November 25, 2015

Eugene J. Forbes, P.E., Director
New Hampshire Department of Environmental Services
NHDES Water Division
29 Hazen Drive; PO Box 95
Concord, NH 03302-0095

Subject: Clean Water Act Section 401 Application for Water Quality Certification Tennessee Gas Pipeline Company, L.L.C Northeast Energy Direct Project

Dear Mr. Forbes:

Tennessee Gas Pipeline Company, L.L.C ("Tennessee") hereby submits a Clean Water Act ("CWA") Section 401 Water Quality Certification ("WQC") application to the New Hampshire Department of Environmental Services ("NHDES") for the Northeast Energy Direct Project ("NED Project" or "Project"). Tennessee understands that all Federal Energy Regulatory Commission ("Commission" or "FERC") regulated proceedings require a standalone NHDES WQC.

Tennessee is filing an application seeking the issuance of a certificate of public convenience and necessity from FERC for the construction and operation of the proposed NED Project. Tennessee proposes to expand and modify its existing pipeline system in Pennsylvania, New York, Massachusetts, New Hampshire, and Connecticut. The NED Project is being developed to meet the increased demand in the Northeast United States ("U.S.") for transportation capacity of natural gas.

The proposed Project will include construction of approximately 420 miles of pipeline (new pipeline, looping pipeline segments, and laterals) in Pennsylvania, New York, Massachusetts, New Hampshire, and Connecticut. Additionally, as part of the Project, Tennessee proposes to construct new compressor and meter stations and modify existing compressor and meter stations along its proposed and existing pipeline system. There will also be construction of appurtenant facilities, including mainline valves ("MLVs"), cathodic protection, and pig facilities throughout the Project area.

Tennessee anticipates commencing construction activities in January 2017 and placing the facilities inservice by November 2018 (with the exception of one proposed pipeline looping segment in Connecticut, which will be placed in-service by November 2019).

Enclosed please find the necessary documentation for this WQC submission. Tennessee understands that this state certification will be used for a final federal authorization upon which the U.S. Army Corps of Engineers ("USACE") can rely in making a determination on the CWA Section 404 application.

Tennessee Gas Pipeline
Company, L.L.C. a Kinder Morgan company

Thank you in advance for your timely review of this submission. If you have any questions, please do not hesitate to contact me at 713-420-5360 or at Michael letson@kindermorgan.com.


Project Manager, Kinder Morgan
cc: Mr. Kevin Kotelly, USACE New England District
Mr.Tom Burack, NHDES Office of the Commissioner
Ms. Kelsey Vaughn, NHDES Drinking Water and Groundwater Bureau
Mr. Mitchell Locker, NHDES Groundwater Discharge Program
Mr. Barry Duff, Tennessee Gas Pipeline Company, L.L.C
Mr. Austin Malone, Tennessee Gas Pipeline Company, L.L.C
Ms. Danni Martin, Tennessee Gas Pipeline Company, L.L.C

ENCLOSURES WQC Documents

# NEW HAMPSHIRE DEPARTMENT OF ENVIORNMENTAL SERVICES CLEAN WATER ACT SECTION 401 WATER QUALITY CERTIFICATION FOR THE NORTHEAST ENERGY DIRECT PROJECT 

Submitted to:
New Hampshire Department of Environmental Services
29 Hazen Drive, PO Box 95, Concord, New Hampshire 03302-0095
Applicant:
Tennessee Gas Pipeline Company, L.L.C. 1001 Louisiana Street
Houston, TX 77002

November 2015

Appendix 12, U.S. Army Corps of Engineers Section 404 Wetland Permit Application

State of New Hampshire DEPARTMENT OF ENVIRONMENTAL SERVICES<br>Water Division<br>29 Hazen Drive, PO Box 95, Concord, New Hampshire 03302-0095<br>Attn: 401 Water Quality Certification Program Phone (603) 271-2457 Fax (603) 271-7894

## APPLICATION FOR 401 WATER QUALITY CERTIFICATION

```
Date of Request: November 2015
Date Request Received by DES:
```

This page intentionally left blank
Table of Contents
APPLICATION FOR 401 WATER QUALITY CERTIFICATION ..... 1
I. APPLICANT INFORMATION ..... 4
II. PROJECT INFORMATION ..... 4
III. ADDITIONAL SUBMITTAL INFORMATION ..... 5
Table 3.1- Proposed Pipeline Facilities in New Hampshire. ..... 13
Table 3.1- Proposed Pipeline Facilities in New Hampshire (continued) ..... 14
Table 3.2- Proposed Compressor Station Facility in New Hampshire ..... 15
Table 3.3-Proposed Meter Station Facilities in New Hampshire ..... 16
Table 3.4- Summary of Waterbodies Crossed by the Project in New Hampshire ..... 17
Table 3.5- Summary of Estimated Total Wetland Impact by Wetland Type in New Hampshire ..... 18
Table 3.6- Potential Sources and Discharge Sites of Hydrostatic Pressure Test Water in New Hampshire ..... 19
Table 3.7- Approximate Horizontal Directional Drill Water Usage in New Hampshire ..... 20
Figure 3.1 Proposed Project Alignment for the NED Project in New Hampshire ..... 22
Figure 3.2 Proposed Compressor Station for the NED Project in New Hampshire ..... 23
Figure 3.3 USGS Quadrangle Map of the NED Project in New Hampshire ..... 24
Attachment A Section 3: New England Section of the U.S. Army Corps of Engineers Section 404 Permit
Attachment B Wetlands and Waterbodies Associated with the Project in New Hampshire
Attachment C List of Abutters within the Project Area of New Hampshire
Attachment D Copy of a Waiver Request Submitted to NHDES

## LIST OF ACRONYMS and ABBREVIATIONS

| Acronym | Full Name |
| :--- | :--- |
| ATWS | additional temporary workspace |
| BMPs | Best Management Practices |
| Commission or FERC | Federal Energy Regulatory Commission |
| DES | Department of Environmental Services |
| EI | Environmental Inspector |
| HDD | Horizontal Directional Drilling |
| LAC | Local Advisory Committee |
| MAOP | maximum allowable operating pressure |
| MLV | mainline valve |
| MP | milepost |
| NED Project or Project | Northeast Energy Direct Project |
| NH | New Hampshire |
| NHDES | New Hampshire Department of Environmental Services |
| NH ECP | New Hampshire Environmental Construction Plan |
| PEM | palustrine emergent (wetlands) |
| PFO | palustrine forested (wetlands) |
| PSS | palustrine scrub-shrub (wetlands) |
| ROW | right-of-way |
| SEC | Site Evaluation Committee |
| TBD | To be determined |
| Tennessee or TGP | Tennessee Gas Pipeline Company, L.L.C. |
| TWS | temporary workspace |
| U.S. | United States |
| USACE | U.S. Army Corps of Engineers |
| USEPA | U.S. Environmental Protection Agency |
| USGS | U.S. Geological Survey |
| WCP | Water Conservation Plan |
|  |  |

## I. APPLICANT INFORMATION

Principal Place of Business of the Applicant
Houston, Texas
Mailing Address [Street, PO Box, RR, etc.]
1001 Louisiana Street
City/Town and Zip Code
Houston, Texas 77002
Telephone No.
Email Address
(713) 369-8975 Gina dorsey@kindermorgan.com

Name and Title of Signatory Official Responsible for the Activity for which Certification is Sought (e.g., President, Administrator)

Gina Dorsey, Director, EHS-Project Permitting

## II . PROJECT INFORMATION

## Name of Project:

Northeast Energy Direct Project ("Project" or "NED Project")
Name of Town and County that contains the Project
The NED Project will be constructed in 19 municipalities and three (3) counties across Southern New Hampshire as listed in Table 3.1 in Section III: Additional Submittal Information.

## Name of Receiving Water Body and Drainage Basin:

The receiving water bodies and drainage basins crossed by the Project are within the Connecticut River basin watershed, the Middle Connecticut sub-watershed, and the Miller sub-watershed. The waterbodies crossed by the Project are within the Merrimack River basin watershed, the Contoocook River sub-watershed, the Merrimack River sub-watershed, and the Nashua River sub-watershed. The waterbodies and wetlands crossed by the Project, as well as withdrawals and discharges from hydrostatic testing required by the Project are found in Section III: Additional Submittal Information.

Summary of Activity (e.g., construction, operation or other practice or action)

In New Hampshire, the Project will include the construction and operation of approximately 70 miles of 30-inch diameter pipeline, beginning at the Massachusetts/New Hampshire border in Winchester and extending east to the Massachusetts/New Hampshire border in Pelham (part of the "Wright to Dracut Pipeline Segment"); approximately 2.04 miles of a 20 -inch diameter pipeline lateral in Salem (as part of the "Haverhill Lateral"), and approximately 5.08 miles of a 12 -inch diameter pipeline lateral in Mason (as part of the "Fitchburg Lateral Extension"). There will also be one new natural gas-powered compressor station that will be constructed and operated in New Ipswich, New Hampshire and two meter stations, one located in Merrimack, New Hampshire and the other in Windham, New Hampshire. Details are included in Section III Additional Submittal Information.

## III. ADDITIONAL SUBMITTAL INFORMATION

Type of activity (e.g., construction, operation, other action such as water withdrawal) and the start and end dates of the activity.

Tennessee Gas Pipeline Company, L.L.C. ("Tennessee" or "TGP") has filed an application seeking the issuance of a certificate of Public Convenience and Necessity from the Federal Energy Regulatory Commission ("Commission" or "FERC") and will file with the New Hampshire Site Evaluation Committee ("SEC") for the construction and operation of the proposed NED Project. Tennessee proposes to expand and modify its existing pipeline system in Pennsylvania, New York, Massachusetts, New Hampshire, and Connecticut. The NED Project is being developed to meet the increased demand in the Northeast United States ("U.S.") for transportation capacity of natural gas. In New Hampshire, Tennessee proposes to commence construction activities in January 2017, in anticipation of placing the Project facilities in service by November 2018.

In New Hampshire, the Project will include the construction and operation of the following facilities:
Pipeline Facilities: The proposed Project mainline pipeline facilities in New Hampshire consist of approximately 70 miles of 30 -inch-diameter pipeline, beginning at the Massachusetts/New Hampshire border and extending east to the Massachusetts/New Hampshire border north of Dracut, Massachusetts (as part of the Wright to Dracut Pipeline Segment). Portions of the Wright to Dracut Pipeline Segment will be located in New York, Massachusetts, and New Hampshire. Approximately 57 miles of this new proposed mainline pipeline will be generally co-located with an existing utility corridor to the extent practicable and feasible, and in compliance with existing law.

The proposed Project pipeline facilities in New Hampshire also include portions of the 12 -inch Fitchburg Lateral Extension and the 20 -inch Haverhill Lateral. Approximately 2.04 miles of the 9.27 -mile Haverhill Lateral and 5.08 miles of the 13.97 -mile Fitchburg Lateral Extension will be located in New Hampshire. Approximately two (2) miles of the Haverhill Lateral will be generally co-located. The remaining portions of these laterals will be located within Massachusetts. The proposed pipeline facilities within New Hampshire are listed in Table 3.1.

> Aboveground and Appurtenant Facilities: Tennessee proposes to construct one new natural gas-powered compressor station operated in New Ipswich, New Hampshire (the Market Path Mid Station 4). Two meter stations are also proposed; one located in Merrimack, New Hampshire and one in Windham, New Hampshire. A list of aboveground facilities can be found in Tables 3.2 and 3.3. Construction of the Project will also include appurtenant facilities, including mainline valves ("MLVs"), cathodic protection, and pig facilities through the Project area.

Detailed information on the entire Project is available on the FERC website (www.ferc.gov) and specifically for environmental resources in the Northeast Energy Direct Project Docket No. PF14-22-000, Environmental Reports, Volume I and Volume II, Final Resource Reports and Appendices, November 2015.

Wetland impacts, including avoidance, minimization and mitigation measures, are discussed and addressed in detail in Section 3 of the United States Army Corps of Engineers ("USACE") New England District Section 404 Permit Application, included as Attachment A, and will be addressed in the New Hampshire Department of Environmental Services ("NHDES") Wetlands Permit Application. NED Project stormwater management for the Project mainline route and at the New Ipswich Compressor Station (Figure 3.2) will be addressed in the NHDES Alteration of Terrain Permit Application. Discharges to surface waters from pipeline hydrostatic testing will be addressed in the NHDES Application for Temporary Surface Water Discharge Permit, to be provided to NHDES as part of the Application to the NH Site Evaluation Committee ("SEC"). For this 401 Water Quality Certificate Application and for all of the other permits that are required, the Project-specific New Hampshire Environmental Construction Plan ("NH ECP"), included in the USACE Section 404 Permit Application, establishes Best Management Practices ("BMPs") for Project construction, monitoring and operation that will be strictly followed by Tennessee. These BMPs include:

- The NH ECP incorporates by reference (and expands upon) two technical FERC guidance documents dated May 2013, the Upland Erosion Control, Revegetation and Maintenance Plan "Plan") and the Wetland and Waterbody Construction and Mitigation Procedures ("Procedures"), that also apply to Project construction.
- Tennessee will have environmental inspectors ("EI") on site to observe Project construction and routinely report to FERC and state regulatory agencies. In accordance with FERC's Plan and Procedures, the NH ECP clearly specifies that the EIs will have peer status with all other activity inspectors and will have authority to stop activities that violate environmental conditions, permits or approvals.
- Erosion and sedimentation controls will be implemented and maintained throughout construction to prevent sediment discharge into wetlands, waterbodies and other sensitive environmental resources.
- Where a dry-ditch crossing method is not required, Tennessee, to the extent practicable, will complete all open cut crossing pipe installation activities, including trenching and backfilling, across "minor" waterbody crossings (less than ten feet wide) within 24 hours and "intermediate" waterbodies (ten feet to 100 feet wide) within 48 hours, unless blasting or other rock breaking measures are required. A site-specific crossing plan will be developed if site conditions will not allow for the crossings to be completed within the noted time restrictions. A site-specific plan also will be developed for "major" waterbody crossings ( 100 feet wide and greater).
- To minimize potential impacts, Tennessee will restore and revegetate disturbed areas after completion of backfilling, in accordance with the measures outlined in the ECP. Tennessee proposes to restore the construction right-of-way to original contours as closely as possible.
- Permanent re-establishment of final grades and drainage patterns, as well as restoration and revegetation measures, serve to minimize post-construction erosion by establishing a vegetative cover to protect the soil, and also by using structures which can divert or slow runoff and trap sediment. The Contractor will restore disturbed portions of the construction right-of-way ("ROW") and supplemental work areas, in accordance with the ECP, as approved by Tennessee, applicable regulatory agencies, and as agreed to in writing by the landowner.
- For the crossing of the Merrimack River between Merrimack and Litchfield (milepost 25.88 to 26.42), construction is anticipated to be by horizontal direction drilling ("HDD"). HDD is an advanced, controllable trenchless boring method of installing a pipeline in a shallow arc along a predetermined bore path in order to minimize direct impacts to sensitive resource areas. Estimated water withdrawal associated with HDD is listed in Table 3.7.
- For each crossing of other, smaller waterbodies, the proposed BMPs to ensure compliance with water quality standards are specified in the NH ECP included as part of the Section 404 Permit provided in Attachment A. Standard controls will include sediment barriers at the limit of clearing and parallel to the banks of waterbodies located within the ROW.
- Tennessee will implement setbacks from surface waters specified in the NH ECP for certain activities such as the stacking of cleared and grubbed material, temporary placement of excavated material, parking and refueling of equipment, and the storage and use of hazardous materials.
- Tennessee will implement BMPs designed to avoid, reduce and/or mitigate potential impacts on groundwater during construction and operation. For example, BMPs for refueling and storage of hazardous substances will minimize risk of accidental spillage.
- Hydrostatic testing will be performed on all pipeline segments prior to placement into service using water sources identified in Table 3.6 and as described in the NH ECP. Test water will be withdrawn from the specified local water bodies. Withdrawal and discharge will occur under state and federal permit and notification requirements. Tennessee will also comply with all applicable NHDES and U.S. Environmental Protection Agency ("USEPA") requirements for water withdrawals and discharges for hydrostatic testing to ensure compliance with surface water quality standards.

In addition, post-construction maintenance of all waterbody and wetlands crossings will comply with the NH ECP, the FERC Plan and Procedures and other state and federal requirements to ensure compliance with water quality standards. Tennessee will conduct follow-up inspections of disturbed areas after the first and second growing seasons (normally three to nine months and 15 to 21 days after seeding) to determine the success of revegetation in upland and agricultural areas. Monitoring in wetland areas will be completed annually for the first three years after construction or until wetland revegetation is successful. At the end of three years after construction, a report will be filed with FERC and the SEC that characterizes the status of the wetland revegetation efforts.

The NH ECP also specifies routine ROW maintenance procedures to ensure pipeline access while reasonably ensuring minimum impacts to wetlands and water quality. These will include:

- Routine vegetation maintenance clearing will typically be performed on a frequency of approximately once every three years within specified corridor limits.
- Trees within 15 feet of the pipeline with roots that could compromise the integrity of pipeline coating may be selectively cut and removed from the permanent ROW.
- Herbicides will not be used within 100 feet of a wetland or waterbody unless specified by a regulatory agency and approved by land-owner.
- In wetland areas, routine vegetation cutting/trimming will be limited to a 10 -foot-wide area centered on the pipeline.
- Adjacent to waterbodies, vegetation maintenance clearing will be limited to allow a riparian strip of at least 25 feet wide from the high water mark to permanently revegetate with native plant species across the entire construction ROW. However, to facilitate periodic corrosion/leak surveys, a corridor centered on the pipeline and up to 10 feet wide may be cleared at a frequency necessary to maintain the 10 -foot corridor in an herbaceous state. In addition, trees that are located within 15 feet of the pipeline that have roots that could compromise the integrity of the pipeline coating may be cut and removed from the permanent ROW.

