Loop	Hartford	East Granby	S	14.22	14.26	EG-P-W001	PFO	N/A	$\begin{gathered} 41^{\circ} 55 \prime \\ 40.338^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 43^{\prime} \\ 2.532^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windsor Locks	II		0.00	0.09	0.00	0.00	0.02	0.00	0.00	37	
Pipeline Subtotal														9.84	16.66	1.72	0.22	5.61	0.30	0.00	16,785	
Aboveground Facilities																						
$\begin{gathered} \hline \text { North Bloomfield } \\ (204523) \\ \hline \end{gathered}$	Hartford	Bloomfield	S	10.86	10.86	WPI-3511	PFO	N/A	$\begin{gathered} 41^{\circ} 53^{\prime} \\ 10.814^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 44^{\prime} \\ 40.269^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Windsor Locks	N/A		0.00	0.01	0.00	0.00	0.00	0.00	0.00	N/A	
Aboveground Facilities Subtotal														0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
Contractor Yards																						
N/A	N/A	N/A	N/A		A	N/A																
Contractor Yards Subtotal														0.00	0.00	0.00	0.00	0.00	0.00	0.00	0	
Access Roads																						
NED-TAR-S-0100	Hartford	West Hartford	S		07	WPI-3358	PSS	N/A	$\begin{gathered} 41^{\circ} 44^{\prime} \\ 57.908^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 41.411^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	New Britain	v		0.00	0.00	0.03	0.00	0.00	0.00	0.00	108	
NED-TAR-S-0100	Hartford	West Hartford	S		07	WPI-3364	PSS	N/A	$\begin{gathered} 41^{\circ} 45^{\prime} \\ 8.4233^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 44.669^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
NED-TAR-S-0100	Hartford	West Hartford	S		. 07	WPI-3366	PSS	N/A	$\begin{array}{r} 41^{\circ} 45^{\prime} \\ 8.519^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 44.689^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	V		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0	
TGP-TAR-S-0100	Hartford	West Hartford	S		. 70	WPI-3392	PFO	N/A	$\begin{array}{r} 41^{\circ} 46^{\prime} \\ 4.4755^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 36.025^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	V		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
TGP-TAR-S-0100	Hartford	West Hartford	S		. 0	WPI-3392	PFO	N/A	$\begin{array}{r} \hline 41^{\circ} 46^{\prime} \\ 6.265^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 72^{\circ} 477^{\prime} \\ 35.5711^{\prime} \mathrm{W} \\ \hline \end{array}$	Avon	v		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
TGP-TAR-S-0100	Hartford	West Hartford	S		. 70	WPI-3392	PFO	N/A	$\begin{array}{r} 41^{\circ} 46^{\prime} \\ 7.995{ }^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 34.909^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	V		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
TGP-TAR-S-0100	Hartford	West Hartford	S		. 70	WPI-3392	PFO	N/A	$\begin{array}{r} 41^{\circ} 46^{\prime} \\ 8.113^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 34.819^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	V		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
TGP-TAR-S-0100	Hartford	West Hartford	S		. 70	NWI-1419	PFO	N/A	$\begin{gathered} 41^{\circ} 46^{\prime} \\ 39.315^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 29.021^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	V		0.00	0.13	0.00	0.00	0.00	0.00	0.00	282	
TGP-TAR-S-0100	Hartford	West Hartford	S		. 70	WPI-3460	PFO	N/A	$\begin{gathered} 41^{\circ} 47^{\prime} \\ 30.023^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 47^{\prime} \\ 24.517^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	V		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
TGP-TAR-S-0200	Hartford	Bloomfield	S		. 43	BL-O-W004	PEM	N/A	$\begin{gathered} 41^{\circ} 50^{\prime} \\ 37.538^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} \hline 72^{\circ} 46^{\prime} \\ 20.170^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	V		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0	
TGP-TAR-S-0200	Hartford	Bloomfield	S		7.43	BL-O-W004	PEM	N/A	$\begin{gathered} 41^{\circ} 50^{\prime} \\ 37.558^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 46^{\prime} \\ 19.972^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	v		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0	
TGP-TAR-S-0200	Hartford	Bloomfield	S		7.43	BL-B-W005	PFO	N/A	$\begin{array}{r} 41^{\circ} 50^{\prime} \\ 37.751^{\prime \prime} \mathrm{N} \\ \hline \end{array}$	$\begin{gathered} 72^{\circ} 46^{\prime} \\ 20.034^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	v		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
TGP-TAR-S-0200	Hartford	Bloomfield	S		73	BL-B-W005	PFO	N/A	$\begin{gathered} 41^{\circ} 50^{\prime} \\ 37.751^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 46^{\prime} \\ 19.829^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	V		0.00	0.01	0.00	0.00	0.00	0.00	0.00	0	
TGP-TAR-S-0300	Hartford	Bloomfield	S		. 02	BL-P-W001	PEM	N/A	$\begin{gathered} 41^{\circ} 51^{\prime} \\ 48.579^{\prime \prime} \mathrm{N} \\ \hline \end{gathered}$	$\begin{gathered} 72^{\circ} 45^{\prime} \\ 34.820^{\prime \prime} \mathrm{W} \\ \hline \end{gathered}$	Avon	V		0.01	0.00	0.00	0.00	0.00	0.00	0.00	0	
Access Roads Subtotal														0.03	0.20	0.05	0.00	0.00	0.00	0.00	390	
Connecticut Total ${ }^{12}$														9.87	16.87	1.77	0.22	5.61	0.30	0.00	17,175	

Table 2.3-9

Wetlands Associated With the Project in Connecticut

 available data was used where there was no parcel access and no photo interpreted aerial coverage. The publically available data is from the USFWS - NWI (2014).
Each segment is associated with its own set of mileposts beginning at MP 0.00. 3 Wetland ID in the form of NWI-XXX are USFWS-NWI wetlands and wetland ID in the form WPI-XXX are photo interpreted wetlands. All other wetland ID's are surveyed wetlands.
4 Wetlands identified as "Unnamed" are wetlands delineated by AECOM that have yet to be assigned a unique Wetland ID.
5 Wetland classification is in accordance with Cowardin et al 1979: PEM = Palustrine Emergent Wetland; PSS = Palustrine Scrub-Shrub; PFO = Palustrine Forested Wetland; PUB = Palustrine Unconsolidated Bottom; Other =accommodates all other wetland class types.
6 Connecticut Inland Wetland and Watercourses Act (Section 22a-36 through 45 of the Connecticut General Statue) does not provide specific state wetland classifications.

 ${ }^{\text {ECP. }}$

 easement and does not include overlap with TGP's existing pipelines. The existing permanent easement for TGP's existing pipelines are not included in the operational wetland impacts.
12 The totals shown in this table may not equal the sum of addends due to rounding.

Tennessee Gas Pipeline
Company, L.L.C.
a Kinder Morgan company
U.S. Army Corps of Engineers Permit

Northeast Energy Direct Project Section 3, Attachment 2

Table 2.3-10
Potential Impacts to Wetlands Providing Vernal Pool Habitat in Massachusetts

Vernal Pool ID	Wetland ID ${ }^{1}$	Wetland Type ${ }^{2}$	Municipality	Type of Impact to Surrounding Wetland (square feet)		Type of Impact to Vernal Pool (square feet)	
				Construction ${ }^{3}$	Operation ${ }^{4}$	Construction ${ }^{3}$	Operation ${ }^{5}$
WPI-1286	N/A	N/A	Cheshire	0	0	952	0
WPI-1287	WPI-1288	PSS	Cheshire	1,629	0	1,901	0
HN-AC4-VP003	HN-M-W005	PSS	Hinsdale	1,736	0	0	0
$\begin{aligned} & \text { HN-AC4-VP004, } \\ & \text { HN-AC4-VP005 } \\ & \hline \end{aligned}$	HN-M-W008	PSS	Hinsdale	25,247	3,464	1,931	726
HN-AC4-VP006	HN-M-W010	PSS	Hinsdale	14,918	1,181	576	0
WN-AC4-VP002	WR-M-W002	PEM	Windsor	5,192	0	1,541	0
WN-AC4-VP003	WPI-1355	PSS	Windsor	2,854	0	1,728	0
PL-AC4-VP001	PL-E-W001	PFO	Plainfield	118	0	115	0
PL-AC4-VP002	PL-M-W004	PFO	Plainfield	2,790	1,117	369	244
PL-AC4-VP004	N/A	N/A	Plainfield	0	0	3,569	927
PL-AC4-VP005	WPI-1399	PSS	Plainfield	2,099	305	0	0
PL-AC4-VP008	PL-E-W003	PEM	Plainfield	3,826	0	0	0
PL-AC4-VP007	PL-E-W003	PSS	Plainfield	21,124	3,437	706	679
PL-AC4-VP006	PL-E-W002	PFO	Plainfield	39,632	13,028	0	0
PL-AC4-VP009	PL-M-W009	PFO, PEM	Plainfield	9,008	1,398	182	0
$\begin{aligned} & \text { AS-AC4-VP001, } \\ & \text { AS-AC4-VP002, } \\ & \text { AS-AC4-VP003 } \\ & \hline \end{aligned}$	AS-M-W001	PSS	Ashfield	3,201	1,328	606	606
AS-AC4-VP005	WPI-1446	PFO	Ashfield	2,970	0	0	0

Tennessee Gas Pipeline
Company, L.L.C.
a Kinder Morgan company
U.S. Army Corps of Engineers Permit Northeast Energy Direct Project Section 3, Attachment 2 Dredge and/or Fill Materials Discharge (Blocks 20-23)

Table 2.3-10
Potential Impacts to Wetlands Providing Vernal Pool Habitat in Massachusetts

| Vernal Pool ID | Wetland ID |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Tennessee Gas Pipeline
Company, L.L.C.
a Kinder Morgan company

Table 2.3-10
Potential Impacts to Wetlands Providing Vernal Pool Habitat in Massachusetts

Vernal Pool ID	Wetland ID ${ }^{1}$	Wetland Type ${ }^{2}$	Municipality	Type of Impact to Surrounding Wetland (square feet)		Type of Impact to Vernal Pool (square feet)	
				Construction ${ }^{3}$	Operation ${ }^{4}$	Construction ${ }^{3}$	Operation ${ }^{5}$
NO-AC3-VP001	NO-M-W002A	PEM	Northfield	3,248	0	867	867
WPI-1625	WPI-1624	PSS/PEM	Northfield	1,040	0	6	0
NO-AC3-VP005	NO-L-W007	PEM	Northfield	2,921	956	0	0
NO-AC3-VP006	NO-L-W015	PFO	Northfield	1,201	740	0	0
WPI-1631	WPI-1632	PSS/PEM	Northfield	7,397	0	0	0
WK-AC3-VP001	WK-M-W001	PFO	Warwick	2,098	2	0	0
DR-AC3-VP003	DR-J-W003	PFO	Dracut	3	0	0	0
DR-AC3-VP008	DR-D-W002	PFO	Dracut	3,226	0	1,688	0
DR-AC3-VP009	DR-D-W004	PFO	Dracut	3,805	0	2,355	0
DR-AC3-VP010	DR-G-W005	PFO	Dracut	650	0	738	0
DR-AC3-VP011	DR-D-W003	PFO	Dracut	9,015	0	2,703	0
DR-AC3-VP012	DR-D-W005	PFO	Dracut	5,084	0	1,243	0
WPI-2760	WPI-2761	PFO	Andover	9,080	3,596	0	0
WPI-2783	WPI-2784	PFO	Tewksbury	299	0	0	0
$\begin{aligned} & \text { TK-AC3-VP002, } \\ & \text { TK-AC3-VP003 } \end{aligned}$	WPI-2791	PFO	Tewksbury	21,161	8,131	0	0
WPI-2862	N/A	N/A	North Reading	0	0	5,977	3,795
WPI-2944	N/A	N/A	Danvers	0	0	4,543	1,190
MassGIS VP Point	NWI-1145	PSS	Dracut	2,456	0	Unknown	Unknown