In summary, Tennessee's construction, post-construction and maintenance procedures will reasonably assure avoidance, minimization or mitigation of potential adverse impacts from Project operation on water quality.

## The characteristics of the activity; whether the activity is associated with a discharge and/or water withdrawal and whether the discharge and/or withdrawal is proposed or occurring.

As described above, this Application for 401 Water Quality Certification is for construction of new natural gas pipeline facilities and related aboveground and appurtenant facilities. Construction of the Project inherently includes the risk of discharge of sediment to waterbodies and wetlands if not properly controlled. However, Tennessee has established BMPs for the Project in order to avoid, minimize and/or mitigate impacts to the extent practicable, as outlined in the NH ECP. During construction, water withdrawal will be required for HDD operations. In addition, prior to placing the pipeline into operation, the installed pipeline will undergo hydrostatic testing that will require surface water withdrawal and discharge. These activities are discussed below.

Construction of Pipeline and Aboveground Structures: For construction of the pipeline and aboveground structures, the NH ECP will be incorporated into the construction contract. The NH ECP provides specifications for the installation, implementation, and maintenance of the BMPs while allowing for flexibility in the selection of specific BMPs based on site-specific conditions. The NH ECP is designed to avoid, minimize and/or mitigate the potential impacts to the surrounding environment before, during, and after construction of the Project. It outlines mitigation, monitoring and maintenance procedures that include BMPs that Tennessee and its construction
contractors will implement to minimize erosion of disturbed soils and transportation of sediment outside of the construction ROW and into environmentally sensitive areas (e.g., wetlands, streams). The BMPs provide standards for the protection of environmentally sensitive areas while accounting for the significantly varying field conditions that will be encountered during construction of the Project.

Water Withdrawals and Discharges: Water withdrawal is proposed during construction for use associated with HDD activities and is presented in Table 3.7. Water withdrawals and discharges are also necessary for hydrostatic testing of the installed pipeline. Hydrostatic testing of the new pipeline will result in the withdrawal and discharge of water from water sources identified in Table 3.6. An Application for Temporary Surface Water Discharge will be provided to NHDES as part of the application to the NH SEC.

Hydrostatic testing will be performed in multiple sections along the Project area. Individual sections will be selected based on the length of the section and/or elevation change of the terrain. The proposed locations for withdrawal and discharge are presented in Table 3.6. Hydrostatic testing is used to verify the structural integrity of the constructed pipeline segments. Integrity is tested by capping pipeline segments with test manifolds and filling the capped segments with water. The water is then pressurized to at or above the maximum allowable operating pressure ("MAOP") of the pipeline and held for eight hours (four hours for pre-tested, pre-fabricated units or short visible sections), then discharged to well-vegetated upland areas. All hydrostatic testing activities will be performed in compliance with applicable regulatory requirements.

Environmental impacts associated with the withdrawal and discharge of water will be minimized by:

- Withdrawing water from either state-designated Class A waters, waterbodies which provide habitat for federally listed threatened or endangered species or waterbodies designated as public water supplies for testing procedures will not occur unless written permission is obtained from the applicable regulatory agency.
- Inspection of all welds and hydrostatic testing of the pipeline sections will be performed before HDD installation under waterbodies or wetlands.
- Locating hydrostatic test manifolds outside of wetlands and riparian areas as practicable.
- Withdrawing from and discharging to water sources will comply with NHDES and USEPA requirements.
- Screening the water inlet to avoid intake of fish.
- Maintaining adequate stream flow rates during withdrawal activities to protect aquatic life, provide for all existing waterbody uses, and downstream withdrawals of water by existing users.
- Anchoring the discharge pipe for safety.
- Discharging test water into a suitable receiving body of water (as approved), across a well-vegetated area or filtered through a filter bag or other erosion control barrier.
- Discharging test water against a splash plate or other energy dissipating device approved by the EI to aerate, slow, and disperse the flow.
- Controlling the rate of discharge at a level that appropriately prevents flooding or erosion.

The potential for water quality impacts by erosion and stream crossings will be mitigated by the construction techniques described in detail in the NH ECP.

In summary, the proposed measures for NED Project construction and hydrostatic testing will reasonably ensure compliance with state surface water quality standards and specifically the requirements of Env-Wq 1700.

The existing and designated use(s) that are potentially affected by the proposed activities. (Designated Uses are listed in the DES Consolidated Assessment and Listing Methodology).

Discharges to a surface water resource are subject to NHDES surface water quality standards (Env-Wq 1700) and should ensure protection of the following designated uses:
-Aquatic Life: Waters that provide suitable chemical and physical conditions for supporting a balanced, integrated and adaptive community of aquatic organisms.
-Fish Consumption: Waters that support fish free from contamination at levels that pose a human health risk to consumers.
-Drinking Water Supply After Adequate Treatment: Waters that, with adequate treatment, will be suitable for human intake and meet state and federal drinking water regulations.
-Primary Contact Recreation: Waters suitable for recreational uses that require or are likely to result in full body contact and/or incidental ingestion of water.
-Secondary Contact Recreation: Waters that support recreational uses that involve minor contact with the water.
-Wildlife: Waters that provide suitable physical and chemical conditions in the water and the riparian corridor to support wildlife as well as aquatic life.

Project impacts on each of these designated uses is addressed below.

- Aquatic life will be reasonably protected by the application of BMPs and other construction techniques described in the NH ECP. The NH ECP specifies crossing methods for each waterbody and wetland; wetlands and waterbodies associated with the Project are included in Table 3.8 and Table 3.9 in Attachment B, and will reasonably ensure compliance with Env-Wq 1700 that no significant aquatic life impairments will occur.
- No Class A waters or other surface waters used for drinking water supplies will be impacted by the Project.
- Fish consumption will not be impacted by the Project because no contamination levels will be discharged that could cause either chronic or acute human health risk to consumers. Rather, there could ultimately be reductions in mercury in impaired waters remote from the Project to the extent that natural gas from the NED Project displaces power generated by coal that contains mercury.
- No negative impacts to water will occur that would affect primary and secondary contact recreation.
- Direct impacts to wildlife that are temporary in nature are associated with the active construction period of the Project. During construction, wildlife may be temporarily displaced or stressed when construction activities occur within a portion of their home range, causing animals to relocate away from the Project area. Long-term direct impacts to wildlife habitat due to construction and operation of the proposed Project will be limited to clearing of upland and wetland forests required for temporary workspace ("TWS") and new permanent easement. Areas cleared for TWS will naturally revegetate within one to two growing seasons and provide additional open land habitat (i.e., shrubland and old field). These areas will not be maintained post-construction, and will eventually revert back to forested habitat over time. Following a relatively short period of regeneration within the TWS and permanently maintained ROWs, there will be more terrestrial grassland and shrubland habitats that provide important cover and a greater diversity and density of food sources for a different complex of wildlife species. Tennessee and its construction contractor will strive to minimize impacts on wildlife by expediting construction to the greatest extent possible. Conversion of forest and shrubland habitats will be minimized by complying with the NH ECP. Restoration and revegetation will occur after construction has been completed, and the restored areas will be closely monitored until final site stabilization and re-vegetation have been achieved.


## The provision(s) of surface water quality standards (Env-Wq 1700) that are applicable to the designated uses affected by the proposed activities.

Withdrawals and discharges are proposed for hydrostatic testing of the pipeline, as presented in Table 3.6. During construction, water withdrawal is proposed for use associated with the HDD as presented in Table 3.7. The following provisions of Env-Wq 1700 are generally applicable to the proposed activities: Env-Wq 1703, Water Quality Standards; Env-Wq 1705 Flow Standards; Env-Wq 1707, Mixing Zones and Env-Wq 1708, Designated Uses.

The potential withdrawal sources and locations of hydrostatic pressure test water and water used for HDD in New Hampshire are presented in Table 3.6 and Table 3.7. Withdrawals will be performed to ensure that minimum flows are maintained in the streams and ponds and that the aquatic habitat is not impaired. Also, the proposed water discharges associated with hydrostatic pressure tests will only occur after treatment by BMPs by overland flow. This will ensure that surface water quality standards will be maintained. No significant turbidity, suspended solids, color, pH or temperature effects should occur. Since discharge after overland flow will generally be to the water body from which withdrawal occurred, with no change other than treatment by BMPs, the discharged water is likely to be of equal or better quality than the surface water body.

For construction of the pipeline and aboveground structures, the NH ECP will be included as part of the construction contract to ensure compliance with the requirements of Env-Wq 1700, particularly with respect to sediment and erosion controls. Erosion control devices, including at or adjacent to waterbodies, will be installed, maintained and inspected to ensure proper working condition as required by the NH ECP and applicable permit conditions.

Therefore, Project construction, water withdrawals and discharges would comply with the applicable provisions of Env-Wq 1700 and not affect any designated uses.

## A pollutant loading analysis to show the difference between pre- development and post-development pollutant loads for a typical year. The objective of the loading analysis is to show post-development pollutant loads do not exceed pre-development pollutant loads. Loading analysis guidance and a simple spreadsheet model will be provided by DES. The loading analysis will be used to determine appropriate stormwater management measures, which must be effectively designed, installed, and maintained to ensure compliance with surface water quality standards.

A pollutant loading analysis is only required for the New Ipswich Compressor Station site; this analysis will be included as part of the NHDES Alteration of Terrain Permit application. The stormwater management BMPs incorporated into construction of the New Ipswich Compressor Station will reasonably ensure compliance with New Hampshire surface water quality standards and Env-Wq 1700.

## A description of any other aspect of the activity that would affect the chemical composition, temperature, flow, or physical aquatic habitat of the surface water.

There are no other aspects of the NED Project that would negatively affect the chemical composition, temperature, flow or physical aquatic habitat of the surface water. The wetlands compensatory mitigation plan to be included in the NHDES Wetlands Permit Application, when fully implemented, is likely to have a long term positive impact on aquatic habitat by contribution to land conservation efforts or wetland restoration in the Project watersheds.

## An original or color copy/reproduction of a United States Geological Survey Quadrangle (USGS) Map that clearly shows the location of the activity and all potential discharge points.

The location of the activity and potential discharge points are shown on USGS Quadrangle Maps in Figures 3.3, 1 through 14 of 14.

A copy of the final complete federal permit application or federal license application, including the federal permit, license, or project number.

This application for a 401 Water Quality Certificate also has been incorporated into the Project-wide USACE Section 404 Permit Application. The USACE Section 404 Permit Application for the New England District is included as Attachment A.

A copy of the DES wetlands permit (RSA 482-A:3), if necessary.
The NHDES Wetlands Permit will be provided to NHDES as part of the application to the NH SEC.
A copy of the DES alteration of terrain permit (RSA 485-A:17), if necessary.
The NHDES Alteration of Terrain Permit will be provided to NHDES as part of the application to the NH SEC.
The name(s) and address(es) of adjoining riparian or littoral abutters.
The names and addresses of adjoining abutters is included as Attachment C .
A plan showing the proposed activities to scale including:

- The location(s) and boundaries of the activities.
- The location(s), dimension(s), and type(s) of any existing and/or proposed structures.
- The location(s), name(s), identification number(s), and extent of all potentially affected surface water bodies, including wetlands.

USGS maps of the NED Project route in New Hampshire are included in Figures 3.3, 1 through 14 of 14. More detailed alignment sheets are included in the USACE Section 404 Permit Application for the Project. The final NHDES Alteration of Terrain Permit Application will include plans and other details on the proposed New Ipswich Compressor Station.

Potentially affected waterbodies and wetlands are listed in Tables 3.8 and 3.9 and included in Attachment B. These tables include Project segments and mileposts that serve to locate these resources on the USGS maps (Figures 3.3, 1 through 14 of 14).

For projects that involve a new surface water withdrawal, provide the following:

- A copy of the water conservation plan (WCP) submitted to the NHDES Water Conservation Program and the status of NHDES approval, or
- A copy of a waiver approved by the NHDES Water Conservation Program that waives the requirement to submit a WCP prior to or in conjunction with the application for water quality certification.

A copy of the Waiver Request submitted to the NHDES Water Conservation Program is included as Attachment D.
If the project is located within $1 / 4$ (one quarter) mile of a designated river, as defined under RSA 483 (the Rivers Management and Protection Act), provide documentation showing that the Local River Management Advisory Committee (LAC) has been provided with a copy of this complete application.

A copy of the complete application will be provided to the Lower Merrimack River Local Advisory Committee and the Souhegan River Local Advisory Committee as part of the application to the NH SEC.
III. Additional Submittal Information (continued)

## Tables, Figures and Attachments

This page intentionally left blank

Table 3.1- Proposed Pipeline Facilities in New Hampshire

| Table 3.1 <br> Proposed Pipeline Facilities in New Hampshire |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Facility Name | Diameter (inches) | County | Town | Segment ${ }^{1}$ | Milepost |  | Length (miles) |
|  |  |  |  |  | Begin | End |  |
| Wright to Dracut Pipeline Segment | 30 | Cheshire | Winchester | I | 0.00 | 4.81 | 4.81 |
| Wright to Dracut Pipeline Segment | 30 | Cheshire | Richmond | I | 4.81 | 11.48 | 6.67 |
| Wright to Dracut Pipeline Segment | 30 | Cheshire | Troy | I | 11.48 | 12.59 | 1.11 |
| Wright to Dracut Pipeline Segment | 30 | Cheshire | Fitzwilliam | I | 12.59 | 12.73 | 0.14 |
| Wright to Dracut Pipeline Segment | 30 | Cheshire | Troy | I | 12.73 | 13.13 | 0.40 |
| Wright to Dracut Pipeline Segment | 30 | Cheshire | Fitzwilliam | I | 13.13 | 14.13 | 1.00 |
| Wright to Dracut Pipeline Segment | 30 | Cheshire | Troy | I | 14.13 | 14.21 | 0.08 |
| Wright to Dracut Pipeline Segment | 30 | Cheshire | Fitzwilliam | I | 14.21 | 19.78 | 5.57 |
| Wright to Dracut Pipeline Segment | 30 | Cheshire | Rindge | I | 19.78 | 28.76 | 8.98 |
| Wright to Dracut Pipeline Segment | 30 | Hillsborough | New Ipswich | J | 0.00 | 6.33 | 6.33 |
| Wright to Dracut Pipeline Segment | 30 | Hillsborough | Greenville | J | 6.33 | 8.01 | 1.68 |
| Wright to Dracut Pipeline Segment | 30 | Hillsborough | Mason | J | 8.01 | 11.92 | 3.91 |
| Wright to Dracut Pipeline Segment | 30 | Hillsborough | Milford | J | 11.92 | 13.10 | 1.18 |
| Wright to Dracut Pipeline Segment | 30 | Hillsborough | Brookline | J | 13.10 | 15.83 | 2.73 |
| Wright to Dracut Pipeline Segment | 30 | Hillsborough | Milford | J | 15.83 | 17.75 | 1.92 |
| Wright to Dracut Pipeline Segment | 30 | Hillsborough | Amherst | J | 17.75 | 20.60 | 2.85 |
| Wright to Dracut Pipeline Segment | 30 | Hillsborough | Hollis | J | 20.60 | 20.87 | 0.27 |

${ }^{1}$ Each segment is associated with its own set of MPs beginning at MP 0.00 .
Source: Northeast Energy Direct Project, Attachment A, Environmental Construction Plan for New Hampshire, Table 2.1-1.

Table 3.1- Proposed Pipeline Facilities in New Hampshire (continued)

| Table 3.1 (cont.) <br> Proposed Pipeline Facilities in New Hampshire |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Facility Name | Diameter (inches) | County | Town | Segment ${ }^{1}$ | Milepost |  | Length (miles) |
|  |  |  |  |  | Begin | End |  |
| Wright to Dracut Pipeline Segment | 30 | Hillsborough | Merrimack | J | 20.87 | 26.19 | 5.32 |
| Wright to Dracut Pipeline Segment | 30 | Hillsborough | Litchfield | J | 26.19 | 28.85 | 2.66 |
| Wright to Dracut Pipeline Segment | 30 | Rockingham | Londonderry | J | 28.85 | 31.42 | 2.57 |
| Wright to Dracut Pipeline Segment | 30 | Hillsborough | Hudson | J | 31.42 | 33.89 | 2.47 |
| Wright to Dracut Pipeline Segment | 30 | Rockingham | Windham | J | 33.89 | 36.16 | 2.27 |
| Wright to Dracut Pipeline Segment | 30 | Hillsborough | Pelham | J | 36.16 | 41.69 | 5.53 |
| Haverhill Lateral | 20 | Rockingham | Salem | P | 6.95 | 8.99 | 2.04 |
| Fitchburg Lateral Extension | 12 | Hillsborough | Mason | Q | 0.00 | 5.08 | 5.08 |
|  |  |  |  |  |  | Total | 77.57 |

[^0]Source: Northeast Energy Direct Project, Attachment A, Environmental Construction Plan for New Hampshire, Table 2.1-1.
III. Additional Submittal Information (continued)

REQUEST FOR 401 WATER QUALITY CERTIFICATION
Table 3.2- Proposed Compressor Station Facility in New Hampshire

| Table 3.2 <br> Proposed Compressor Station Facility in New Hampshire |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Facility Name | Associated Pipeline ${ }^{1}$ | County | Town | Segment ${ }^{2}$ | Milepost ${ }^{3}$ | New / <br> Modified | New <br> Horsepower (horsepower) | Area <br> Required for Construction (acres) ${ }^{4}$ | Area <br> Required for Operation (acres) ${ }^{5}$ |
| Market Path Mid Station 4 | Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 5.81 | New | 41,000 | 32.61 | 21.12 |
| Total |  |  |  |  |  |  | 41,000 | 32.61 | 21.12 |

[^1]${ }^{2}$ Each segment is associated with its own set of mileposts beginning at MP 0.00 .
${ }^{3}$ For new compressor stations, the MPs provided reflect the approximate location of properties optioned by Tennessee
${ }^{4}$ New compressor stations will require new permanent workspace for operation and temporary workspace during construction
${ }^{5}$ Area Required for Operation = new permanent workspace required for operation. New parcels purchased for new compressor station sites will vary based on available land.