Tennessee Gas Pipeline
Company, L.L.C.
a Kinder Morgan company
U.S. Army Corps of Engineers Permit Northeast Energy Direct Project Section 3, Attachment 2 Dredge and/or Fill Materials Discharge (Blocks 20-23)

Table 2.3-10
Potential Impacts to Wetlands Providing Vernal Pool Habitat in Massachusetts

Vernal Pool ID	Wetland ID ${ }^{1}$	Wetland Type ${ }^{2}$	Municipality	Type of Impact to Surrounding Wetland (square feet)		Type of Impact to Vernal Pool (square feet)	
				Construction ${ }^{3}$	Operation ${ }^{4}$	Construction ${ }^{3}$	Operation ${ }^{5}$
MassGIS VP Point	NWI-1156	PEM	Dracut	502	0	Unknown	Unknown
ME-AC3-VP002	ME-P-W004	PEM	Methuen	2,118	0	1,285	0
ME-AC3-VP004	WPI-3072	PFO	Methuen	12,613	0	0	0
WPI-3251, WPI-3253	WPI-3254	PSS	Townsend	10,209	1,122	1,038	1,038
WPI-3275	WPI-3276, WPI-3277	$\begin{gathered} \text { PFO, } \\ \text { PSS } \end{gathered}$	Townsend	$\begin{gathered} 954 \\ 9.944 \end{gathered}$	$\begin{aligned} & 298 \\ & 1,657 \end{aligned}$	0	0
WPI-3281	WPI-3284	PSS	Townsend	13,137	0	401	0
WPI-3286	WPI-3287	PSS	Townsend	120,225	0	0	0
WPI-3303	WPI-3301	PSS	Townsend	238,709	0	1,510	145
WPI-3330	N/A	N/A	Lunenburg	0	0	549	549
WPI-3336	N/A	N/A	Lunenburg	0	0	30	30
WPI-3347	N/A	N/A	Lunenburg	0	0	1,033	93

Tennessee Gas Pipeline
Company, L.L.C.
a Kinder Morgan company
U.S. Army Corps of Engineers Permit
Northeast Energy Direct Project

Northeast Energy Direct Project
Section 3, Attachment 2
Dredge and/or Fill Materials Discharge (Blocks 20-23)
2-101
Table 2.3-10
Potential Impacts to Wetlands Providing Vernal Pool Habitat in Massachusetts

| Vernal Pool ID | Wetland ID ${ }^{1}$ | Wetland Type 2 | Municipality | Surrounding Wetland (square
 feet) | Type of Impact to
 Vernal Pool
 (square feet) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Source: The data sets utilized for wetlands and vernal pools is a combination of field surveyed data, photo interpreted LiDAR data, and publically available data. Field surveyed data was used wherever there was parcel access, photo interpreted LiDAR data was used where there was no parcel access, and publically available data was used where there was no parcel access and no photo interpreted aerial coverage. The publically available data for wetlands is from the USFWS - NWI (2014) and the publically available data for vernal pools is from MassGIS.
NOTE: If multiple Vernal Pools are listed for a single wetland, bold font is used to indicate which vernal pool is impacted by the construction/operation workspace. N/A - Not Applicable.
Unknown - Indicates that the vernal pool is point feature from MassGIS public dataset and an acreage cannot be accessed.
1 Wetland ID in the form of NWI-XXX are USFWS-NWI wetlands, and WPI-XXX are photo interpreted wetlands. All other wetland ID's are surveyed wetlands.
2 Wetland classification is in accordance with Cowardin et al 1979: PEM = Palustrine Emergent Wetland; PSS = Palustrine Scrub-Shrub; PFO = Palustrine Forested Wetland.
3 Construction Acreage = all workspace during construction activities (TWS, ATWS, and permanent easement) that impacts wetlands or vernal pools.
4 Operation Acreage (for wetlands) = 10-foot wide corridor permanently maintained in herbaceous vegetative cover through PSS wetlands, and 30-foot wide corridor permanently maintained through PFO wetlands where trees taller than 15 feet that could damage the pipeline coating will be selectively cut and removed. The permanently maintained corridors represent a change in cover type from PFO to PSS and PEM or PSS to PEM; there is no operation impact on PEM wetlands, since there is no change in preand post-construction wetland vegetation cover type. Operational acreage represents areas of new permanent easement and does not include overlap with TGP's existing pipelines. The existing permanent easement for TGP's existing pipelines are not included in the operational wetland impacts.

Operation Acreage (for vernal pools) = impacts to vernal pools within the new permanent easement. The existing permanent easement for TGP's existing pipelines are not included in the operational vernal pool impacts.

Tennessee Gas Pipeline
Company, L.L.C.
a Kinder Morgan company

Table 2.3-11
Potential Impacts to Wetlands Providing Vernal Pool Habitat in New Hampshire

Vernal Pool ID	Wetland ID ${ }^{1}$	Wetland Type ${ }^{2}$	Municipality	Type of Impact to Surrounding Wetland (square feet)		Type of Impact to Vernal Pool (square feet)	
				Construction ${ }^{3}$	Operation ${ }^{4}$	Construction ${ }^{3}$	Operation ${ }^{5}$
WPI-1676	WPI-1675	PEM	Richmond	10,241	0	0	0
WPI-1693	WPI-1691	PSS/PEM	Richmond	4,165	0	352	0
WPI-1702	N/A	N/A	Richmond	0	0	29	0
WPI-1733	N/A	N/A	Troy	0	0	3,751	145
WPI-1740	TR-X-W001	PEM	Fitzwilliam	10,869	0	189	0
WPI-1771	N/A	N/A	Fitzwilliam	0	0	443	269
WPI-1775	N/A	N/A	Fitzwilliam	0	0	1,055	132
WPI-1778	WPI-1777	PSS	Fitzwilliam	3,594	0	0	0
WPI-1806	WPI-1801	PSS/PEM	Fitzwilliam	25,481	2,554	0	0
WPI-1813	WPI-1812	PEM	Fitzwilliam	4,901	0	0	0
WPI-1819	WPI-1818	PSS	Fitzwilliam	3,573	0	642	0
WPI-1828	WPI-1830, WPI-1831, NWI-1102	$\begin{gathered} \text { PSS/PEM, } \\ \text { PFO, } \\ \text { PEM } \end{gathered}$	Rindge	$\begin{aligned} & 4,466, \\ & 7,330 \\ & 4,341 \end{aligned}$	$\begin{gathered} 144, \\ 4,908 \\ 0 \end{gathered}$	9,514	5,501
WPI-1833	WPI-1832	PSS	Rindge	19,602	2,004	1,378	0
WPI-1890	WPI-1888	PSS/PEM	Rindge	55,948	3,482	2,367	0
WPI-1892	N/A	N/A	Rindge	0	0	239	239
WPI-1897	WPI-1899	PSS	Rindge	11,629	1,862	2,892	162

Tennessee Gas Pipeline
Company, L.L.C.
a Kinder Morgan company

Table 2.3-11
Potential Impacts to Wetlands Providing Vernal Pool Habitat in New Hampshire

Vernal Pool ID	Wetland ID ${ }^{1}$	Wetland Type ${ }^{2}$	Municipality	Type of Impact to Surrounding Wetland (square feet)		Type of Impact to Vernal Pool (square feet)	
				Construction ${ }^{3}$	Operation ${ }^{4}$	Construction ${ }^{3}$	Operation ${ }^{5}$
WPI-1908	WPI-1907	PFO/PSS	Rindge	29,965	12,019	975	457
WPI-1924	WPI-1923	PSS	Rindge	10,878	807	491	0
WPI-1948	N/A	N/A	Rindge	0	0	1,230	0
WPI-1958	WPI-1957	PSS	Rindge	14,490	0	1,247	0
WPI-1960, WPI-1963	WPI-1961	PSS	Rindge	10,663	0	1,551	0
WPI-1993, WPI-1995, WPI-1996, WPI-1997, WPI-1998, WPI-1999	WPI-1992	PSS	New Ipswich	14,815	22	$\begin{gathered} 0, \\ 818, \\ 9, \\ 189, \\ 464, \\ 1,574 \end{gathered}$	$\begin{aligned} & 0, \\ & 0, \\ & 9, \\ & 0, \\ & 0, \\ & 0 \end{aligned}$
WPI-2001	WPI-2000	PSS	New Ipswich	4,463	0	825	0
WPI-2002	N/A	N/A	New Ipswich	0	0	10	0
WPI-2004	N/A	N/A	New Ipswich	0	0	70	0
WPI-2005	N/A	N/A	New Ipswich	0	0	643	0
WPI-2006	N/A	N/A	New Ipswich	0	0	892	0
WPI-2007	N/A	N/A	New Ipswich	0	0	1,091	0
WPI-2014	WPI-2012	PSS	New Ipswich	7,146	834	1,548	0

Tennessee Gas Pipeline
Company, L.L.C.
a Kinder Morgan company

Table 2.3-11
Potential Impacts to Wetlands Providing Vernal Pool Habitat in New Hampshire

Vernal Pool ID	Wetland ID ${ }^{1}$	Wetland Type ${ }^{2}$	Municipality	Type of Impact to Surrounding Wetland (square feet)		Type of Impact to Vernal Pool (square feet)	
				Construction ${ }^{3}$	Operation ${ }^{4}$	Construction ${ }^{3}$	Operation ${ }^{5}$
WPI-2018	WPI-2015, WPI-2016, WPI-2019	PEM, PFO, PEM	New Ipswich	$\begin{gathered} 619 \\ 7,310 \\ 5,584 \end{gathered}$	$\begin{gathered} 0 \\ 3,101, \\ 0 \end{gathered}$	5,318	480
WPI-2023	WPI-2024	PSS	New Ipswich	3,186	0	494	0
WPI-2029	WPI-2030	PEM	New Ipswich	6,404	0	758	0
WPI-2054	WPI-2051	PSS	New Ipswich	1,850	447	0	0
WPI-2058	WPI-2057	PSS	New Ipswich	2,552	393	0	0
WPI-2063	WPI-2061	PSS	New Ipswich	6,275	563	5	5
WPI-2066	N/A	N/A	New Ipswich	0	0	1,517	865
WPI-2083	WPI-2082	PSS/PEM	New Ipswich	191	0	61	0
WPI-2084	WPI-2081	PSS	New Ipswich	5,891	1,223	959	0
WPI-2086	N/A	N/A	New Ipswich	0	0	972	0
WPI-2088	WPI-2090	PSS	New Ipswich	16,118	3,870	0	0
NI-R-VP003	NI-R-W001	PFO	New Ipswich	11,632	4,866	0	0
NI-R-VP004, NI-R-VP005	NI-R-W001	PFO	New Ipswich	4,330	1,868	219	219
GN-U-VP001	GN-M-W001	PSS	Greenville	3,472	501	0	0
WPI-2105	N/A	N/A	Mason	0	0	762	0
WPI-2113	WPI-2115	PFO	Mason	4,715	2,654	82	82

Tennessee Gas Pipeline
Company, L.L.C.
a Kinder Morgan company

Table 2.3-11
Potential Impacts to Wetlands Providing Vernal Pool Habitat in New Hampshire

Vernal Pool ID	Wetland ID ${ }^{1}$	Wetland Type ${ }^{2}$	Municipality	Type of Impact to Surrounding Wetland (square feet)		Type of Impact to Vernal Pool (square feet)	
				Construction ${ }^{3}$	Operation ${ }^{4}$	Construction ${ }^{3}$	Operation ${ }^{5}$
WPI-2121	WPI-2122	PSS	Mason	12,820	0	12	12
WPI-2124	N/A	N/A	Mason	0	0	77	0
WPI-2126	N/A	N/A	Mason	0	0	385	0
WPI-2156	N/A	N/A	Mason	0	0	2,932	2,426
WPI-2157	N/A	N/A	Mason	0	0	1,096	0
WPI-2175	WPI-2174	PSS	Mason	592	0	844	0
WPI-2191	WPI-2190	PFO	Milford	18,281	6,818	195	195
WPI-2192	N/A	N/A	Milford	0	0	104	0
WPI-2193	WPI-2194	PSS/PEM	Milford	1,657	0	1,460	0
WPI-2198	N/A	N/A	Milford	0	0	1,072	0
WPI-2207	WPI-2206	PFO	Brookline	20,799	8,528	0	0
WPI-2214	WPI-2213	PFO	Brookline	12,248	4,671	0	0
WPI-2218	N/A	N/A	Brookline	0	0	2,172	1,598
BK-U-VP001	BK-M-W002	PFO	Brookline	126	0	0	0
WPI-2233	WPI-2232	PFO	Brookline	17,913	9,237	0	0
WPI-2244	N/A	N/A	Milford	0	0	1,189	616
WPI-2256	N/A	N/A	Milford	0	0	3	0
WPI-2370	WPI-2371	PSS	Litchfield	12,736	1,666	139	0