[^2]Table 3.3-Proposed Meter Station Facilities in New Hampshire

| Table 3.3 <br> Proposed Meter Station Facilities in New Hampshire |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Facility Name | Associated Pipeline ${ }^{1}$ | County | Town | Segment ${ }^{2}$ | Milepost ${ }^{3}$ | New / Modified | New Capacity (dekatherms per day) | Area Required for Construction (acres) ${ }^{4}$ | Area <br> Required for <br> Operation (acres) ${ }^{5}$ |
| Merrimack | Wright to Dracut Pipeline Segment | Hillsborough | Merrimack | J | 25.70 | New | 100,000 | 0.78 | 0.78 |
| 200-2 Check | Wright to Dracut Pipeline Segment | Rockingham | Windham | J | 34.45 | New | 500,000 | 1.31 | 0.90 |
| Total |  |  |  |  |  |  |  | 2.09 | 1.68 |

1 This column indicates the associated pipeline for each meter station.
2 Each segment is associated with its own set of MPs beginning at MP 0.00 .
3 Mileposts are provided for meter stations and refer to the nearest MPs of the meter stations' associated segment.
4 New meter stations will require new permanent workspace for operation and temporary workspace during construction.
5 Area Required for Operation = new permanent workspace required for operation. Acreage for permanent driveways required for new meter stations is included.
Source: Northeast Energy Direct Project, Attachment A, Environmental Construction Plan for New Hampshire, Table 2.1-3.

Table 3.4- Summary of Waterbodies Crossed by the Project in New Hampshire

| Table 3.4 <br> Summary of Waterbodies Crossed by the Project in New Hampshire |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Facility Name | Perennial Stream Crossings | Intermittent Stream Crossings | Ephemeral Stream Crossings | Unknown/Other Crossings ${ }^{1}$ | Crossing Length (feet) ${ }^{2}$ |
| Wright to Dracut Pipeline Segment | 54 | 86 | 3 | 11 | 3,118 |
| Haverhill Lateral | 4 | 2 | 0 | 1 | 163 |
| Fitchburg Lateral Extension | 10 | 10 | 0 | 0 | 2,048 |
| Aboveground Facilities | 0 | 1 | 0 | 0 | N/A |
| Contractor Yards | 4 | 2 | 0 | 9 | N/A |
| Access Roads | 8 | 5 | 0 | 0 | 39 |
| Total |  |  |  |  | 5,368 |

## Source: USGS 2015.

${ }^{1}$ Includes the following: Unknown; $\mathrm{NF}=$ No Flow; AP = Artificial Path; $\mathrm{C}=$ Connector; $\mathrm{R}=$ Reservoir; RUB = Riverine Unconsolidated Bottom; $\mathrm{L}=\mathrm{Lake}$
 parcel that will be avoided through final design of the aboveground facility or contractor yard. Access to aboveground facilities that require linear crossings of streams is accounted for in the AR line item and crossing length.

Source: Northeast Energy Direct Project, Attachment A, Environmental Construction Plan for New Hampshire Table 6.0-1.

Table 3.5- Summary of Estimated Total Wetland Impact by Wetland Type in New Hampshire

| Table 3.5 <br> Summary of Estimated Total Wetland Impact by Wetland Type in New Hampshire |  |  |
| :---: | :---: | :---: |
|  | Estimated Wetlands Impacts |  |
| Wetland Type ${ }^{3}$ | Construction ${ }^{1}$ | Operation ${ }^{2}$ |
| Palustrine Emergent | 26.29 | 0 |
| Palustrine Forested | 66.93 | 20.85 |
| Palustrine Scrub-Shrub | 48.86 | 3.96 |
| Other Wetlands | 12.25 | 0 |
| Total | 154.33 | 24.81 |

Source: The data sets utilized for wetlands is a combination of field surveyed data, photo interpreted LiDAR data, and publicly available data. Field surveyed data was used wherever there was parcel access, photo interpreted LiDAR data was used where there was no parcel access, and publicly available data was used where there was no parcel access and no photo interpreted aerial coverage. The publicly available data is from the USFWS-NWI (2014).
${ }^{1}$ Construction Acreage $=$ all workspace during construction activities (TWS, ATWS, and permanent easement) that impacts wetlands. Workspace was laid out to maintain a 75 foot construction ROW through wetlands. Any construction ROW impacts greater than 75 feet are detailed in the NH ECP
${ }^{2}$ Operation Acreage $=10$-foot wide corridor permanently maintained in herbaceous vegetative cover through PSS wetlands, and 30-foot wide corridor permanently maintained through PFO wetlands where trees taller than 15 feet that could damage the pipeline coating will be selectively cut and removed. The permanently maintained corridors represent a change in cover type from PFO to PSS and PEM or PSS to PEM; there is no operation impact on PEM wetlands, since there is no change in pre- and post- construction wetland vegetation cover type. Operational acreage represents areas of new permanent easement and does not include overland with TGP's existing pipelines. The existing permanent easement for TGP's existing pipelines is not included in the operational wetlands impacts.
${ }^{3}$ Wetland type not classified by NWI as PEM, PSS, or PFO.
Source: Northeast Energy Direct Project, Attachment A, Environmental Construction Plan for New Hampshire, Table 7.0-1

Table 3.6- Potential Sources and Discharge Sites of Hydrostatic Pressure Test Water in New Hampshire

| Table 3.6 <br> Potential Sources and Discharge Sites of Hydrostatic Pressure Test Water in New Hampshire |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Potential Water Source ${ }^{1}$ | Latitude/ Longitude | Segment ${ }^{\mathbf{2}}$ | Approximate Milepost | Fill / Discharge Location (milepost) | Water Quantity (gallons) |
| Sandy Pond Richmond, NH | $\begin{aligned} & \hline \hline 42^{\circ} 46^{\prime} 58.55^{\prime \prime} \mathrm{N} / \\ & 72^{\circ} 17^{\prime} 31.01^{\prime \prime} \mathrm{W} \\ & \hline \end{aligned}$ | I | 8.10 | 8.10 | 368,714 |
| South Ashuelot River Troy, NH | $\begin{aligned} & 42^{\circ} 47^{\prime} 56.99^{\prime \prime} \mathrm{N} / \\ & 72^{\circ} 11^{\prime} 40.48^{\prime \prime} \mathrm{W} \end{aligned}$ | I | 13.20 | 13.20 | 191,004 |
| Bowker Pond Fitzwilliam, NH | $\begin{aligned} & 42^{\circ} 48^{\prime} 16.97 " \mathrm{~N} / \\ & 72^{\circ} 10^{\prime} 13.94 " \mathrm{~W} \end{aligned}$ | I | 14.50 | 14.50 | 444,131 |
| Unnamed Water Source Rindge, NH | $\begin{aligned} & 42^{\circ} 44^{\prime} 51.07^{\prime \prime} \mathrm{N} / \\ & 71^{\circ} 59^{\prime} 07.10^{\prime \prime} \mathrm{W} \\ & \hline \end{aligned}$ | I | 26.40 | 26.40 | 744,287 |
| Unnamed Water Source New Ipswich, NH | $\begin{aligned} & 42^{\circ} 46^{\prime} 55.17^{\prime \prime} \mathrm{N} / \\ & 71^{\circ} 50^{\prime} 31.81^{\prime} \mathrm{W} \\ & \hline \end{aligned}$ | J | 5.20 | 5.20 | 2,982,347 |
| Souhegan River ${ }^{3}$ Greenville, NH | $\begin{aligned} & 42^{\circ} 47^{\prime} 12.67^{\prime \prime} \mathrm{N} / \\ & 71^{\circ} 48^{\prime} 02.11^{\prime \prime} \mathrm{W} \\ & \hline \end{aligned}$ | J | 7.40 | 7.40 | 958,185 |
| Merrimack River ${ }^{4}$ <br> Litchfield, NH | $\begin{aligned} & \hline 42^{\circ} 49^{\prime} 48.31^{\prime \prime} \mathrm{N} / \\ & 71^{\circ} 28^{\prime} 34.12^{\prime \prime} \mathrm{W} \end{aligned}$ | J | 26.40 | 26.40 | 5,152,530 |
| Chase Brook Londonderry, NH | $\begin{aligned} & 42^{\circ} 49^{\prime} 27.54^{\prime \prime} \mathrm{N} / \\ & 71^{\circ} 23^{\prime} 42.25^{\prime \prime} \mathrm{W} \end{aligned}$ | J | 31.40 | 31.40 | 100,000 |
| New Hampshire Total |  |  |  |  | 10,941,198 |

[^3]Source: Northeast Energy Direct Project, Attachment A, Environmental Construction Plan for New Hampshire, Table 5.29-1.

Table 3.7- Approximate Horizontal Directional Drill Water Usage in New Hampshire

| Table 3.7 <br> Approximate Horizontal Directional Drill Water Usage in New Hampshire |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| HDD ID ${ }^{1}$ | Potential Water Source | Segment ${ }^{2}$ | Approximate Milepost | Water Quantity ${ }^{3}$ (gallons) |
| HDD-12 | Merrimack River | J | 26.19 | 1,150,000 |
|  |  |  | Total | 1,150,000 |

${ }^{1}$ HDD IDs are identified on the Horizontal Directional Drill Site Specific drawings.
${ }^{2}$ Each segment is associated with its own set of mileposts beginning at MP 0.00 .
${ }^{3}$ Water Quantity is the approximate water required for executing the drill (pilot bore, reaming, swab, and pull back operations) and for buoyancy control during construction. The water quantities are conservative estimates and may vary based on site-specific conditions.

Source: Northeast Energy Direct Project, FERC PF14-22-000, Environmental Report, Vol I, Resource Report 2, Table 2.2-10

## III. Additional Submittal Information (continued)

 REQUEST FOR 401 WATER QUALITY CERTIFICATION (cont.)
## Signature - MUST BE SIGNED AND DATED BY APPLICANT

To the best of my knowledge, the data and information described above, which I have submitted to the New Hampshire Department of Environmental Services, is true and correct. I understand that an approval of the requested 401 Certification based upon incorrect data may be subject to revocation of the 401 Certification. I have complied with all local regulations or ordinances relative to the proposed activity and have obtained or will obtain, prior to the commencement of any work, all other approvals that may be required.


Gina Dorsey
Kinder Morgan
Director, EHS-Project Permitting
1001 Louisiana Street
Houston, TX 77002
Office Phone: (713) 369-8975

Date: $\qquad$

This page intentionally left blank

Figure 3.1 Proposed Project Alignment for the NED Project in New Hampshire


Source: ESRI 2015, USGS 2015, GIS 2015

Figure 3.2 Proposed Compressor Station for the NED Project in New Hampshire


Source: Northeast Energy Direct Project, 2015.

Figure 3.3 USGS Quadrangle Map of the NED Project in New Hampshire


Source: National Geographic Society and National Hydrography Dataset 2013.

Figure 3.3 USGS Quadrangle Map of the NED Project in New Hampshire


Source: National Geographic Society and National Hydrography Dataset 2013.

Figure 3.3 USGS Quadrangle Map of the NED Project in New Hampshire


Source: National Geographic Society and National Hydrography Dataset 2013.

Figure 3.3 USGS Quadrangle Map of the NED Project in New Hampshire


Source: National Geographic Society and National Hydrography Dataset 2013.

Figure 3.3 USGS Quadrangle Map of the NED Project in New Hampshire


Source: National Geographic Society and National Hydrography Dataset 2013.

Figure 3.3 USGS Quadrangle Map of the NED Project in New Hampshire


Source: National Geographic Society and National Hydrography Dataset 2013.

Figure 3.3 USGS Quadrangle Map of the NED Project in New Hampshire


Source: National Geographic Society and National Hydrography Dataset 2013.

Figure 3.3 USGS Quadrangle Map of the NED Project in New Hampshire


Source: National Geographic Society and National Hydrography Dataset 2013.

Figure 3.3 USGS Quadrangle Map of the NED Project in New Hampshire


Source: National Geographic Society and National Hydrography Dataset 2013.

Figure 3.3 USGS Quadrangle Map of the NED Project in New Hampshire


Source: National Geographic Society and National Hydrography Dataset 2013.

Figure 3.3 USGS Quadrangle Map of the NED Project in New Hampshire


Source: National Geographic Society and National Hydrography Dataset 2013.

Figure 3.3 USGS Quadrangle Map of the NED Project in New Hampshire


Source: National Geographic Society and National Hydrography Dataset 2013.

Figure 3.3 USGS Quadrangle Map of the NED Project in New Hampshire


Source: National Geographic Society and National Hydrography Dataset 2013.