Tennessee Gas Pipeline
Company, L.L.C.
a Kinder Morgan company

Table 2.3-11
Potential Impacts to Wetlands Providing Vernal Pool Habitat in New Hampshire

| Vernal Pool ID | Wetland ID |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Table 2.3-11
Potential Impacts to Wetlands Providing Vernal Pool Habitat in New Hampshire

Vernal Pool ID	Wetland ID ${ }^{1}$	Wetland Type ${ }^{2}$	Municipality	Type of Impact to Surrounding Wetland (square feet)		Type of Impact to Vernal Pool (square feet)	
				Construction ${ }^{3}$	Operation ${ }^{4}$	Construction ${ }^{3}$	Operation ${ }^{5}$
WPI-3215	WPI-3213	PFO	Mason	48,787	11,761	0	0
WPI-3225	N/A	N/A	Mason	0	0	16	0
WPI-3233	WPI-3232	PFO/PSS	Mason	16,692	2,421	1,628	871
WPI-3236	WPI-3235	PFO	Mason	43,514	17,470	0	0
WPI-3238	N/A	N/A	Mason	0	0	142	0
WPI-3240	N/A	N/A	Mason	0	0	210	0

Source: The data sets utilized for wetlands and vernal pools is a combination of field surveyed data, photo interpreted LiDAR data, and publically available data. Field surveyed data was used wherever there was parcel access, photo interpreted LiDAR data was used where there was no parcel access, and publically available data was used where there was no parcel access and no photo interpreted aerial coverage. The publically available data for wetlands is from the USFWS - NWI (2014) and the publically available data for vernal pools is from MassGIS.
NOTE: If multiple Vernal Pools are listed for a single wetland, bold font is used to indicate which vernal pool is impacted by the construction/operation workspace. N/A - Not Applicable.
${ }^{1}$ Wetland ID in the form of NWI-XXX are USFWS-NWI wetlands, and WPI-XXX are photo interpreted wetlands. All other wetland ID's are surveyed wetlands.
${ }^{2}$ Wetland classification is in accordance with Cowardin et al 1979: PEM = Palustrine Emergent Wetland; PSS = Palustrine Scrub-Shrub; PFO = Palustrine Forested Wetland.
${ }^{3}$ Construction Acreage = all workspace during construction activities (TWS, ATWS, and permanent easement) that impacts wetlands or vernal pools.
${ }^{4}$ Operation Acreage (for wetlands) $=10$-foot wide corridor permanently maintained in herbaceous vegetative cover through PSS wetlands, and 30-foot wide corridor permanently maintained through PFO wetlands where trees taller than 15 feet that could damage the pipeline coating will be selectively cut and removed. The permanently maintained corridors represent a change in cover type from PFO to PSS and PEM or PSS to PEM; there is no operation impact on PEM wetlands, since there is no change in pre- and post-construction wetland vegetation cover type. Operational acreage represents areas of new permanent easement and does not include overlap with TGP's existing pipelines. The existing permanent easement for TGP's existing pipelines are not included in the operational wetland impacts.
${ }^{5}$ Operation Acreage (for vernal pools) = impacts to vernal pools within the new permanent easement. The existing permanent easement for TGP's existing pipelines are not included in the operational vernal pool impacts.

Tennessee Gas Pipeline
Company, L.L.C.
a Kinder Morgan company
U.S. Army Corps of Engineers Permit Northeast Energy Direct Project Section 3, Attachment 2 Dredge and/or Fill Materials Discharge (Blocks 20-23)

Table 2.3-12
Potential Impacts to Wetlands Providing Vernal Pool Habitat in Connecticut

Vernal Pool ID	Wetland ID ${ }^{1}$	Wetland Type ${ }^{2}$	Municipality	Type of Impact to Surrounding Wetland (square feet)		Type of Impact to Vernal Pool (square feet)	
				Construction ${ }^{3}$	Operation ${ }^{4}$	Construction ${ }^{3}$	Operation ${ }^{5}$
$\begin{aligned} & \text { BL-AC3-VP003, } \\ & \text { BL-AC3-VP004 } \end{aligned}$	BL-B-W001	PFO	Bloomfield	2,980	330	0	0
BL-AC3-VP005, BL-AC3-VP006, BL-AC3-VP007, BL-AC3-VP008, BL-AC3-VP009, BL-AC3-VP010, BL-AC3-VP011	BL-P-W001	PFO	Bloomfield	183,388	60,548	0	0
$\begin{aligned} & \text { BL-AC3-VP012, } \\ & \text { BL-AC3-VP013 } \end{aligned}$	BL-P-W005	PFO	Bloomfield	20,473	6,534	0	0
BL-AC3-VP014	NWI-1176	PFO	Bloomfield	94,090	34,412	0	0
$\begin{aligned} & \text { EG-AC3-VP001, } \\ & \text { EG-AC3-VP002, } \\ & \text { WI-AC3-VP001, } \\ & \text { WI-AC3-VP002, } \\ & \text { WI-AC3-VP003, } \\ & \text { WI-AC3-VP004 } \end{aligned}$	EG-P-W001	PFO	East Granby, Windsor	49,658	15,681	0	0

Table 2.3-12

Potential Impacts to Wetlands Providing Vernal Pool Habitat in Connecticut

| Vernal Pool ID | Wetland ID ${ }^{1}$ | Wetland
 Type 2 | Municipality | | Type of Impact to Surrounding
 Wetland
 (square feet) | Type of Impact to
 Vernal Pool
 (square feet) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Source: The data sets utilized for wetlands and vernal pools is a combination of field surveyed data, photo interpreted LiDAR data, and publically available data. Field surveyed data was used wherever there was parcel access, photo interpreted LiDAR data was used where there was no parcel access, and publically available data was used where there was no parcel access and no photo interpreted aerial coverage. The publically available data for wetlands is from the USFWS - NWI (2014) and the publically available data for vernal pools is from MassGIS.
${ }^{1}$ Wetland ID in the form of NWI-XXX are USFWS-NWI wetlands, and WPI-XXX are photo interpreted wetlands. All other wetland ID's are surveyed wetlands.
${ }_{3}^{2}$ Wetland classification is in accordance with Cowardin et al 1979: PEM = Palustrine Emergent Wetland; PSS = Palustrine Scrub-Shrub; PFO = Palustrine Forested Wetland.
${ }^{3}$ Construction Acreage = all workspace during construction activities (TWS, ATWS, and permanent easement) that impacts wetlands or vernal pools.
${ }^{4}$ Operation Acreage (for wetlands) $=10$-foot wide corridor permanently maintained in herbaceous vegetative cover through PSS wetlands, and 30 -foot wide corridor permanently maintained through PFO wetlands where trees taller than 15 feet that could damage the pipeline coating will be selectively cut and removed. The permanently maintained corridors represent a change in cover type from PFO to PSS and PEM or PSS to PEM; there is no operation impact on PEM wetlands, since there is no change in pre- and post-construction wetland vegetation cover type. Operational acreage represents areas of new permanent easement and does not include overlap with TGP's existing pipelines. The existing permanent easement for TGP's existing pipelines are not included in the operational wetland impacts.
${ }^{5}$ Operation Acreage (for vernal pools) = impacts to vernal pools within the new permanent easement. The existing permanent easement for TGP's existing pipelines are not included in the operational vernal pool impacts.

This page intentionally left blank

2.4 DESCRIPTION OF AVOIDANCE, MINIMIZATION AND COMPENSATION (BLOCK 23)

To minimize impacts on wetlands, Tennessee will implement the wetland construction BMPs described in Tennessee’s Project-specific Plan and Procedures and the Project-specific ECPs for Massachusetts, New Hampshire, and Connecticut which are included in Section 3, Appendices 4, 9, and 14 respectively. Workspace will be limited within wetlands to 75 feet in width, unless topographic conditions or other safety concerns require additional workspace. These site-specific areas will be identified and approved prior to construction. During operation of the Project, 10 feet of the permanent ROW, centered over the Project pipeline, will be maintained within wetlands as PEM wetland in accordance with Tennessee's requirements. In PFO wetlands, Tennessee will minimize tree clearing to the maximum extent practicable while maintaining safe construction conditions. Tree clearing within wetlands during operation of the pipeline will be limited to selectively clearing trees within 15 feet of the pipeline that may damage the pipeline coating.

Access within the ROW across wetlands will only be permitted where soils are non-saturated and able to support construction equipment at the time of crossing, during frozen soil conditions (for winter tree clearing), or with the use of timber mats to avoid rutting of the wetland soil. If mats are not used, the EI will record the pre- and post-construction soil density using a penetrometer to determine if the soil has been inadvertently compacted during construction or access.

Impacts to wetlands will be minimized by segregating up to the top 12 inches of soil from the area disturbed by trenching activities, except in super saturated areas or when soils are frozen. The topsoil will be restored to its original location immediately after backfilling is complete to preserve the existing seedbank and promote revegetation of the disturbed area. Seed mixes spread on the restored topsoil for temporary stabilization will include annual rye grass (Lolium multiflorum) at a rate of 40 pounds per acre (unless standing water is present) or appropriate mixes recommended by the landowner, state agency, or county conservation districts. The use of fertilizers will not be permitted. Mulch will only be used within wetlands as required by state agencies. Utilizing recommended seed mixes containing native plants will control the import of invasive and/or exotic plant species to the site. Erosion controls, including silt fence and/or staked hay bales, also will be installed to protect wetlands from sediment disturbed in adjacent uplands during construction. Post-construction, the disturbed area will be monitored to ensure long-term stabilization of the site.

Tennessee will protect and minimize potential adverse impacts to wetlands by expediting construction in and around wetlands, by restoring wetlands to their original configurations and contours, by segregating topsoil during excavation, by permanently stabilizing upland areas near wetlands as soon as possible after backfilling, by inspecting the ROW periodically during and after construction, and by repairing any erosion control or restoration features until permanent revegetation is successful. Tennessee will comply with the applicable permit conditions issued by federal, state, and local permitting agencies with respect to construction and operation of the Project facilities within wetlands.

Tennessee has prepared a Conceptual Mitigation Plan which describes the methods that will be implemented during construction of the NED Project to minimize, avoid, and mitigation for temporary and permanent impacts to wetlands and waterbodies. This Plan is included in Section 4, Appendix 4. The Plan includes state-specific compensatory mitigation programs to offset the resource impacts associated with the Project in
each state. Tennessee intends to expand upon this conceptual Plan, based on consultation with and comments from USACE, USEPA, state and local regulatory authorities, and other stakeholders in the compensatory wetland mitigation discussions. The final Compensatory Wetland Mitigation Plan will be developed to follow the USACE Compensatory Mitigation Guidance and Checklist Instructions contained therein. Tennessee will consult with the applicable federal and state regulatory agencies for guidance during development of the proposed mitigation measures and plans, and will incorporate specific recommendations of the agencies.

Tennessee anticipates that waterbodies not crossed using trenchless methods will be crossed by one of the open cut methods described in the Project-specific ECP for Massachusetts, New Hampshire, or Connecticut. To minimize temporary impacts on installation of the pipeline facilities, Tennessee will implement the waterbody construction procedures, erosion control measures, and post-construction restoration activities identified in the Procedures and incorporated into the Project-specific ECPs for Massachusetts, New Hampshire, or Connecticut. Tennessee's preferred method for restoration is the use of natural stream restoration techniques where flow velocities allow. In the case of proposed use of boulder, rip-rap, gabion, or other hard non-native stream bank erosion control restoration structures will require review and permit approval by the USACE and applicable state agencies prior to implementation. Descriptions of stream restoration techniques, including natural restoration techniques, are included in Tennessee's Project-specific ECP for each state.