Figure 3.3 USGS Quadrangle Map of the NED Project in New Hampshire


Source: National Geographic Society and National Hydrography Dataset 2013

## Section 3-Attachment A

## New England District of the U.S. Army Corps of Engineers Section 404 Permit Application

## Section 3-Attachment B

## Wetlands and Waterbodies Associated with the Project in New Hampshire

This page intentionally left blank

## Table 3.8 - Waterbodies Associated with the Project in New Hampshire

| Table 3.8 <br> Waterbodies Associated with the Project in New Hampshire |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Facility Name | County | Town | Segment ${ }^{1}$ | $\underset{\text { Milearest }}{ }{ }^{\text {N }}$ Milepost ${ }^{2}$ | $\underset{\text { ID }^{3}}{\text { Waterbody }}$ | Waterbody Name ${ }^{4}$ | Latitude | Longitude | Quadrangle | Type ${ }^{5}$ | $\underset{{ }^{\text {FERC }}}{ }{ }^{6}$ | Water Quality Designation / Fishery Classification ${ }^{7}$ | $\begin{gathered} \text { Timing } \\ \text { Restriction } \end{gathered}$ | $\underset{\text { Method }^{1,10}}{\text { Crossing }}$ | Comments ${ }^{11}$ | $\underset{\substack{\text { Crossing } \\ \text { Length } \\ \\ 12}}{ }$ (feet) |
| Pipeline Facilities |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Wright to Dracut Pipeline Segment | Cheshire | Winchester | I | 2.02 | NHD-681 | Mirey Brook | $42^{\circ} 44^{\prime} 9.662^{\prime \prime} \mathrm{N}$ | $72^{\circ} 21^{\prime} 36.712^{\prime \prime} \mathrm{W}$ | Mount Grace | P | I | B/CWF | June 1 to Sept 30 | II | Wild Brook Trout | 20 |
| Wright to Dracut Pipeline Segment | Cheshire | Winchester | I | 2.78 | NHD-682 | UNT to Mirey Brook | $42^{\circ} 44^{\prime} 24.881^{\prime \prime} \mathrm{N}$ | 720 $21^{\prime} 1.0011^{\prime \prime} \mathrm{W}$ | Mount Grace | P | I | B/CWF | June 1 to Sept 30 | II |  | 20 |
| Wright to Dracut Pipeline Segment | Cheshire | Winchester | I | 3.88 | wC-X-S001 | UNT to Roaring Brook | $42^{\circ} 45^{\prime} 15.250^{\prime \prime} \mathrm{N}$ | $72^{\circ} 21^{\prime} 2.914^{\prime \prime} \mathrm{W}$ | West Swanzey | I | MI | B/CWF | June 1 to Sept 30 | N/A |  | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Winchester | I | 3.88 | wC-X-S001 | Roaring Brook | $42^{\circ} 45^{\prime} 15.3833^{\prime \prime} \mathrm{N}$ | $72^{\circ} 21^{\prime} 3.232^{\prime \prime} \mathrm{W}$ | West Swanzey | I | MI | B/CWF | June 1 to Sept 30 | N/A | Wild Brook Trout | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Winchester | I | 4.23 | SPI-516 | Roaring Brook | $42^{\circ} 45^{\prime} 33.143^{\prime \prime} \mathrm{N}$ | $72^{\circ} 20^{\prime} 38.772^{\prime \prime} \mathrm{W}$ | West Swanzey | P | I | B/CWF | June 1 to Sept 30 | II | Wild Brook Trout | 65 |
| Wright to Dracut Pipeline Segment | Cheshire | Winchester | I | 4.46 | SPI-517 | UNT to Roaring Brook | $42^{\circ} 45^{\prime} 43.6066^{\prime \prime} \mathrm{N}$ | $72^{\circ} 20^{\prime} 35.552^{\prime \prime} \mathrm{W}$ | West Swanzey | I | MI | B/CWF | June 1 to Sept 30 | II |  | 8 |
| Wright to Dracut Pipeline Segment | Cheshire | Winchester | I | 4.47 | NHD-376 | UNT to Roaring Brook | $42^{\circ} 45^{\prime} 43.6944^{\prime \prime} \mathrm{N}$ | 720 $20^{\prime} 35.197{ }^{\prime \prime} \mathrm{W}$ | West Swanzey | I | I | B/CWF | June 1 to Sept 30 | II |  | 15 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 4.9 | NHD-683 | UNT to Roaring Brook | $42^{\circ} 45^{\prime} 52.3888^{\prime \prime} \mathrm{N}$ | $72^{\circ} 20^{\prime} 7.910^{\prime \prime} \mathrm{W}$ | West Swanzey | I | I | B/CWF | June 1 to Sept 30 | II |  | 10 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 5.13 | NHD-684 | UNT to Roaring Brook | $42^{\circ} 46^{\prime} 2.147^{\prime \prime} \mathrm{N}$ | 720 $199^{\prime} 59.481^{\prime \prime} \mathrm{W}$ | West Swanzey | I | I | B/CWF | June 1 to Sept 30 | II |  | 10 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 5.64 | NHD-685 | UNT to Brickyard Brook | $42^{\circ} 46^{\prime} 14.786^{\prime \prime} \mathrm{N}$ | 720 $19^{\prime} 27.573^{\prime \prime} \mathrm{W}$ | West Swanzey | I | MI | B/CWF | June 1 to Sept 30 | II |  | 8 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 7.16 | SPI-519 | UNT to Forest Lake | $42^{\circ} 46^{\prime} 56.019^{\prime \prime} \mathrm{N}$ | $72^{\circ} 18^{\prime} 20.975^{\prime \prime} \mathrm{W}$ | West Swanzey | P | I | B/CWF | June 1 to Sept 30 | II |  | 17 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 7.54 | SPI-520 | Tilsey Brook | $42^{\circ} 466^{\prime} 57.504{ }^{\prime \prime} \mathrm{N}$ | 720 ${ }^{\circ} 17^{\prime} 54.009{ }^{\prime \prime} \mathrm{W}$ | West Swanzey | P | MI | B/CWF | June 1 to Sept 30 | N/A |  | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 7.75 | SPI-522 | UNT to Tilsey Brook | $42^{\circ} 466^{\prime} 58.856^{\prime \prime} \mathrm{N}$ | 720 $17^{\prime} 38.838{ }^{\prime \prime} \mathrm{W}$ | West Swanzey | P | мI | B/CWF | June 1 to Sept 30 | N/A |  | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 7.77 | SPI-521 | UNT to Tilsey Brook | $42^{\circ} 46^{\prime} 58.044^{\prime \prime} \mathrm{N}$ | $72^{\circ} 17^{\prime} 37.955^{\prime \prime} \mathrm{W}$ | West Swanzey | I | I | B/CWF | June 1 to Sept 30 | II |  | 25 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 8.13 | SPI-523 | UNT to Sandy Pond | $42^{\circ} 47^{\prime} 1.109{ }^{\prime \prime} \mathrm{N}$ | 720 ${ }^{\circ} 17^{\prime} 12.670^{\prime \prime} \mathrm{W}$ | West Swanzey | I | I | B/CWF | June 1 to Sept 30 | II |  | 23 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 8.48 | SPI-524 | UNT to Rice Brook | $42^{\circ} 47^{\prime} 4.957{ }^{\prime \prime} \mathrm{N}$ | 720 $16^{\prime} 48.598{ }^{\prime \prime} \mathrm{W}$ | West Swanzey | I | I | B/CWF | June 1 to Sept 30 | II |  | 43 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 9.07 | SPI-525 | Rice Brook | $42^{\circ} 47^{\prime} 11.563^{\prime \prime} \mathrm{N}$ | $72^{\circ} 16^{\prime} 7.251^{\prime \prime} \mathrm{W}$ | West Swanzey | P | I | B/CWF | June 1 to Sept 30 | II | Wild Brook Trout | 36 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 9.54 | SPI-526 | UNT to Rice Brook | $42^{\circ} 47^{\prime} 16.830^{\prime \prime} \mathrm{N}$ | $72^{\circ} 15^{\prime} 35.270{ }^{\prime \prime} \mathrm{W}$ | West Swanzey | I | мI | B/CWF | June 1 to Sept 30 | N/A |  | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 9.96 | SPI-527 | UNT to Rice Brook | $42^{\circ} 47^{\prime} 21.312^{\prime \prime} \mathrm{N}$ | $72^{\circ} 15^{\prime} 6.184^{\prime \prime} \mathrm{W}$ | West Swanzey | I | I | B/CWF | June 1 to Sept 30 | II |  | 47 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 10.33 | SPI-528 | UNT to Rice Brook | $42^{\circ} 47^{\prime} 25.487^{\prime \prime} \mathrm{N}$ | $72^{\circ} 14^{\prime} 40.513^{\prime \prime} \mathrm{W}$ | Troy | P | MI | B/CWF | June 1 to Sept 30 | N/A |  | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 10.33 | SPI-529 | UNT to Rice Brook | $42^{\circ} 47^{\prime} 25.523^{\prime \prime} \mathrm{N}$ | $72^{\circ} 14^{\prime} 40.220{ }^{\prime \prime} \mathrm{W}$ | Troy | P | MI | B/CWF | June 1 to Sept 30 | N/A |  | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 10.4 | SPI-530 | UNT to Rice Brook | $42^{\circ} 47^{\prime} 26.255^{\prime \prime} \mathrm{N}$ | $72^{\circ} 14^{\prime} 35.193{ }^{\prime \prime} \mathrm{W}$ | Troy | P | I | B/CWF | June 1 to Sept 30 | II |  | 26 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 11.16 | RI-Y-S001 | UNT to Tully Brook | $42^{\circ} 47^{\prime} 34.535^{\prime \prime} \mathrm{N}$ | $72^{\circ} 13^{\prime} 43.255^{\prime \prime} \mathrm{W}$ | Troy | I | MI | B/CWF | June 1 to Sept 30 | II |  | 2 |
| Wright to Dracut Pipeline Segment | Cheshire | Troy | I | 11.51 | RIL-S-S001 | UNT to Tully Brook | $42^{\circ} 47^{\prime} 38.4911^{\prime \prime} \mathrm{N}$ | 720 $13^{\prime} 18.422^{\prime \prime} \mathrm{W}$ | Troy | P | MI | B/CWF | June 1 to Sept 30 | II |  | 2 |
| Wright to Dracut Pipeline Segment | Cheshire | Troy | I | 11.67 | TR-Y-S003A | UNT to Tully Brook | $42^{\circ} 47^{\prime} 39.722^{\prime \prime} \mathrm{N}$ | $72^{\circ} 13^{\prime} 7.598^{\prime \prime} \mathrm{W}$ | Troy | I | MI | в |  | N/A |  | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Troy | I | 11.68 | TR-Y-S003 | UNT to Tully Brook | $42^{\circ} 47^{\prime} 40.316^{\prime \prime} \mathrm{N}$ | $72^{\circ} 13^{\prime} 6.958^{\prime \prime} \mathrm{W}$ | Troy | E | MI | B |  | II |  | 3 |

[^4]Table 3.8 - Waterbodies Associated with the Project in New Hampshire (continued)

| Table 3.8 (cont'd) <br> Waterbodies Associated with the Project in New Hampshire |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Facility Name | County | Town | Segment ${ }^{1}$ | Nearest Milepost ${ }^{2}$ | $\underset{\text { ID }^{3}}{\text { Waterby }}$ | Waterbody Name ${ }^{4}$ | Latitude | Longitude | Quadrangle | Type ${ }^{5}$ | $\underset{\text { Class }^{6}}{\text { FERC }}$ | Water Quality Designation / Fishery Classification ${ }^{7}$ | $\underset{\text { Restriction }{ }^{\text {ºn }}}{\text { Timing }}$ | $\underset{\text { Method }{ }^{\text {Prossing }}}{ }$ | Comments ${ }^{11}$ | $\begin{gathered} \text { Crossing } \\ \text { Length } \\ \text { (feet) } \end{gathered}$ |
| Wright to Dracut Pipeline Segment | Cheshire | Troy | I | 11.76 | TR-Y-S002 | UNT to Tully Brook | $42^{\circ} 47^{\prime} 41.242^{\prime \prime} \mathrm{N}$ | 72 ${ }^{\circ} 13^{\prime} 1.143^{\prime \prime} \mathrm{W}$ | Troy | I | MI | B |  | II |  | 5 |
| Wright to Dracut Pipeline Segment | Cheshire | Troy | I | 12.06 | TR-G-S002 | Nester Brook | $42^{\circ} 47^{\prime} 44.540^{\prime \prime} \mathrm{N}$ | $72^{\circ} 12^{\prime} 40.426{ }^{\prime \prime} \mathrm{W}$ | Troy | P | I | B/CWF | June 1 to Sept 30 | II |  | 11 |
| Wright to Dracut Pipeline Segment | Cheshire | Troy | I | 12.06 | SPI-531 | Nester Brook | $42^{\circ} 47^{\prime} 44.701{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 12^{\prime} 40.418{ }^{\prime \prime} \mathrm{W}$ | Troy | P | MI | B/CWF | June 1 to Sept 30 | N/A |  | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Troy | I | 12.06 | SPI-531 | Nester Brook | $42^{\circ} 47^{\prime} 44.840^{\prime \prime} \mathrm{N}$ | 720 ${ }^{12}{ }^{\prime} 40.424{ }^{\prime \prime} \mathrm{W}$ | Troy | P | MI | B/CWF | June 1 to Sept 30 | N/A |  | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Troy | I | 12.29 | TR-L-S001A | UNT to Nester Brook | $42^{\circ} 47^{\prime} 47.067^{\prime \prime} \mathrm{N}$ | $72^{\circ} 12^{\prime} 24.548{ }^{\prime \prime} \mathrm{W}$ | Troy | I | MI | B/CWF | June 1 to Sept 30 | II |  | 3 |
| Wright to Dracut Pipeline Segment | Cheshire | Troy | I | 12.29 | SPI-532 | UNT to Nester Brook | $42^{\circ} 47^{\prime} 47.2066^{\prime \prime}$ | $72^{\circ} 12^{\prime} 24.684^{\prime \prime} \mathrm{W}$ | Troy | I | MI | B/CWF | June 1 to Sept 30 | N/A |  | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Troy | I | 12.29 | SPI-532 | UNT to Nester Brook | $42^{\circ} 47^{\prime} 48.0799^{\prime \prime} \mathrm{N}$ | 720 $12^{\prime} 24.914^{\prime \prime} \mathrm{W}$ | Troy | I | MI | B/CWF | June 1 to Sept 30 | N/A |  | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 12.68 | SPI-533 | UNT to Nester Brook | $42^{\circ} 47^{\prime} 51.3344^{\prime \prime}$ | $72^{\circ} 11^{\prime} 57.728^{\prime \prime} \mathrm{W}$ | Troy | I | I | B/CWF | June 1 to Sept 30 | II |  | 32 |
| Wright to Dracut Pipeline Segment | Cheshire | Troy | I | 13.06 | TR-X-S004 | UNT to Nester Brook | $42^{\circ} 47^{\prime} 57.4011^{\prime N}$ | 720 $11^{\prime} 32.988^{\prime \prime} \mathrm{W}$ | Troy | I | I | B/CWF | June 1 to Sept 30 | II |  | 18 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 13.19 | TR-X-S002 | UNT to Nester Brook | $42^{\circ} 47^{\prime} 59.368^{\prime \prime} \mathrm{N}$ | 720 $11^{\prime} 24.081^{\prime \prime} \mathrm{W}$ | Troy | P | MI | B/CWF | June 1 to Sept 30 | II |  | 5 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 13.21 | TR-X-S001 | UNT to Nester Brook | $42^{\circ} 47^{\prime} 59.4633^{\prime \prime} \mathrm{N}$ | 720 $11^{\prime} 22.915^{\prime \prime} \mathrm{W}$ | Troy | E | MI | B/CWF | June 1 to Sept 30 | N/A |  | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 13.22 | TR-X-S001 | UNT to Nester Brook | $42^{\circ} 47^{\prime} 59.129^{\prime \prime} \mathrm{N}$ | $72^{\circ} 11^{\prime} 22.398{ }^{\prime \prime} \mathrm{W}$ | Troy | E | MI | B/CWF | June 1 to Sept 30 | N/A |  | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 13.43 | TR-Y-S001 | UNT to Nester Brook | $42^{\circ} 48^{\prime} 3.460{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 11^{\prime} 8.692^{\prime \prime} \mathrm{W}$ | Troy | P | I | B/CWF | June 1 to Sept 30 | II |  | 18 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 14.34 | FT-X-S001 | UNT to Quarry Brook | $42^{\circ} 48^{\prime} 17.525^{\prime \prime} \mathrm{N}$ | $72^{\circ} 10^{\prime} 8.237^{\prime \prime} \mathrm{W}$ | Troy | P | MI | B/CWF | June 1 to Sept 30 | N/A |  | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 14.81 | SPI-535 | UNT to Quarry Brook | $42^{\circ} 48^{\prime} 27.183^{\prime \prime} \mathrm{N}$ | $72^{\circ} 9^{\prime} 37.687^{\prime \prime} \mathrm{W}$ | Troy | I | мI | B/CWF | June 1 to Sept 30 | II |  | 6 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 15.52 | SPI-536 | UNT to Bowker Pond | $42^{\circ} 48^{\prime} 14.3333^{\prime \prime} \mathrm{N}$ | $72^{\circ} 8^{\prime} 58.718^{\prime \prime} \mathrm{W}$ | Troy | P | MI | B/CWF | June 1 to Sept 30 | II |  | 9 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 17.27 | FT-T-S001 | UNT to Scott Brook | $42^{\circ} 47^{\prime} 10.754^{\prime \prime} \mathrm{N}$ | $72^{\circ} 7^{\prime} 33.434{ }^{\prime \prime} \mathrm{W}$ | Troy | L | MI | в |  | N/A |  | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 17.86 | SPI-537 | Scott Brook | $42^{\circ} 466^{\prime} 48.917^{\prime \prime} \mathrm{N}$ | $72^{\circ} 7^{\prime} 3.8000^{\prime \prime} \mathrm{W}$ | Monadnock Mountain | P | I | в |  | II |  | 21 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 18.08 | SPI-540 | UNT to Scott Brook | $42^{\circ} 46^{\prime} 40.689^{\prime \prime} \mathrm{N}$ | $72^{\circ} 6^{\prime} 52.803{ }^{\prime \prime} \mathrm{W}$ | Monadnock Mountain | I | MI | B |  | N/A |  | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 19.71 | SPI-541 | UNT to Sip Pond | $42^{\circ} 45^{\prime} 46.760^{\prime \prime} \mathrm{N}$ | $72^{\circ} 5^{\prime} 26.562^{\prime \prime} \mathrm{W}$ | Monadnock Mountain | I | MI | B |  | II |  | 5 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 20.44 | SPI-542 | UNT to Tarbell Brook | $42^{\circ} 45^{\prime} 19.9711^{\prime \prime} \mathrm{N}$ | $72^{\circ}{ }^{4} 50.709{ }^{\prime \prime} \mathrm{W}$ | Monadnock Mountain | I | MI | B |  | II |  | 3 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 20.91 | NHD-690 | Tarbell Brook | $42^{\circ} 45^{\prime} 5.1399^{\prime N}$ | $72^{\circ} 4^{\prime} 25.368^{\prime \prime} \mathrm{W}$ | Monadnock Mountain | AP | MA | в |  | II |  | 415 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 21.49 | NHD-691 | UNT to Tarbell Brook | $42^{\circ} 44^{\prime} 44.569^{\prime \prime} \mathrm{N}$ | $72^{\circ}{ }^{\prime} 55.769^{\prime \prime} \mathrm{W}$ | Winchendon | AP | I | в |  | II |  | 25 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 21.58 | NHD-693 | UNT to Tarbell Brook | $42^{\circ} 44^{\prime} 41.328^{\prime \prime} \mathrm{N}$ | $72^{\circ} 3^{\prime} 51.1077^{\prime \prime} \mathrm{W}$ | Winchendon | AP | I | B |  | II |  | 10 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 21.88 | NHD-696 | UNT to Tarbell Brook | $42^{\circ} 44^{\prime} 30.4311^{\prime \prime} \mathrm{N}$ | $72^{\circ} 3^{\prime} 35.432^{\prime \prime} \mathrm{W}$ | Winchendon | C | MI | B |  | II |  | 3 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 23.49 | SPI-547 | UNT to Robbins Brook | $42^{\circ} 44^{\prime} 21.9511^{\prime \prime} \mathrm{N}$ | $72^{\circ}{ }^{1} 45.0611^{\prime \prime} \mathrm{W}$ | Winchendon | I | I | в |  | II |  | 35 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 24.02 | SPI-548 | UNT to Lord Brook | $42^{\circ} 44^{\prime} 20.571^{\prime \prime} \mathrm{N}$ | $72^{\circ} 1^{\prime} 7.677^{\prime \prime} \mathrm{W}$ | Winchendon | I | MI | B |  | II |  | 2 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | 1 | 24.37 | SPI-549 | Lord Brook | $42^{\circ} 44^{\prime} 19.649^{\prime \prime} \mathrm{N}$ | $72^{\circ} 0^{\prime} 42.723^{\prime \prime} \mathrm{W}$ | Winchendon | 1 | MI | в |  | II |  | 6 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 24.8 | SPI-550 | UNT to Lake Monomonac | $42^{\circ} 44^{\prime} 18.529^{\prime \prime} \mathrm{N}$ | $72^{\circ} 0^{\prime} 12.507$ " W | Winchendon | I | I | B |  | II |  | 25 |

[^5]Table 3.8 - Waterbodies Associated with the Project in New Hampshire (continued)

| Table 3.8 (cont'd) <br> Waterbodies Associated with the Project in New Hampshire |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Facility Name | County | Town | Segment ${ }^{1}$ | Nearest Milepost ${ }^{2}$ | $\begin{gathered} \text { Waterbody } \\ \mathbf{I D}^{3} \end{gathered}$ | Waterbody Name ${ }^{4}$ | Latitude | Longitude | Quadrangle | Type ${ }^{5}$ | $\underset{{ }^{\text {FERC }}{ }^{\text {C }}{ }^{\circ}}{ }$ | Water Quality Designation / Fishery Classification ${ }^{7}$ | $\underset{\text { Restriction }}{\text { Timing }}$ | $\underset{\text { Method }^{1,10}}{\text { Crossing }}$ | Comments ${ }^{11}$ | $\begin{aligned} & \begin{array}{l} \text { Leossing } \\ \text { Length }{ }^{2} \\ (\text { (feet } \end{array} \end{aligned}$ |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 24.81 | SPI-550 | UNT to Lake Monomonac | $42^{\circ} 44^{\prime} 18.4900^{\prime \prime} \mathrm{N}$ | $72^{\circ} 0^{\prime} 11.448^{\prime \prime} \mathrm{W}$ | Winchendon | I | MI | B |  | II |  | 6 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 24.82 | SPI-551 | UNT to Lake Monomonac | $42^{\circ} 44^{\prime} 18.4766^{\prime \prime} \mathrm{N}$ | $72^{\circ} 0^{\prime} 11.073{ }^{\prime \prime} \mathrm{W}$ | Winchendon | I | MI | B |  | II |  | 6 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 26.97 | SPI-552 | UNT to North Branch Millers River | $42^{\circ} 45^{\prime} 18.062^{\prime \prime} \mathrm{N}$ | $71^{\circ} 58^{\prime} 27.756{ }^{\prime \prime} \mathrm{W}$ | Peterborough South | I | MI | в |  | II |  | 8 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 27.84 | SPI-553 | UNT to Hubbard Pond | $42^{\circ} 45^{\prime} 36.1311^{\prime \prime} \mathrm{N}$ | $71^{\circ} 57{ }^{\prime} 31.271{ }^{\text {W }} \mathrm{W}$ | Peterborough South | I | I | B/CWF | June 1 to Sept 30 | II |  | 13 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 27.86 | SPI-553 | UNT to Hubbard Pond | $42^{\circ} 45^{\prime} 36.613^{\prime \prime} \mathrm{N}$ | $71^{\circ} 57^{\prime 2} 29.763^{\prime \prime} \mathrm{W}$ | Peterborough South | I | I | B/CWF | June 1 to Sept 30 | II |  | 31 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 0.52 | SPI-559 | UNT to Hubbard Pond | $42^{\circ} 46^{\prime} 6.284{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 55^{\prime} 57.780{ }^{\text {" W }}$ | Peterborough South | I | MI | B/CWF | June 1 to Sept 30 | N/A |  | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 1.03 | SPI-560 | UNT to Gridley River | $42^{\circ} 46^{\prime} 16.795^{\prime \prime} \mathrm{N}$ | $71^{\circ} 55^{\prime} 24.0322^{\prime \prime} \mathrm{W}$ | Peterborough South | P | I | B/CWF | June 1 to Sept 30 | II |  | 12 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 1.68 | SPI-563 | UNT to Gridley River | $42^{\circ} 46^{\prime} 32.236^{\prime \prime} \mathrm{N}$ | $71^{\circ} 54^{\prime} 44.438{ }^{\prime \prime} \mathrm{W}$ | Peterborough South | P | Mi | B/CWF | June 1 to Sept 30 | N/A |  | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 1.71 | SPI-564 | UNT to Gridley River | $42^{\circ} 46^{\prime} 31.602^{\prime \prime} \mathrm{N}$ | $71^{\circ} 54^{\prime} 42.154{ }^{\prime \prime} \mathrm{W}$ | Peterborough South | P | MI | B/CWF | June 1 to Sept 30 | N/A |  | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 2.08 | SPI-565 | UNT to Gridley River | $42^{\circ} 46^{\prime} 37.175^{\prime \prime} \mathrm{N}$ | $71^{\circ} 54^{\prime} 17.744{ }^{\prime \prime} \mathrm{W}$ | Peterborough South | I | I | B/CWF | June 1 to Sept 30 | II |  | 10 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 2.42 | SPI-568 | UNT to Gridley River | $42^{\circ} 46^{\prime} 37.294{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 53^{\prime} 54.2444^{\prime \prime} \mathrm{W}$ | Peterborough South | I | I | B/CWF | June 1 to Sept 30 | II |  | 16 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 2.79 | SPI-569 | UNT to Gridley River | $42^{\circ} 46^{\prime} 39.527^{\prime \prime} \mathrm{N}$ | $71^{\circ} 53^{\prime} 28.503^{\prime \prime} \mathrm{W}$ | Peterborough South | I | MI | B/CWF | June 1 to Sept 30 | II |  | 4 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 3.24 | SPI-570 | UNT to Furnace Brook | $42^{\circ} 46^{\prime} 42.3011^{\prime \prime} \mathrm{N}$ | $71^{\circ} 52^{\prime} 56.500{ }^{\prime \prime} \mathrm{W}$ | Peterborough South | I | MI | B/CWF | June 1 to Sept 30 | II |  | 8 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 3.36 | SPI-571 | UNT to Furnace Brook | $42^{\circ} 466^{\prime} 43.3833^{\prime \prime} \mathrm{N}$ | $71^{\circ} 52^{\prime} 48.019{ }^{\prime \prime} \mathrm{W}$ | Peterborough South | I | MI | B/CWF | June 1 to Sept 30 | N/A |  | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 3.47 | SPI-572 | UNT to Furnace Brook | $42^{\circ} 46^{\prime} 43.688^{\prime \prime} \mathrm{N}$ | $71^{\circ} 52^{\prime} 40.4801 \mathrm{~W}$ | Peterborough South | I | MI | B/CWF | June 1 to Sept 30 | II |  | 8 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 3.62 | SPI-574 | UNT to Furnace Brook | $42^{\circ} 46^{\prime} 44.627^{\prime \prime} \mathrm{N}$ | $71^{\circ} 52^{\prime 2} 29.643^{\prime \prime} \mathrm{W}$ | Greenville | I | MI | B/CWF | June 1 to Sept 30 | II |  | 8 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 5.16 | SPI-576 | UNT to Greenville Reservoir | $42^{\circ} 466^{\prime} 53.924^{\prime \prime} \mathrm{N}$ | $71^{\circ} 50^{\prime} 41.931{ }^{\prime \prime} \mathrm{W}$ | Greenville | I | I | B/CWF | June 1 to Sept 30 | II |  | 14 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 5.26 | N-V-S003 | UNT to Greenville Reservoir | $42^{\circ} 466^{\prime} 54.873^{\prime \prime} \mathrm{N}$ | $71^{\circ} 50^{\prime} 34.970{ }^{\prime \prime} \mathrm{W}$ | Greenville | I | MI | B/CWF | June 1 to Sept 30 | N/A |  | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 5.28 | NI-V-S003 | UNT to Greenville Reservoir | $42^{\circ} 46^{\prime} 54.6611^{\prime \prime} \mathrm{N}$ | $71^{\circ} 50^{\prime} 33.392{ }^{\prime \prime} \mathrm{W}$ | Greenville | I | MI | B/CWF | June 1 to Sept 30 | II |  | 2 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 5.75 | NI-R-S002 | UNT to Souhegan River | $42^{\circ} 46^{\prime} 57.756^{\prime \prime} \mathrm{N}$ | $71^{\circ} 50^{\prime} 1.260^{\prime \prime} \mathrm{W}$ | Greenville | I | MI | B/CWF | June 1 to Sept 30 | II |  | 4 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 6.13 | N-R-S001 | UNT to Souhegan River | $42^{\circ} 46^{\circ} 54.9711^{\prime \prime} \mathrm{N}$ | $71^{\circ} 49^{\prime} 35.958{ }^{\prime \prime} \mathrm{W}$ | Greenville | I | I | B/CWF | June 1 to Sept 30 | II |  | 15 |
| Wright to Dracut Pipeline Segment | Hillsborough | Greenville | J | 6.44 | SPI-578 | UNT to Souhegan River | $42^{\circ} 466^{\prime} 57.088^{\prime \prime} \mathrm{N}$ | $71^{\circ} 49^{\prime} 14.567^{\prime \prime} \mathrm{W}$ | Greenville | I | MI | B/CWF | June 1 to Sept 30 | N/A |  | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Greenville | J | 6.73 | SPI-581 | UNT to Souhegan River | $42^{\circ} 47^{\prime} 3.920{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 48^{\prime} 56.596{ }^{\text {" }} \mathrm{W}$ | Greenville | I | MI | B/CWF | June 1 to Sept 30 | N/A |  | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Greenville | J | 7.42 | SPI-582 | Souhegan River | $42^{\circ} 47^{\prime} 11.973^{\prime \prime} \mathrm{N}$ | $71^{\circ} 48^{\prime} 10.049{ }^{\prime \prime} \mathrm{W}$ | Greenville | P | I | B/CWF | June 1 to Sept 30 | II |  | 43 |
| Wright to Dracut Pipeline Segment | Hillsborough | Greenville | J | 7.8 | GN-M-S001 | UNT to Souhegan River | $42^{\circ} 47^{\prime} 12.954{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 47^{\prime} 43.610^{\prime \prime} \mathrm{W}$ | Greenville | P | MI | B/CWF | June 1 to Sept 30 | II |  | 2 |
| Wright to Dracut Pipeline Segment | Hillsborough | Greenville | J | 7.86 | SPI-584 | UNT to Souhegan River | $42^{\circ} 47^{\prime} 12.552^{\prime \prime} \mathrm{N}$ | $71^{\circ} 47^{\prime} 39.333{ }^{\prime \prime} \mathrm{W}$ | Greenville | I | MI | B/CWF | June 1 to Sept 30 | II |  | 5 |
| Wright to Dracut Pipeline Segment | Hillsborough | Greenville | J | 7.91 | SPI-585 | UNT to Souhegan River | $42^{\circ} 47^{\prime} 11.8966^{\prime \prime} \mathrm{N}$ | $71^{\circ} 47^{\prime} 36.173^{\prime \prime} \mathrm{W}$ | Greenville | I | I | B/CWF | June 1 to Sept 30 | II |  | 11 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 8.78 | SPI-586 | UNT to Spaulding Brook | $42^{\circ} 46^{\prime} 59.326^{\prime \prime} \mathrm{N}$ | $71^{\circ} 46^{\prime} 36.892^{\prime \prime} \mathrm{W}$ | Greenville | I | I | B/CWF | June 1 to Sept 30 | II |  | 16 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 10.26 | SPI-587 | UNT to Black Brook | $42^{\circ} 46^{\prime} 38.447^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime} 55.732{ }^{\prime \prime} \mathrm{W}$ | Milford | I | I | B/CWF | June 1 to Sept 30 | II |  | 51 |

[^6]Table 3.8 - Waterbodies Associated with the Project in New Hampshire (continued)

| Table 3.8 (cont'd) <br> Waterbodies Associated with the Project in New Hampshire |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Facility Name | County | Town | Segment ${ }^{1}$ | Nearest Milepost ${ }^{2}$ | $\begin{gathered} \text { Waterbody } \\ \mathbf{I D}^{3} \end{gathered}$ | Waterbody Name ${ }^{4}$ | Latitude | Longitude | Quadrangle | Type ${ }^{5}$ | $\underset{{ }^{\text {FERC }}{ }^{\text {C }}{ }^{\circ}}{ }$ | Water Quality Designation / Fishery Classification | $\underset{\text { Restriction }}{\text { Timing }}$ | $\underset{\text { Method }^{1,10}}{\text { Crossing }}$ | Comments ${ }^{11}$ | Crossing Length (feet) |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 10.32 | SPI-588 | UNT to Black Brook | $42^{\circ} 46^{\prime} 37.566^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime} 51.467{ }^{\prime \prime} \mathrm{W}$ | Milford | I | I | B/CWF | June 1 to Sept 30 | II |  | 28 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 10.74 | SPI-589 | Spaulding Brook | $42^{\circ} 46^{\prime} 31.748^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime 2} 23.307{ }^{\text {" }} \mathrm{W}$ | Milford | P | MA | B/CWF | June 1 to Sept 30 | II |  | 124 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 10.83 | SPI-590 | UNT to Spaulding Brook | $42^{\circ} 46^{\prime} 30.432^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime} 16.939{ }^{\text {W }} \mathrm{W}$ | Milford | I | I | B/CWF | June 1 to Sept 30 | II |  | 52 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 10.9 | SPI-591 | UNT to Spaulding Brook | $42^{\circ} 46^{\prime} 29.4999^{\prime \prime}$ | $71^{\circ} 44^{\prime} 12.423{ }^{\prime \prime} \mathrm{W}$ | Milford | I | I | B/CWF | June 1 to Sept 30 | II |  | 13 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 10.92 | SPI-591 | UNT to Spaulding Brook | $42^{\circ} 46^{\prime} 29.254^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime} 11.239{ }^{\prime \prime} \mathrm{W}$ | Milford | I | I | B/CWF | June 1 to Sept 30 | II |  | 14 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 10.93 | SPI-591 | UNT to Spaulding Brook | $42^{\circ} 46^{\prime} 29.022^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime} 10.115^{\prime \prime} \mathrm{W}$ | Milford | I | I | B/CWF | June 1 to Sept 30 | II |  | 29 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 10.94 | SPI-591 | UNT to Spaulding Brook | $42^{\circ} 46^{\prime} 29.148^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime} 9.482^{\prime \prime} \mathrm{W}$ | Milford | I | MI | B/CWF | June 1 to Sept 30 | N/A |  | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 11.35 | SPI-592 | UNT to Spaulding Brook | $42^{\circ} 46^{\prime} 32.075^{\prime \prime} \mathrm{N}$ | $71^{\circ} 43^{\prime} 41.378{ }^{\prime \prime} \mathrm{W}$ | Milford | I | I | B/CWF | June 1 to Sept 30 | II |  | 24 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 11.5 | SPI-593 | UNT to Spaulding Brook | $42^{\circ} 46^{\prime} 32.9366^{\prime \prime} \mathrm{N}$ | $71^{\circ} 43^{\prime} 30.859{ }^{\prime \prime} \mathrm{W}$ | Milford | I | I | B/CWF | June 1 to Sept 30 | II |  | 16 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 11.95 | SPI-594 | UNT to Spaulding Brook | $42^{\circ} 46^{\prime} 34.794^{\prime \prime} \mathrm{N}$ | $71^{\circ} 42^{\prime} 58.966{ }^{\prime \prime} \mathrm{W}$ | Milford | P | I | B/CWF | June 1 to Sept 30 | II |  | 46 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 12.03 | SPI-595 | Spaulding Brook | $42^{\circ} 46^{\prime} 35.126^{\prime \prime} \mathrm{N}$ | $71^{\circ} 42^{\prime} 53.269{ }^{\prime \prime} \mathrm{W}$ | Milford | P | I | B/CWF | June 1 to Sept 30 | II |  | 46 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 12.05 | SPI-595 | Spaulding Brook | $42^{\circ} 46^{\prime} 35.2066^{\prime \prime} \mathrm{N}$ | $71^{\circ} 42^{\prime} 51.895{ }^{\prime \prime} \mathrm{W}$ | Milford | P | I | B/CWF | June 1 to Sept 30 | II |  | 35 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 12.45 | SPI-596 | UNT to Spaulding Brook | $42^{\circ} 46^{\prime} 36.841^{\prime \prime} \mathrm{N}$ | $71^{\circ} 42^{\prime} 23.790^{\prime \prime} \mathrm{W}$ | Milford | I | I | B/CWF | June 1 to Sept 30 | II |  | 37 |
| Wright to Dracut Pipeline Segment | Hillsborough | Brookline | J | 13.34 | SPI-597 | UNT to Spaulding Brook | $42^{\circ} 46^{\prime} 46.363^{\prime \prime} \mathrm{N}$ | $71^{\circ} 41^{\prime} 23.837^{\prime \prime} \mathrm{W}$ | Milford | P | MA | B/CWF | June 1 to Sept 30 | II |  | 103 |
| Wright to Dracut Pipeline Segment | Hillsborough | Brookline | J | 13.96 | SPI-598 | UNT to Spaulding Brook | $42^{\circ} 47^{\prime} 4.215^{\prime \prime} \mathrm{N}$ | $71^{\circ} 40^{\prime} 47.172{ }^{\prime \prime} \mathrm{W}$ | Milford | I | I | B/CWF | June 1 to Sept 30 | II |  | 10 |
| Wright to Dracut Pipeline Segment | Hillsborough | Brookline | J | 14.08 | SPI-599 | UNT to Spaulding Brook | $42^{\circ} 47^{\prime} 7.716^{\prime \prime} \mathrm{N}$ | $71^{\circ} 40^{\prime} 39.980{ }^{\prime \prime} \mathrm{W}$ | Milford | I | I | B/CWF | June 1 to Sept 30 | II |  | 12 |
| Wright to Dracut Pipeline Segment | Hillsborough | Brookline | J | 14.35 | SPI-601 | UNT to Spaulding Brook | $42^{\circ} 47^{\prime} 15.449^{\prime \prime} \mathrm{N}$ | $71^{\circ} 40^{\prime} 24.093{ }^{\prime \prime} \mathrm{W}$ | Milford | I | I | B/CWF | June 1 to Sept 30 | II |  | 21 |
| Wright to Dracut Pipeline Segment | Hillsborough | Brookline | J | 14.97 | SPI-602 | UNT to Ox Brook | $42^{\circ} 47^{\prime} 31.757^{\prime \prime} \mathrm{N}$ | $71^{\circ} 39^{\prime} 46.288{ }^{\prime \prime} \mathrm{W}$ | Milford | I | I | B/CWF | June 1 to Sept 30 | II |  | 21 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 15.98 | SPI-603 | UNT to Ox Brook | $42^{\circ} 47^{\prime} 43.894{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 38^{\prime} 38.691{ }^{\prime \prime} \mathrm{W}$ | Milford | P | I | B/CWF | June 1 to Sept 30 | II |  | 48 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 17.23 | SPI-608 | UNT to Witches Brook | $42^{\circ} 48^{\prime} 0.613^{\prime \prime} \mathrm{N}$ | $71^{\circ} 37^{\prime} 13.478{ }^{\prime \prime} \mathrm{W}$ | South Merrimack | P | I | B/CWF | June 1 to Sept 30 | II |  | 24 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 17.28 | SPI-609 | UNT to Witches Brook | $42^{\circ} 48^{\prime} 2.236{ }^{\prime \prime} \mathrm{N}$ | 710 $37^{\prime} 11.099{ }^{\prime \prime} \mathrm{W}$ | South Merrimack | P | MI | B/CWF | June 1 to Sept 30 | N/A |  | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 17.45 | SPI-610 | UNT to Witches Brook | $42^{\circ} 48^{\prime} 9.826^{\prime \prime} \mathrm{N}$ | $71^{\circ} 37^{\prime} 3.9022^{\prime \prime} \mathrm{W}$ | South Merrimack | P | I | B/CWF | June 1 to Sept 30 | II |  | 73 |
| Wright to Dracut Pipeline Segment | Hillsborough | Amherst | J | 17.82 | SPI-612 | UNT to Witches Brook | $42^{\circ} 48^{\prime} 25.097{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 36^{\prime} 48.417^{\prime \prime} \mathrm{W}$ | South Merrimack | P | MI | B/CWF | June 1 to Sept 30 | N/A |  | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Amherst | J | 17.86 | SPI-612 | UNT to Witches Brook | $42^{\circ} 48^{\prime} 26.984^{\prime \prime} \mathrm{N}$ | $71^{\circ} 366^{\prime} 46.788{ }^{\prime \prime} \mathrm{W}$ | South Merrimack | P | MI | B/CWF | June 1 to Sept 30 | N/A |  | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Amherst | J | 18.07 | SPI-613 | UNT to Witches Brook | $42^{\circ} 48^{\prime} 36.268^{\prime \prime} \mathrm{N}$ | $71^{\circ} 36^{\prime} 38.728^{\prime \prime} \mathrm{W}$ | South Merrimack | P | MI | B/CWF | June 1 to Sept 30 | N/A |  | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Amherst | J | 18.16 | SPI-614 | UNT to Witches Brook | $42^{\circ} 48^{\prime} 38.146^{\prime \prime} \mathrm{N}$ | $71^{\circ} 36^{\prime 3} 34.632^{\prime \prime} \mathrm{W}$ | South Merrimack | P | MI | B/CWF | June 1 to Sept 30 | N/A |  | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Amherst | J | 18.38 | NHD-704 | UNT to Witches Brook | $42^{\circ} 48^{\prime} 37.114^{\prime \prime} \mathrm{N}$ | $71^{\circ} 36^{\prime} 18.953{ }^{\prime \prime} \mathrm{W}$ | South Merrimack | I | MI | B/CWF | June 1 to Sept 30 | II |  | 5 |
| Wright to Dracut Pipeline Segment | Hillsborough | Amherst | J | 18.44 | NHD-704 | UNT to Witches Brook | $42^{\circ} 48^{\prime} 36.163^{\prime \prime} \mathrm{N}$ | $71^{\circ} 36^{\prime} 15.074{ }^{\prime \prime} \mathrm{W}$ | South Merrimack | I | MI | B/CWF | June 1 to Sept 30 | II |  | 5 |
| Wright to Dracut Pipeline Segment | Hillsborough | Amherst | J | 18.52 | NHD-704 | UNT to Witches Brook | $42^{\circ} 48^{\prime} 34.939{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 36{ }^{\prime} 9.5655^{\prime \prime} \mathrm{W}$ | South Merrimack | I | MI | B/CWF | June 1 to Sept 30 | II |  | 5 |