Tennessee is proposing to provide a minimum depth of cover of five feet over the pipeline across waterbodies. The proposed cover will generally provide adequate scour protection from high flows and flooding. Prior to construction, field observations will be conducted to determine stability of the banks and appropriate bank stabilization techniques. Some crossings will only require replacement of natural streambed materials while others may require more extensive stabilization such as riprap stabilization, branch packing, brush mattresses, or an equivalent measure.

Tennessee will conduct post-construction field inspections along the pipeline corridor to ensure that disturbed locations are restored in accordance with the procedures detailed in the Project-specific Plan and Procedures and incorporated into the Project-specific ECP for Massachusetts, New Hampshire, or Connecticut.

Tennessee will attempt to minimize impacts to waterbodies present within the construction ROW but not directly crossed by the pipeline. If waterbodies cannot be avoided, impacts will be limited to minor disturbances associated with the installation of equipment crossings (where necessary) and/or potential impacts related to the clearing of adjacent vegetation. Waterbodies located within the construction ROW that cannot be avoided due to constraints associated with site access or construction workspace configurations, will be traversed via equipment crossings consisting of temporary equipment mats supported by temporary culverts or equipment bridges in accordance with the Project-specific Procedures, incorporated into the Project-specific ECP for Massachusetts, New Hampshire, or Connecticut. In locations where equipment-crossing impacts can be avoided, Tennessee will attempt to maintain a 15 -foot undisturbed vegetated buffer between the waterbodies and the construction workspace, except where maintaining this offset will result in greater impacts to wetlands or waterbodies. Sediment barriers will be installed, inspected, and maintained in accordance with the Project-specific Procedures, incorporated into the Project-specific ECP for Massachusetts, New Hampshire, or Connecticut, at the time of clearing, parallel to the banks of all waterbodies located within the construction ROW. To further minimize potential impacts

```
Tennessee Gas Pipeline
Company, L.L.C.
a Kinder Morgan company
to waterbodies during construction, Tennessee will implement the following setbacks (to the extent practicable):
- Cleared and grubbed material (e.g., slash, wood chips, stumps, etc.) will be stacked a minimum of 50 feet from the edge of a waterbody;
- Any excavated material from the trench line will be placed a minimum of 10 feet from the top of the waterbody bank;
- Equipment will be parked overnight and/or fueled at least 100 feet from a waterbody boundary;
- Hazardous materials, including chemicals, fuels, and lubricating oils, will not be stored within 100 feet of a waterbody boundary; and
- Concrete coating activities will not be performed within 100 feet of a waterbody boundary, unless the location is an existing industrial site designated for such use.

\section*{Section 3 - Attachment 3}

\section*{Property Owners Along the Northeast Energy}

District Project:
Property Containing Wetlands (Blocks 25 \& 26)

This page intentionally left blank

\section*{SUPPLEMENTAL INFORMATION TO ENG FORM 4345}

\section*{ATTACHMENT 3 - PROPERTY OWNERS ALONG THE PROJECT (BLOCKS 25 \& 26)}

\subsection*{3.1 ADDRESSES OF ADJOINING PROPERTY OWNERS, LESSEES, ETC WHOSE PROPERTY ADJOINS THE WATERBODY (BLOCK 25)}

A list of the names and mailing addresses of property owners, lessees, etc. whose property occurs along the NED Project in Massachusetts, New Hampshire, or Connecticut is provided in Section 4, Appendix 7.

\subsection*{3.2 LIST OF OTHER CERTIFICATIONS OR APPROVALS/DENIALS RECEIVED FROM OTHER FEDERAL, STATE, OR LOCAL AGENCIES FOR WORK DESCRIBED IN THIS APPLICATION (BLOCK 26)}

Table 3.2-1
Permits, Licenses, Approvals, and Certificates Required for Construction, Operation, and Maintenance of the Project
\begin{tabular}{|c|c|c|}
\hline Permit/Approval & Administering Agency & Status \\
\hline \multicolumn{3}{|c|}{Federal} \\
\hline Natural Gas Act, Certificate of Public Convenience and Necessity & Federal Energy Regulatory Commission & Certificate application submitted November 2015 \\
\hline \multirow{4}{*}{Section 404 and Section 10 Permits} & United States Army Corps of Engineers-Baltimore District & \multirow{4}{*}{Applications to be submitted by November 30, 2015} \\
\hline & United States Army Corps of Engineers-New York District & \\
\hline & United States Army Corps of Engineers- Buffalo District & \\
\hline & United States Army Corps of Engineers-New England District & \\
\hline
\end{tabular}

Table 3.2-1
Permits, Licenses, Approvals, and Certificates Required for Construction, Operation, and Maintenance of the Project
\begin{tabular}{|c|c|c|}
\hline Permit/Approval & Administering Agency & Status \\
\hline \multirow{3}{*}{Endangered Species Act Section 7 Clearance, Migratory Bird Treaty Act, Bald and Golden Eagle Protection Act} & United States Fish and WildlifePennsylvania Field Office & \multirow{3}{*}{Consultations in Progress} \\
\hline & United States Fish and WildlifeNew York Field Office & \\
\hline & United States Fish and WildlifeNew England Field Office & \\
\hline National Oceanic and Atmospheric Administration, National Marine Fisheries Service & Northeast Region & Consultation in Progress \\
\hline \multicolumn{3}{|c|}{Massachusetts} \\
\hline \begin{tabular}{l}
Massachusetts Environmental Policy Act Certificate \\
(301 CMR 11.00) Environmental Notification Form
\end{tabular} & Massachusetts Office of Energy and Environmental Affairs & Environmental Notification Form to be submitted in January 2016 \\
\hline Clean Water Act 401 Water Quality Certification & Massachusetts Department of Environmental ProtectionDivision of Environmental Permits & Application to be submitted by November 30, 2015 \\
\hline Chapter 91 License (Massachusetts Waterfront Act) & Massachusetts Department of Environmental Protection & Application to be submitted in November 2015 \\