[^7]Table 3.8 - Waterbodies Associated with the Project in New Hampshire (continued)

| Table 3.8 (cont'd) <br> Waterbodies Associated with the Project in New Hampshire |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Facility Name | County | Town | Segment ${ }^{1}$ | Nearest Milepost ${ }^{2}$ | $\underset{\text { ID }^{3}}{\text { Waty }}$ | Waterbody Name ${ }^{4}$ | Latitude | Longitude | Quadrangle | Type ${ }^{5}$ | $\underset{{ }^{\text {FERC }}{ }^{\text {C }}{ }^{\circ}}{ }$ | Water Quality Designation / Fishery Classification | $\underset{\text { Restriction }}{\substack{\text { Timing }}}$ | $\underset{\text { Method }^{1,10}}{\text { Crossing }}$ | Comments ${ }^{11}$ | $\begin{aligned} & \text { Crossing } \\ & \text { Length }{ }^{2} \\ & \text { (feet) } \end{aligned}$ |
| Wright to Dracut Pipeline Segment | Hillsborough | Merrimack | J | 20.89 | NHD-831 | UNT to Witches Brook | $42^{\circ} 48^{\prime} 9.956^{\prime \prime} \mathrm{N}$ | $71^{\circ} 33^{\prime} 33.330^{\prime \prime} \mathrm{W}$ | South Merrimack | P | I | B/CWF | June 1 to Sept 30 | II |  | 25 |
| Wright to Dracut Pipeline Segment | Hillsborough | Merrimack | J | 22.8 | NHD-829 | UNT to Holts Pond | $42^{\circ} 48^{\prime} 27.142^{\prime \prime} \mathrm{N}$ | $71^{\circ} 311^{\prime 38.280 " ~ W ~}$ | South Merrimack | AP | MI | B/CWF | June 1 to Sept 30 | II |  | 8 |
| Wright to Dracut Pipeline Segment | Hillsborough | Merrimack | J | 23.48 | NHD-827 | UNT to Bowers Pond | $42^{\circ} 48^{\prime} 47.847^{\prime \prime} \mathrm{N}$ | $71^{\circ} 311^{\prime 2} 5.572{ }^{\prime \prime} \mathrm{W}$ | South Merrimack | I | I | B/CWF | June 1 to Sept 30 | II |  | 10 |
| Wright to Dracut Pipeline Segment | Hillsborough | Litchfield | J | 26.19 | SPI-626 | Merrimack River | $42^{\circ} 49^{\prime} 44.580^{\prime \prime} \mathrm{N}$ | $71^{\circ} 28^{\prime} 52.2544^{\prime \prime} \mathrm{W}$ | Nashua North | P | MA | B/CWF | June 1 to Sept 30 | IV |  | 565 |
| Wright to Dracut Pipeline Segment | Hillsborough | Litchfield | J | 26.58 | SPI-627 | UNT to Merrimack River | $42^{\circ} 49^{\prime} 49.212^{\prime \prime} \mathrm{N}$ | $71^{\circ} 28^{\prime} 25.3366^{\prime \prime} \mathrm{W}$ | Nashua North | I | MI | в |  | N/A |  | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Litchfield | J | 26.62 | SPI-628 | UNT to Merrimack River | $42^{\circ} 49^{\prime} 50.330^{\prime \prime} \mathrm{N}$ | $71^{\circ} 28^{\prime} 22.481^{\prime \prime} \mathrm{W}$ | Nashua North | I | I | B |  | II |  | 30 |
| Wright to Dracut Pipeline Segment | Rockingham | Londonderry | J | 29.32 | LD-L-S001A | Nesenkeag Brook | $42^{\circ} 50^{\prime} 32.360^{\prime \prime} \mathrm{N}$ | $71^{\circ} 25^{\prime} 21.545^{\prime \prime} \mathrm{W}$ | Nashua North | I | MI | B/CWF | June 1 to Sept 30 | II |  | 4 |
| Wright to Dracut Pipeline Segment | Rockingham | Londonderry | J | 29.32 | LD-L-S001 | Nesenkeag Brook | $42^{\circ} 50^{\prime} 32.885^{\prime \prime} \mathrm{N}$ | $71^{\circ} 25^{\prime} 21.222^{\prime \prime} \mathrm{W}$ | Nashua North | P | MI | B/CWF | June 1 to Sept 30 | N/A |  | 0 |
| Wright to Dracut Pipeline Segment | Rockingham | Londonderry | J | 30.13 | LD-L-S002 | UNT to Nesenkeag Brook | $42^{\circ} 50^{\prime} 23.785^{\prime \prime} \mathrm{N}$ | $71^{\circ} 24^{\prime} 35.911^{\prime \prime} \mathrm{W}$ | Nashua North | NF | I | B |  | II |  | 69 |
| Wright to Dracut Pipeline Segment | Hillsborough | Hudson | J | 31.44 | LD-Y-S001 | UNT to Chase Brook | $42^{\circ} 49^{\prime} 28.224^{\prime \prime} \mathrm{N}$ | $71^{\circ} 23^{\prime} 41.737^{\prime \prime} \mathrm{W}$ | Nashua North | I | MI | B/CWF | June 1 to Sept 30 | N/A | Wild Brook Trout | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Hudson | J | 32.37 | HD-T-S001 | UNT to Robinson Pond | $42^{\circ} 48^{\prime} 50.669^{\prime \prime} \mathrm{N}$ | $71^{\circ} 23^{\prime} 0.248^{\prime \prime} \mathrm{W}$ | Nashua North | NF | MI | B/CWF | June 1 to Sept 30 | II |  | 3 |
| Wright to Dracut Pipeline Segment | Hillsborough | Hudson | J | 32.37 | HD-T-S001 | UNT to Robinson Pond | $42^{\circ} 48^{\prime} 50.544^{\prime \prime} \mathrm{N}$ | $71^{\circ} 23^{\prime} 0.983^{\prime \prime} \mathrm{W}$ | Nashua North | NF | MI | B/CWF | June 1 to Sept 30 | N/A |  | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Hudson | J | 32.91 | HD-G-S002 | UNT to Robinson Pond | $42^{\circ} 48^{\prime} 29.282^{\prime \prime} \mathrm{N}$ | $71^{\circ} 22^{\prime} 35.887{ }^{\prime \prime} \mathrm{W}$ | Nashua North | I | MI | B/CWF | June 1 to Sept 30 | II |  | 3 |
| Wright to Dracut Pipeline Segment | Hillsborough | Hudson | J | 33.04 | HD-G-S001 | UNT to Robinson Pond | $42^{\circ} 48^{\prime} 24.031^{\prime \prime} \mathrm{N}$ | $71^{\circ} 22^{\prime} 29.836{ }^{\prime \prime} \mathrm{W}$ | Windham | I | MI | B/CWF | June 1 to Sept 30 | N/A |  | 0 |
| Wright to Dracut Pipeline Segment | Rockingham | Windham | J | 34 | HD-L-S001 | Beaver Brook | $42^{\circ} 47^{\prime} 44.654^{\prime \prime} \mathrm{N}$ | $71^{\circ} 21^{\prime} 48.470{ }^{\prime \prime} \mathrm{W}$ | Windham | P | I | B/CWF | June 1 to Sept 30 | II |  | 18 |
| Wright to Dracut Pipeline Segment | Rockingham | Windham | J | 34.02 | HD-L-S001 | Beaver Brook | $42^{\circ} 47^{\prime} 43.854^{\prime \prime} \mathrm{N}$ | $71^{\circ} 21^{\prime} 47.597{ }^{\prime \prime} \mathrm{W}$ | Windham | P | I | B/CWF | June 1 to Sept 30 | II |  | 44 |
| Wright to Dracut Pipeline Segment | Rockingham | Windham | J | 34.02 | SPI-634 | Beaver Brook | $42^{\circ} 47^{\prime} 43.4977^{\prime \prime} \mathrm{N}$ | $71^{\circ} 21^{\prime} 47.790^{\prime \prime} \mathrm{W}$ | Windham | P | MI | B/CWF | June 1 to Sept 30 | N/A |  | 0 |
| Wright to Dracut Pipeline Segment | Rockingham | Windham | J | 34.02 | HD-L-S001 | Beaver Brook | $42^{\circ} 47^{\prime} 43.4977^{\prime \prime} \mathrm{N}$ | $71^{\circ} 21^{\prime} 47.790{ }^{\prime \prime} \mathrm{W}$ | Windham | P | MI | B/CWF | June 1 to Sept 30 | N/A |  | 0 |
| Wright to Dracut Pipeline Segment | Rockingham | Windham | J | 34.03 | SPI-634 | Beaver Brook | $42^{\circ} 47^{\prime} 43.516^{\prime \prime} \mathrm{N}$ | $71^{\circ} 21^{\prime} 47.228{ }^{\prime \prime} \mathrm{W}$ | Windham | P | I | B/CWF | June 1 to Sept 30 | II |  | 50 |
| Wright to Dracut Pipeline Segment | Rockingham | Windham | J | 34.03 | SPI-634 | Beaver Brook | $42^{\circ} 47^{\prime} 43.526^{\prime \prime} \mathrm{N}$ | $71^{\circ} 21^{\prime} 47.066{ }^{\prime \prime} \mathrm{W}$ | Windham | P | MI | B/CWF | June 1 to Sept 30 | N/A |  | 0 |
| Wright to Dracut Pipeline Segment | Rockingham | Windham | J | 34.03 | HD-L-S001 | Beaver Brook | $42^{\circ} 47^{\prime} 43.526^{\prime \prime} \mathrm{N}$ | $71^{\circ} 21^{\prime} 47.0666^{\prime \prime} \mathrm{W}$ | Windham | P | MI | B/CWF | June 1 to Sept 30 | N/A |  | 0 |
| Wright to Dracut Pipeline Segment | Rockingham | Windham | J | 34.26 | WD-K-S001 | UNT to Beaver Brook | $42^{\circ} 47^{\prime} 33.173^{\prime \prime} \mathrm{N}$ | $71^{\circ} 21^{\prime} 38.599^{\prime \prime} \mathrm{W}$ | Windham | NF | MI | B/CWF | June 1 to Sept 30 | N/A |  | 0 |
| Wright to Dracut Pipeline Segment | Rockingham | Windham | J | 34.99 | WD-D-S002 | UNT to Beaver Brook | $42^{\circ} 47^{\prime} 4.493^{\prime \prime} \mathrm{N}$ | $71^{\circ} 21^{\prime} 9.062^{\prime \prime} \mathrm{W}$ | Windham | P | I | B/CWF | June 1 to Sept 30 | II |  | 17 |
| Wright to Dracut Pipeline Segment | Rockingham | Windham | J | 35 | WD-D-S002 | UNT to Beaver Brook | $42^{\circ} 47^{\prime} 3.976{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 21^{\prime} 8.547^{\prime \prime} \mathrm{W}$ | Windham | P | MI | B/CWF | June 1 to Sept 30 | II |  | 7 |
| Wright to Dracut Pipeline Segment | Rockingham | Windham | J | 35 | SPI-638 | UNT to Beaver Brook | $42^{\circ} 47^{\prime} 4.082^{\prime \prime} \mathrm{N}$ | $71^{\circ} 21^{\prime} 8.236^{\prime \prime} \mathrm{W}$ | Windham | I | MI | B/CWF | June 1 to Sept 30 | N/A |  | 0 |
| Wright to Dracut Pipeline Segment | Rockingham | Windham | J | 35.01 | WD-D-S002 | UNT to Beaver Brook | $42^{\circ} 47^{\prime} 3.768^{\prime \prime} \mathrm{N}$ | $71^{\circ} 21^{\prime} 8.339^{\prime \prime} \mathrm{W}$ | Windham | P | MI | B/CWF | June 1 to Sept 30 | II |  | 4 |
| Wright to Dracut Pipeline Segment | Rockingham | Windham | J | 35.31 | SPI-643 | UNT to Beaver Brook | $42^{\circ} 46^{\prime} 50.9699^{\prime \prime} \mathrm{N}$ | $71^{\circ} 20^{\prime} 55.867^{\prime \prime} \mathrm{W}$ | Windham | I | I | B/CWF | June 1 to Sept 30 | II |  | 27 |
| Wright to Dracut Pipeline Segment | Rockingham | Windham | J | 35.77 | SPI-645 | UNT to Beaver Brook | $42^{\circ} 46^{\prime} 31.351^{\prime \prime} \mathrm{N}$ | $71^{\circ} 20^{\prime} 41.717^{\prime \prime} \mathrm{W}$ | Windham | I | I | B/CWF | June 1 to Sept 30 | II |  | 46 |
| Wright to Dracut Pipeline Segment | Rockingham | Windham | J | 35.78 | SPI-646 | UNT to Beaver Brook | $42^{\circ} 46^{\prime} 27.439^{\prime \prime} \mathrm{N}$ | $71^{\circ} 20^{\prime} 47.773$ " W | Windham | I | MI | B/CWF | June 1 to Sept 30 | N/A |  | 0 |