\hline National Pollutant Discharge Elimination System Construction General Permit & United States Environmental Protection Agency & Application, if necessary, to be submitted in December 2016 \\
\hline Hydrostatic Testwater Discharge Permit & United States Environmental Protection Agency & Application to be submitted in December 2016 \\
\hline Nonconsumptive Water Use Form for Hydrostatic Water Withdrawal & Massachusetts Department of Environmental Protection & Application to be submitted in December 2016 \\
\hline Clean Air Act, Non-Major Comprehensive Plan Approval & Massachusetts Department of Environmental Protection & Application to be submitted in November 2015 \\
\hline State Species Consultation, Massachusetts Endangered Species Act & Massachusetts Division and Wildlife and Fisheries; Massachusetts Natural Heritage and Endangered Species Program & Consultations in progress \\
\hline Article 97 for Easements on State Lands & Massachusetts State Legislature and Governor & Legislation anticipated to be submitted in January 2017 \\
\hline
\end{tabular}

Table 3.2-1
Permits, Licenses, Approvals, and Certificates Required for Construction, Operation, and Maintenance of the Project
\begin{tabular}{|c|c|c|}
\hline Permit/Approval & Administering Agency & Status \\
\hline Section 106, National Historic Preservation Act Consultation & Massachusetts Historical Commission & Consultation in progress \\
\hline Massachusetts Wetland Protection Act & Massachusetts Town Conservation Commissions & Applications to be submitted in 2016 \\
\hline Approval to Construct & Massachusetts Energy Facilities Siting Board & Consultations beginning in November 2015 \\
\hline State Highway Access Permits & Massachusetts Department of Transportation & Applications to be submitted in December 2016 \\
\hline Required Local Permits and Approvals for Construction (e.g., Blasting, Road Crossing, Noise, Excavation) & Various Local Agencies & Applications to be submitted in 2016 \\
\hline \multicolumn{3}{|c|}{New Hampshire} \\
\hline New Hampshire Site Evaluation Committee & New Hampshire Certificate of Site and Facility & Application to be submitted in January 2016 \\
\hline Clean Water Act 401 Water Quality Certificate & New Hampshire Department of Environmental ServicesWatershed Management & Application to be submitted by November 30, 2015 \\
\hline Dredge and Fill Permit & New Hampshire Department of Environmental ServicesWetlands Bureau & Application to be submitted in January 2016 \\
\hline Shoreland Permit & New Hampshire Department of Environmental ServicesWetlands Bureau & Application to be submitted in January 2016 \\
\hline Clean Air Act, Temporary Permit & New Hampshire Department of Environmental Services- Air Resources Division & Application to be submitted in November 2015 \\
\hline \multirow[t]{2}{*}{State Species Consultations} & New Hampshire Department of Environmental Services- Natural Heritage Bureau & \multirow[t]{2}{*}{Consultations in progress} \\
\hline & New Hampshire Fish and Game Department & \\
\hline Section 106, National Historic Preservation Act Consultation & New Hampshire Division of Historical Resources & Consultation in progress \\
\hline National Pollutant Discharge Elimination System Construction General Permit & United States Environmental Protection Agency & Application, if necessary, to be submitted in December 2016 \\
\hline
\end{tabular}

Table 3.2-1
Permits, Licenses, Approvals, and Certificates Required for Construction, Operation, and Maintenance of the Project
\begin{tabular}{|c|c|c|}
\hline Permit/Approval & Administering Agency & Status \\
\hline Temporary Surface Water Discharge Permit & New Hampshire Department of Environmental Services-Water Division & Application to be submitted in January 2016 \\
\hline Alteration of Terrain & New Hampshire Department of Environmental ServicesAlteration of Terrain & Application to be submitted in January 2016 \\
\hline Highway Crossing Permits & New Hampshire Department of Transportation & Applications to be submitted in January 2016 \\
\hline Required Local Permits and Approvals for Construction (e.g., Blasting, Road Crossing, Noise, Excavation) & Various Local Agencies & Applications to be submitted in 2016 \\
\hline \multicolumn{3}{|c|}{Connecticut} \\
\hline Clean Water Act 401 Water Quality Certificate & Connecticut Department of Energy and Environmental Protection-Bureau of Water Protection & Application to be submitted by November 30, 2015 \\
\hline General Permit for Hydrostatic Discharges & Connecticut Department of Energy and Environmental Protection-Bureau of Water Protection & Application to be submitted in December 2016 \\
\hline General Permit for Stormwater and Dewatering Wastewater from Construction Sites & Connecticut Department of Energy and Environmental Protection-Bureau of Water Protection & Application to be submitted in December 2016 \\
\hline Water Diversion Permit & Connecticut Department of Energy and Environmental Protection-Bureau of Water Protection & Application to be submitted in November 2015 \\
\hline State Species Consultation & Connecticut Natural Diversity Database & Consultations in progress \\
\hline Inland Wetlands and Watercourses & Connecticut Town Inland Wetland Commissions & Applications to be submitted in January 2016 \\
\hline Section 106, National Historic Preservation Act Consultation & Connecticut State Historic Preservation Office & Consultation in progress \\
\hline Water Company Land Permit & Connecticut Department of Public Health Drinking Water Section & Application to be submitted by the MDC \\
\hline
\end{tabular}

Table 3.2-1
Permits, Licenses, Approvals, and Certificates Required for Construction, Operation, and Maintenance of the Project
\begin{tabular}{|c|c|c|}
\hline Permit/Approval & Administering Agency & Status \\
\hline Required Local Permits and & & \begin{tabular}{c} 
Applications to be submitted \\
in 2016
\end{tabular} \\
\begin{tabular}{c} 
Approval for Construction (e.g., \\
Blasting, Road Crossing, Noise, \\
Excavation)
\end{tabular} & Various Local Agencies & \begin{tabular}{c} 
(
\end{tabular} \\
\hline
\end{tabular}```


[^0]:    November 2015

[^1]:    November 2015