[^8]Table 3.8 - Waterbodies Associated with the Project in New Hampshire (continued)

| Table 3.8 (cont'd) Waterbodies Associated with the Project in New Hampshire |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Facility Name | County | Town | Segment ${ }^{1}$ | Nearest Milepost $^{2}$ | $\underset{\mathbf{I D}^{3}}{\text { Waty }}$ | Waterbody Name ${ }^{4}$ | Latitude | Longitude | Quadrangle | Type ${ }^{5}$ | FERC <br> Class ${ }^{6}$ | Water Quality Designation / Fishery Classification ${ }^{7}$ |  | $\underset{\text { Method }{ }^{, 10}}{\text { Crossing }^{10}}$ | Comments ${ }^{11}$ | $\underset{\text { Crossing }}{\substack{\text { Length } \\ \hline}}$ (feet) |
| Wright to Dracut Pipeline Segment | Rockingham | Windham | J | 36.04 | SPI-647 | UNT to Beaver Brook | $42^{\circ} 46^{\prime} 21.108^{\prime \prime} \mathrm{N}$ | $71^{\circ} 20^{\prime 2} 27.743^{\prime \prime} \mathrm{W}$ | Windham | I | MI | B/CWF | June 1 to Sept 30 | N/A |  | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 36.32 | PH-K-S001 | UNT to Beaver Brook | $42^{\circ} 46^{\prime} 7.7611^{\prime \prime} \mathrm{N}$ | $71^{\circ} 20^{\prime} 16.6966^{\prime \prime} \mathrm{W}$ | Windham | NF | MI | B/CWF | June 1 to Sept 30 | N/A |  | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 36.52 | SPI-648 | UNT to Beaver Brook | $42^{\circ} 46^{\prime} 7.193{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 20^{\prime} 7.071^{\prime \prime} \mathrm{W}$ | Windham | I | I | B/CWF | June 1 to Sept 30 | II |  | 19 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 36.64 | SPI-652 | UNT to Beaver Brook | $42^{\circ} 46^{\prime 2.412 " N}$ | $71^{\circ} 20^{\prime} 1.902^{\prime \prime} \mathrm{W}$ | Windham | I | I | B/CWF | June 1 to Sept 30 | II |  | 13 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 36.8 | SPI-655 | UNT to Beaver Brook | $42^{\circ} 45^{\prime} 55.233^{\prime \prime} \mathrm{N}$ | $71^{\circ} 19^{\prime} 56.457{ }^{\prime \prime} \mathrm{W}$ | Windham | I | I | B/CWF | June 1 to Sept 30 | II |  | 14 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 36.87 | SPI-656 | UNT to Beaver Brook | $42^{\circ} 45^{\prime} 51.422^{\prime \prime} \mathrm{N}$ | $71^{\circ} 20^{\circ} 0.107{ }^{\prime \prime} \mathrm{W}$ | Windham | I | мI | B/CWF | June 1 to Sept 30 | N/A |  | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 37.39 | SPI-657 | UNT to Beaver Brook | $42^{\circ} 45^{\prime} 24.907^{\prime \prime} \mathrm{N}$ | $71^{\circ} 19^{\prime} 45.554{ }^{\prime \prime} \mathrm{W}$ | Windham | I | MI | B/CWF | June 1 to Sept 30 | N/A |  | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 38 | PH-Y-S001 | UNT to Beaver Brook | $42^{\circ} 45^{\prime} 0.927{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 19^{\prime} 20.612^{\prime \prime} \mathrm{W}$ | Windham | I | мI | B/CWF | June 1 to Sept 30 | II |  | 2 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 38.69 | SPI-661 | Golden Brook | $42^{\circ} 44^{\prime} 29.8933^{\prime \prime} \mathrm{N}$ | $71^{\circ} 18^{\prime} 56.474{ }^{\prime \prime} \mathrm{W}$ | Lowell | P | MI | в |  | N/A |  | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 38.72 | SPI-660 | Golden Brook | $42^{\circ} 44^{\prime} 28.930^{\prime \prime} \mathrm{N}$ | $71^{\circ} 18^{\prime} 54.919{ }^{\prime \prime} \mathrm{W}$ | Lowell | P | I | в |  | II |  | 19 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 38.72 | PH-X-S001 | Golden Brook | $42^{\circ} 44^{\prime} 28.674^{\prime \prime} \mathrm{N}$ | $71^{\circ} 18^{\prime} 55.300{ }^{\prime \prime} \mathrm{W}$ | Lowell | P | MI | B |  | N/A |  | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 38.73 | PH-X-S001 | Golden Brook | $42^{\circ} 44^{\prime} 28.2655^{\prime \prime} \mathrm{N}$ | $71^{\circ} 18^{\prime} 54.636{ }^{\prime \prime} \mathrm{W}$ | Lowell | P | MI | в |  | N/A |  | 0 |
| Haverhill Lateral | Rockingham | Salem | P | 6.96 | SPI-728 | UNT to Harris Brook | $42^{\circ} 44^{\prime} 37.929^{\prime \prime} \mathrm{N}$ | $71^{\circ} 12^{\prime} 40.128{ }^{\prime \prime} \mathrm{W}$ | Lawrence | RUB | I | в |  | II |  | 38 |
| Haverhill Lateral | Rockingham | Salem | P | 7.04 | SPI-730 | UNT to Harris Brook | $42^{\circ} 44^{\prime} 40.4611^{\prime \prime} \mathrm{N}$ | $71^{\circ} 12^{\prime} 35.844{ }^{\prime \prime} \mathrm{W}$ | Lawrence | P | I | в |  | II |  | 43 |
| Haverhill Lateral | Rockingham | Salem | P | 7.39 | SPI-731 | UNT to Harris Brook | $42^{\circ} 44^{\prime} 45.197{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 12^{\prime} 11.948{ }^{\prime \prime} \mathrm{W}$ | Lawrence | P | MI | B |  | N/A |  | 0 |
| Haverhill Lateral | Rockingham | Salem | P | 7.52 | SPI-732 | World End Brook | $42^{\circ} 44^{\prime} 54.935^{\prime \prime} \mathrm{N}$ | $71^{\circ} 12^{\prime} 8.668^{\prime \prime} \mathrm{W}$ | Lawrence | P | I | в |  | II |  | 31 |
| Haverhill Lateral | Rockingham | Salem | P | 7.67 | SPI-732 | World End Brook | $42^{\circ} 45^{\prime} 1.938^{\prime \prime} \mathrm{N}$ | $71^{\circ} 12^{\prime} 3.706^{\prime \prime} \mathrm{W}$ | Salem Depot | P | I | B |  | II |  | 51 |
| Haverhill Lateral | Rockingham | Salem | P | 8.84 | SPI-735 | UNT to World End Pond | $42^{\circ} 45^{\prime} 46.844^{\prime \prime} \mathrm{N}$ | $71^{\circ} 11^{\prime} 11.262^{\prime \prime} \mathrm{W}$ | Salem Depot | I | MI | B |  | N/A |  | 0 |
| Haverhill Lateral | Rockingham | Salem | P | 8.86 | SPI-735 | UNT to World End Pond | $42^{\circ} 45^{\prime} 48.143^{\prime \prime} \mathrm{N}$ | $71^{\circ} 11^{\prime} 10.436{ }^{\prime \prime} \mathrm{W}$ | Salem Depot | I | мI | в |  | N/A |  | 0 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 0.19 | SPI-748 | UNT to Spaulding Brook | $42^{\circ} 46^{\prime} 18.885^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime 11.484 " ~ W ~}$ | Milford | I | I | B/CWF | June 1 to Sept 30 | II |  | 43 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 0.2 | SPI-747 | UNT to Spaulding Brook | $42^{\circ} 46^{\prime} 18.675^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime} 11.191{ }^{\prime \prime} \mathrm{W}$ | Milford | I | MI | B/CWF | June 1 to Sept 30 | N/A |  | 0 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 0.33 | SPI-749 | Spaulding Brook | $42^{\circ} 46^{\prime} 12.091^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime} 12.461^{\prime \prime} \mathrm{W}$ | Milford | P | I | B/CWF | June 1 to Sept 30 | II |  | 41 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 0.34 | SPI-750 | Spaulding Brook | $42^{\circ} 46^{\prime} 11.347^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime} 12.770{ }^{\text {W }}$ | Milford | P | I | B/CWF | June 1 to Sept 30 | II |  | 53 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 0.9 | SPI-756 | UNT to Spaulding Brook | $42^{\circ} 45^{\prime} 42.975^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime} 18.242^{\prime \prime} \mathrm{W}$ | Milford | P | I | B/CWF | June 1 to Sept 30 | II |  | 16 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 0.9 | SPI-756 | UNT to Spaulding Brook | $42^{\circ} 45^{\prime} 42.713^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime} 18.273{ }^{\prime \prime} \mathrm{W}$ | Milford | P | MA | B/CWF | June 1 to Sept 30 | II |  | 128 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 1.21 | SPI-757 | UNT to Spaulding Brook | $42^{\circ} 45^{\prime} 28.847^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime} 28.738{ }^{\prime \prime} \mathrm{W}$ | Milford | I | I | B/CWF | June 1 to Sept 30 | II |  | 70 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 1.28 | SPI-757 | UNT to Spaulding Brook | $42^{\circ} 45^{\prime} 25.843^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime} 30.211^{\prime \prime} \mathrm{W}$ | Milford | I | I | B/CWF | June 1 to Sept 30 | II |  | 95 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 1.66 | SPI-758 | UNT to Gould Mill Brook | $42^{\circ} 45^{\prime} 7.096{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime 21.768 " W}$ | Milford | I | I | B/CWF | June 1 to Sept 30 | II |  | 14 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 1.7 | SPI-759 | UNT to Gould Mill Brook | $42^{\circ} 45^{\prime} 4.796^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime 2} 21.579{ }^{\prime \prime} \mathrm{W}$ | Milford | I | I | B/CWF | June 1 to Sept 30 | II |  | 16 |

[^9]Table 3.8 - Waterbodies Associated with the Project in New Hampshire (continued)

| Table 3.8 (cont'd) <br> Waterbodies Associated with the Project in New Hampshire |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Facility Name | County | Town | Segment ${ }^{1}$ | Nearest Milepost ${ }^{2}$ | $\begin{gathered} \text { Waterbody } \\ \mathbf{I D}^{3} \end{gathered}$ | Waterbody Name ${ }^{4}$ | Latitude | Longitude | Quadrangle | Type ${ }^{5}$ | FERC <br> Class ${ }^{6}$ | Water Quality Designation / Fishery Classification ${ }^{7}$ | $\underset{\text { Restriction }}{\text { Timing }}$ | $\begin{aligned} & \text { Crossing, } \\ & \text { Method }{ }^{1,10} \end{aligned}$ | Comments ${ }^{11}$ | $\underset{\substack{\text { Crossing } \\ \text { Length } \\ \\ \hline \\ \hline}}{ }$ (feet) |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 2.58 | SPI-760 | Gould Mill Brook | $42^{\circ} 44^{\prime} 19.320^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime} 17.842^{\prime \prime} \mathrm{W}$ | Townsend | P | I | B/CWF | June 1 to Sept 30 | II |  | 22 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 2.68 | SPI-762 | UNT to Gould Mill Brook | $42^{\circ} 44^{\prime} 14.2388^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime} 17.424^{\prime \prime} \mathrm{W}$ | Townsend | I | I | B/CWF | June 1 to Sept 30 | II |  | 28 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 2.76 | SPI-762 | UNT to Gould Mill Brook | $42^{\circ} 44^{\prime} 9.955{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime} 17.895^{\prime \prime} \mathrm{W}$ | Townsend | I | I | B/CWF | June 1 to Sept 30 | II |  | 24 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 2.8 | SPI-762 | UNT to Gould Mill Brook | $42^{\circ} 44^{\prime} 7.602^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime} 18.5888^{\prime \prime} \mathrm{W}$ | Townsend | I | I | B/CWF | June 1 to Sept 30 | II |  | 32 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 3.32 | NHD-735 | UNT to Mason Brook | $42^{\circ} 43^{\prime} 42.186^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime} 28.190^{\prime \prime} \mathrm{W}$ | Townsend | P | MI | B/CWF | June 1 to Sept 30 | II |  | 5 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 3.48 | SPI-766 | UNT to Mason Brook | $42^{\circ} 43^{\prime} 37.770^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime} 37.090{ }^{\prime \prime} \mathrm{W}$ | Townsend | I | I | B/CWF | June 1 to Sept 30 | II |  | 21 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 4.36 | SPI-768 | UNT to Mason Brook | $42^{\circ} 43^{\prime} 0.978{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 45^{\prime} 9.567{ }^{\prime \prime} \mathrm{W}$ | Ashby | P | I | B/CWF | June 1 to Sept 30 | II |  | 46 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 4.37 | SPI-769 | UNT to Mason Brook | $42^{\circ} 43^{\prime} 0.627{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 45^{\prime} 9.958^{\prime \prime} \mathrm{W}$ | Ashby | P | MA | B/CWF | June 1 to Sept 30 | II |  | 1346 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 4.64 | SPI-770 | Mason Brook | $42^{\circ} 42^{\prime} 49.267^{\prime \prime} \mathrm{N}$ | $71^{\circ} 45^{\prime} 21.084^{\prime \prime} \mathrm{W}$ | Ashby | P | I | B/CWF | June 1 to Sept 30 | II | Wild Brook Trout | 20 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 4.65 | SPI-770 | Mason Brook | $42^{\circ} 42^{\prime} 48.608^{\prime \prime} \mathrm{N}$ | $71^{\circ} 45^{\prime} 21.770^{\prime \prime} \mathrm{W}$ | Ashby | P | I | B/CWF | June 1 to Sept 30 | II | Wild Brook Trout | 28 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Pipeline Subtotal | 5,329 |
| Aboveground Facilities |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Market Path Mid Station 4 | Hillsborough | New Ipswich | J | 5.81 | NI-R-S002 | UNT to Souhegan River | $42^{\circ} 46^{\prime} 58.57^{\prime \prime} \mathrm{N}$ | $71^{\circ} 49^{\prime} 56.850^{\prime \prime} \mathrm{W}$ | Greenville | I | MI | B/CWF | June 1 to Sept 30 | N/A |  | N/A |
|  |  |  |  |  |  |  |  |  |  |  |  |  | A | boveground F | Facilities Subtotal | 0 |
| Contractor Yards ${ }^{13}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| NED-J-0200 | Hillsborough | Milford | J | 14.88 | NHD-702 | Tucker Brook | $42^{\circ} 50{ }^{\prime} 24.795{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 41^{\prime} 6.065{ }^{\prime \prime} \mathrm{W}$ | Milford | P | MI | B/CWF | June 1 to Sept 30 | N/A |  | N/A |
| NED-J-0200 | Hillsborough | Milford | J | 14.88 | NHD-703 | Tucker Brook | $42^{\circ} 50^{\prime} 24.260^{\prime \prime} \mathrm{N}$ | $71^{\circ} 41^{\prime} 7.997{ }^{\prime \prime} \mathrm{W}$ | Milford | P | MI | B/CWF | June 1 to Sept 30 | N/A |  | N/A |
| NED-I-0201 | Cheshire | Jaffrey | I | 15.92 | NHD-836 | UNT to Cummings Meadow Reservoir | $42^{\circ} 49^{\prime} 49.256^{\prime \prime} \mathrm{N}$ | $72^{\circ} 6^{\prime} 7.761{ }^{\prime \prime} \mathrm{W}$ | Jaffrey | I | мI | в |  | N/A |  | N/A |
| NED-J-0401 | Merrimack | Hooksett | J | 29.79 | NHD-837 | UNT to Peters Brook | $43^{\circ} 4^{\prime} 20.307{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 25^{\prime} 39.0988^{\prime \prime} \mathrm{W}$ | Hooksett | C | MI | в |  | N/A |  | N/A |
| NED-J-0401 | Merrimack | Hooksett | J | 29.79 | NHD-839 | UNT to Peters Brook | $43^{\circ} 4^{\prime} 23.112^{\prime \prime} \mathrm{N}$ | $71^{\circ} 25^{\prime} 45.168^{\prime \prime} \mathrm{W}$ | Hooksett | AP | MI | B |  | N/A |  | N/A |
| NED-J-0401 | Merrimack | Hooksett | J | 29.79 | NHD-842 | UNT to Peters Brook | $43^{\circ} 4^{\prime} 23.112^{\prime \prime} \mathrm{N}$ | $71^{\circ} 25^{\prime} 45.168^{\prime \prime} \mathrm{W}$ | Hooksett | AP | MI | в |  | N/A |  | N/A |
| NED-J-0401 | Merrimack | Hooksett | J | 29.79 | NHD-843 | UNT to Peters Brook | $43^{\circ} 4^{\prime} 20.307{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 25^{\prime} 39.098{ }^{\prime \prime} \mathrm{W}$ | Hooksett | C | MI | в |  | N/A |  | N/A |
| NED-J-0401 | Merrimack | Hooksett | J | 29.79 | NHD-841 | Peters Brook | $43^{\circ} 4^{\prime} 16.5766^{\prime \prime}$ | $71^{\circ} 25^{\prime} 58.393{ }^{\prime \prime} \mathrm{W}$ | Hooksett | AP | MI | B |  | N/A |  | N/A |
| NED-J-0401 | Merrimack | Hooksett | J | 29.79 | NHD-837 | UNT to Peters Brook | $43^{\circ} 4^{\prime} 21.355^{\prime \prime} \mathrm{N}$ | 71 ${ }^{\circ} 25^{\prime} 40.229^{\prime \prime} \mathrm{W}$ | Hooksett | C | Mi | B |  | N/A |  | N/A |
| NED-J-0401 | Merrimack | Hooksett | J | 29.79 | NHD-843 | UNT to Peters Brook | $43^{\circ} 4^{\prime} 21.355^{\prime \prime} \mathrm{N}$ | $71^{\circ} 25^{\prime} 40.229^{\prime \prime} \mathrm{W}$ | Hooksett | C | мI | в |  | N/A |  | N/A |
| NED-J-0401 | Merrimack | Hooksett | J | 29.79 | NHD-838 | Peters Brook | $43^{\circ} 4^{\prime} 16.509{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 25^{\prime} 58.468^{\prime \prime} \mathrm{W}$ | Hooksett | AP | MI | B |  | N/A |  | N/A |
| NED-J-0401 | Merrimack | Hooksett | J | 29.79 | NHD-841 | Peters Brook | $43^{\circ} 4^{\prime} 16.509{ }^{\text {N }}$ | $71^{\circ} 25^{\prime} 58.468^{\prime \prime} \mathrm{W}$ | Hooksett | AP | мI | B |  | N/A |  | N/A |
| NED-J-0500 | Hillsborough | Pelham | J | 37.31 | SPI-657 | UNT to Beaver Brook | $42^{\circ} 45^{\prime} 25.019^{\prime \prime} \mathrm{N}$ | 71 ${ }^{\circ} 19^{\prime} 44.853^{\prime \prime} \mathrm{W}$ | Hillsborough | I | MI | B |  | N/A |  | N/A |

[^10]Table 3.8 - Waterbodies Associated with the Project in New Hampshire

| Table 3.8 <br> Waterbodies Associated with the Project in New Hampshire |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Facility Name | County | Town | Segment ${ }^{1}$ | Nearest Milepost ${ }^{2}$ | $\begin{gathered} \text { Waterbody } \\ \mathbf{I D}^{3} \end{gathered}$ | Waterbody Name ${ }^{4}$ | Latitude | Longitude | Quadrangle | Type ${ }^{5}$ | $\begin{aligned} & \text { FERC } \\ & \text { Class }^{2} \end{aligned}$ | Water Quality Designation / Fishery Classification ${ }^{7}$ | $\underset{\text { Restriction }}{\text { Timing }}$ | $\left\|\begin{array}{\|c\|} \text { Crossing } \\ \text { Method }^{1010} \end{array}\right\|$ | Comments ${ }^{11}$ | $\underset{\substack{\text { Crossing } \\ \text { Length } \\ \\ \hline \\ \hline}}{ }$ (feet) |
| NED-P-0100 | Rockingham | Salem | P | 7.56 | SPI-732 | World End Brook | $42^{\circ} 44^{\prime} 54.3799^{\prime \prime}$ | $71^{\circ} 12^{\prime} 8.150^{\prime \prime} \mathrm{W}$ | Rockingham | P | MI | в |  | N/A |  | N/A |
| NED-P-0100 | Rockingham | Salem | P | 7.56 | SPI-732 | World End Brook | $42^{\circ} 44^{\prime} 55.792^{\prime \prime} \mathrm{N}$ | $71^{\circ} 12^{\prime} 8.697^{\prime \prime} \mathrm{W}$ | Rockingham | P | MI | B |  | N/A |  | N/A |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | Contractor | or Yards Subtotal | 0 |
| Access Roads ${ }^{13}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| NED-TAR-H-2101 | Cheshire | Winchester | I | 0.32 | NHD-874 | Black Brook | $42^{\circ} 43^{\prime} 37.554^{\prime \prime} \mathrm{N}$ | 720 $22^{\prime} 23.473{ }^{\prime \prime} \mathrm{W}$ | Mount Grace | P | MI | в |  | N/A |  | 3 |
| NED-TAR-I-0001 | Cheshire | Winchester | I | 1.3 | NHD-875 | Black Brook | $42^{\circ} 43^{\prime} 59.252^{\prime \prime} \mathrm{N}$ | 720 $21^{\prime} 57.782^{\prime \prime} \mathrm{W}$ | Mount Grace | P | MI | в |  | N/A |  | 3 |
| NED-TAR-I-0200 | Cheshire | Richmond | I | 4.03 | NHD-876 | Brickyard Brook | $42^{\circ} 45^{\prime} 46.553^{\prime \prime} \mathrm{N}$ | 720 $19^{\prime} 24.521{ }^{\prime \prime} \mathrm{W}$ | West Swanzey | P | MI | B/CWF | June 1 to Sept 30 | N/A | Wild Brook Trout | 3 |
| NED-TAR-I-0200 | Cheshire | Richmond | I | 4.03 | NHD-685 | Brickyard Brook | $42^{\circ} 46^{\prime} 15.4933^{\prime \prime} \mathrm{N}$ | 720 $19^{\prime} 27.908{ }^{\prime \prime} \mathrm{W}$ | West Swanzey | I | MI | B/CWF | June 1 to Sept 30 | N/A | Wild Brook Trout | 3 |
| NED-TAR-I-0200 | Cheshire | Winchester | I | 4.03 | NHD-376 | UNT to Roaring Brook | $42^{\circ} 45^{\prime} 41.867^{\prime \prime} \mathrm{N}$ | 720 $20^{\prime} 34.654{ }^{\prime \prime} \mathrm{W}$ | West Swanzey | I | MI | B/CWF | June 1 to Sept 31 | N/A |  | 3 |
| NED-TAR-I-0200 | Cheshire | Richmond | I | 4.03 | NHD-683 | UNT to Roaring Brook | $42^{\circ} 45^{\prime} 49.545^{\prime \prime} \mathrm{N}$ | $72^{\circ} 20^{\prime} 5.317^{\prime \prime} \mathrm{W}$ | West Swanzey | I | MI | B/CWF | June 1 to Sept 32 | N/A |  | 3 |
| NED-TAR-I-0200 | Cheshire | Richmond | I | 4.03 | NHD-684 | UNT to Roaring Brook | $42^{\circ} 45^{\prime} 51.7311^{\prime \prime} \mathrm{N}$ | 720 $19^{\prime} 54.796{ }^{\prime \prime} \mathrm{W}$ | West Swanzey | I | MI | B/CWF | June 1 to Sept 30 | N/A |  | 3 |
| NED-TAR-I-1101 | Cheshire | Rindge | I | 21.21 | NHD-877 | UNT to Tarbell Brook | $42^{\circ} 44^{\prime} 33.812^{\prime \prime} \mathrm{N}$ | $72^{\circ}{ }^{4} 2.9333^{\prime \prime} \mathrm{W}$ | Winchendon | P | MI | B/CWF | June 1 to Sept 30 | N/A |  | 3 |
| NED-TAR-I-1900 | Cheshire | Rindge | I | 25.19 | NHD-878 | UNT to Lake Monomonac | $42^{\circ} 44^{\prime} 22.037{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 59^{\prime} 36.467{ }^{\prime \prime} \mathrm{W}$ | Ashburnham | P | MI | B |  | N/A |  | 3 |
| NED-TAR-I-1900 | Cheshire | Rindge | I | 25.19 | NHD-879 | UNT to Lake Monomonac | $42^{\circ} 44^{\prime} 22.200^{\prime \prime} \mathrm{N}$ | $71^{\circ} 59^{\prime} 36.474{ }^{\prime \prime} \mathrm{W}$ | Ashburnham | P | MI | в |  | N/A |  | 3 |
| NED-TAR-J-1000 | Hillsborough | Brookline | J | 12.03 | NHD-880 | UNT to Spaulding Brook | $42^{\circ} 46^{6} 6.585{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 42^{\prime} 27.241{ }^{\text {W }}$ W | Milford | I | MI | в |  | N/A |  | 3 |
| NED-TAR-J-1000 | Hillsborough | Milford | J | 12.03 | NHD-881 | Mitchell Brook | $42^{\circ} 46^{\prime} 38.5377^{\prime \prime} \mathrm{N}$ | $71^{\circ} 42^{\prime} 43.665^{\prime \prime} \mathrm{W}$ | Milford | P | MI | в |  | N/A |  | 3 |
| NED-TAR-J-2300 | Rockingham | Londonderry | J | 29.16 | NHD-882 | Nesenkeag Brook | $42^{\circ} 50^{\prime} 40.183^{\prime \prime} \mathrm{N}$ | 71 ${ }^{\circ} 25^{\prime} 22.007{ }^{\prime \prime} \mathrm{W}$ | Nashua North | P | MI | в |  | N/A |  | 3 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | Acce | ess Road Subtotal | 39 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | Total | Crossing Length | 5,368 |

 hotom
${ }^{2}$ Nearest MP for access roads indicates the point at which the access road connects with the pipeline ROW, or closest milepost to ROW if there is no direct connection.
'Waterbody ID in the form of NHD-XXX and NHD-R-XXX are USGS-NHD waterbodies, and waterbody ID in the form SPI-XXX are photo interpeted waterbodies. All other waterbody ID's represent field surveyed data.
Unnamed tributary; waterbody is not mapped as a tributary on available GIS data layers; tributary name was identified based on review of USGS topographical mapping.
$\mathrm{P}=$ Perennial; $\mathrm{I}=$ Intermittent; $\mathrm{E}=$ Ephemeral; $\mathrm{NF}=\mathrm{No}$ Flow; $\mathrm{AP}=$ Artificial Path; $\mathrm{C}=$ Connector
MI = Minor ( $<10$ feet); I $=$ Intermediate ( $10-100$ feet); MA $=$ Major ( $>100$ feet)
${ }^{\top} \mathrm{CWF}=$ Cold Water Fishery, $\mathrm{A}=$ Class A, B= Class B
Consultation with NHDES is ongoing. CWFs timing restrictions is based on FERC Plan and Procedures recommendations.
I = Conventional, Wet Crossing Method; II = Dry Crossing Method including Flume and Dam and Pump; III = Conventional Bore; IV = Horizontal Directional Drill; N/A = waterbody not crossed by the pipeline. Intermittent streams containing discernable flow at the time of construction will be crossed using a dry crossing method.



Existing waterbodies will not be impacted. Any improvements to existing culverts will be permitted as necessary
Source: Northeast Energy Direct Project, Attachment A, Section 3 - Attachment 1 NE USACE 404, Table 1.1-2

Table 3.9 - Wetlands Associated with the Project in New Hampshire
Table 3.9
Wetlands Associated with the Project in New Hampshire

| Facility Name | County | Town | Segment ${ }^{1}$ | Table 3.9 <br> Wetlands Associated with the Project in New Hampshire |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Milepost ${ }^{2}$ |  | $\underset{\mathbf{I D}^{3,4}}{\text { Wetland }}$ | Wetland Class ${ }^{5}$ | State Wetland Classification | Latitude | Longitude | Quadrangle | Crossing Method | Comments | Wetland Impact (acres) |  |  |  |  |  |  | $\begin{gathered} \text { Crossing } \\ \text { Length } \\ \text { (feet })^{11} \\ \hline \end{gathered}$ |
|  |  |  |  |  |  | Construction ${ }^{8}$ |  |  |  |  |  |  |  | Operation' |  |  |  |
|  |  |  |  | Begin | End |  |  |  |  |  |  |  |  | PEM | PFO | PSS | Other ${ }^{10}$ | PFO | PSS | Other ${ }^{10}$ |  |
| Pipeline Facilities |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Wright to Dracut Pipeline Segment | Cheshire | Winchester | I | 0.19 | 0.23 |  | NWI-1097 | PFO | N/A | $42^{\circ} 43^{\prime} 37.361^{\prime \prime} \mathrm{N}$ | 720 $23^{\prime} 26.260^{\prime \prime} \mathrm{W}$ | Northfield | II |  | 0.00 | 0.23 | 0.00 | 0.00 | 0.14 | 0.00 | 0.00 | 198 |
| Wright to Dracut Pipeline Segment | Cheshire | Winchester | I | 0.75 | 0.80 | NWI-1098 | PFO | N/A | $42^{\circ} 44^{\prime} 2.307{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 23^{\prime} 6.319^{\prime \prime} \mathrm{W}$ | Northfield | II |  | 0.00 | 0.35 | 0.00 | 0.00 | 0.14 | 0.00 | 0.00 | 198 |
| Wright to Dracut Pipeline Segment | Cheshire | Winchester | I | 1.92 | 1.99 | NWI-1099 | PFO | N/A | $42^{\circ} 44^{\prime} 9.4699^{\prime N}$ | $72^{\circ} 21^{\prime} 44.425^{\prime \prime} \mathrm{W}$ | Mount Grace | II |  | 0.00 | 0.65 | 0.00 | 0.00 | 0.25 | 0.00 | 0.00 | 367 |
| Wright to Dracut Pipeline Segment | Cheshire | Winchester | I | 1.98 | 2.04 | NWI-1100 | PSS | N/A | $42^{\circ} 44^{\prime} 10.022^{\prime \prime} \mathrm{N}$ | 720 $21^{\prime} 39.593^{\prime \prime} \mathrm{W}$ | Mount Grace | II |  | 0.00 | 0.00 | 0.47 | 0.00 | 0.00 | 0.06 | 0.00 | 282 |
| Wright to Dracut Pipeline Segment | Cheshire | Winchester | I | 3.89 | 3.96 | wc-x-w004 | PFO | N/A | $42^{\circ} 45^{\prime} 17.2844^{\prime \prime} \mathrm{N}$ | 720 $20^{\prime} 49.289^{\prime \prime} \mathrm{W}$ | West Swanzey | II |  | 0.00 | 0.41 | 0.00 | 0.00 | 0.15 | 0.00 | 0.00 | 248 |
| Wright to Dracut Pipeline Segment | Cheshire | Winchester | I | 3.96 | 3.97 | wc-X-w004 | PFO | N/A | $42^{\circ} 45^{\prime} 20.3288^{\prime \prime} \mathrm{N}$ | $72^{\circ} 20^{\prime} 46.892^{\prime \prime} \mathrm{W}$ | West Swanzey | II |  | 0.00 | 0.05 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 29 |
| Wright to Dracut Pipeline Segment | Cheshire | Winchester | I | 3.97 | 3.98 | wc-X-w004 | PFO | N/A | $42^{\circ} 45^{\prime} 21.438{ }^{\prime \prime} \mathrm{N}$ | 720 $20^{\prime} 46.884^{\prime \prime} \mathrm{W}$ | West Swanzey | N/A |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Winchester | I | 3.99 | 4.01 | WC-X-w004 | PFO | N/A | $42^{\circ} 45^{\prime} 22.102^{\prime \prime} \mathrm{N}$ | 720 $20^{\prime} 46.380{ }^{\prime \prime} \mathrm{W}$ | West Swanzey | II |  | 0.00 | 0.09 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 50 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 6.48 | 6.49 | WPI-1674 | Other | N/A | $42^{\circ} 46^{\prime} 53.613^{\prime \prime} \mathrm{N}$ | 720 19' 8.490" W | West Swanzey | II |  | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 11 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 6.49 | 6.52 | WPI-1675 | PEM | N/A | $42^{\circ} 46^{\prime} 53.8666^{\prime \prime} \mathrm{N}$ | $72^{\circ} 19^{\prime} 8.259{ }^{\prime \prime} \mathrm{W}$ | West Swanzey | II |  | 0.24 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 130 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 7.01 | 7.03 | WPI-1680 | PFO | N/A | $42^{\circ} 46^{\prime} 5.50711^{\prime N}$ | $72^{\circ} 18^{\prime} 30.960{ }^{\prime \prime} \mathrm{W}$ | West Swanzey | II |  | 0.00 | 0.14 | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 84 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 7.02 | 7.02 | WPI-1679 | PEM | N/A | $42^{\circ} 466^{\prime 5} .794{ }^{\prime \prime} \mathrm{N}$ | 720 18' 30.889 " W | West Swanzey | N/A |  | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 7.15 | 7.16 | wPI-1683 | PFO | N/A | $42^{\circ} 46^{\prime} 55.8677^{\prime \prime} \mathrm{N}$ | $72^{\circ} 18^{\prime} 21.389^{\prime \prime} \mathrm{W}$ | West Swanzey | II |  | 0.00 | 0.05 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 28 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 7.16 | 7.17 | WPI-1684 | PFO | N/A | $42^{\circ} 466^{\prime 5} 56.1944^{\prime \prime} \mathrm{N}$ | 720 ${ }^{\circ} 18^{\prime} 20.811{ }^{\prime \prime} \mathrm{W}$ | West Swanzey | II |  | 0.00 | 0.07 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 40 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 7.50 | 7.61 | WPI-1688 | PFO | N/A | $42^{\circ} 46^{\prime} 56.679{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 17^{\prime} 56.473{ }^{\prime \prime} \mathrm{W}$ | West Swanzey | II |  | 0.00 | 0.69 | 0.00 | 0.00 | 0.27 | 0.00 | 0.00 | 443 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 7.53 | 7.54 | WPI-1686 | PSS/PEM | N/A | $42^{\circ} 46^{\prime} 57.493{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 17^{\prime} 54.309{ }^{\prime \prime} \mathrm{W}$ | West Swanzey | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 7.54 | 7.55 | WPI-1687 | PSS/PEM | N/A | $42^{\circ} 466^{\prime} 57.503^{\prime \prime} \mathrm{N}$ | 720 ${ }^{\circ} 17^{\prime} 53.6311^{\prime \prime} \mathrm{W}$ | West Swanzey | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 7.75 | 7.78 | WPI-1689 | PSS/PEM | N/A | $42^{\circ} 46^{\prime} 58.0466^{\prime \prime} \mathrm{N}$ | 720 $17^{\prime} 39.145^{\prime \prime} \mathrm{W}$ | West Swanzey | II |  | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 0.01 | 0.00 | 19 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 8.46 | 8.48 | WPI-1690 | PFO | N/A | $42^{\circ} 47^{\prime} 4.881 " \mathrm{~N}$ | $72^{\circ} 16^{\prime} 49.688^{\prime \prime} \mathrm{W}$ | West Swanzey | II |  | 0.00 | 0.10 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 80 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 8.46 | 8.50 | WPI-1691 | PSS/PEM | N/A | $42^{\circ} 47^{\prime} 5.026^{\prime \prime} \mathrm{N}$ | $72^{\circ} 16$ ' $49.744{ }^{\text {" W }}$ | West Swanzey | N/A |  | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 8.48 | 8.50 | WPI-1692 | PFO | N/A | $42^{\circ} 47^{\prime} 4.629^{\prime \prime} \mathrm{N}$ | $72^{\circ} 16^{\prime} 48.063^{\prime \prime} \mathrm{W}$ | West Swanzey | II |  | 0.00 | 0.15 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 96 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 8.93 | 8.94 | WPI-1696 | PEM | N/A | $42^{\circ} 47^{\prime} 10.122^{\prime \prime} \mathrm{N}$ | $72^{\circ} 16^{\prime} 16.969{ }^{\prime \prime} \mathrm{W}$ | West Swanzey | N/A |  | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 9.03 | 9.10 | WPI-1698 | PFO | N/A | $42^{\circ} 47^{\prime} 11.087^{\prime \prime} \mathrm{N}$ | $72^{\circ} 16^{\prime} 10.128^{\prime \prime} \mathrm{W}$ | West Swanzey | II |  | 0.00 | 0.31 | 0.00 | 0.00 | 0.09 | 0.00 | 0.00 | 165 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 9.03 | 9.07 | wPI-1697 | PSS/PEM | N/A | $42^{\circ} 47^{\prime} 11.317^{\prime \prime} \mathrm{N}$ | $72^{\circ} 16^{10.377 " ~ W ~}$ | West Swanzey | II |  | 0.00 | 0.00 | 0.12 | 0.00 | 0.00 | 0.02 | 0.00 | 45 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 9.08 | 9.14 | WPI-1699 | PSS/PEM | N/A | $42^{\circ} 47^{\prime} 11.847^{\prime \prime} \mathrm{N}$ | $72^{\circ} 16^{\prime} 7.059{ }^{\prime \prime} \mathrm{W}$ | West Swanzey | II |  | 0.00 | 0.00 | 0.28 | 0.00 | 0.00 | 0.05 | 0.00 | 217 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 9.95 | 9.97 | WPI-1701 | PFO | N/A | $42^{\circ} 47^{\prime} 20.768^{\prime \prime} \mathrm{N}$ | $72^{\circ} 15^{\prime} 6.429{ }^{\prime \prime} \mathrm{W}$ | West Swanzey | N/A |  | 0.00 | 0.08 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 10.18 | 10.20 | wPI-1703 | PSS/PEM | N/A | $42^{\circ} 47^{\prime} 24.1688^{\prime \prime} \mathrm{N}$ | $72^{\circ} 14^{\prime} 50.4966^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |

[^11]Table 3.9 - Wetlands Associated with the Project in New Hampshire (continued)

| Table 3.9 (cont'd) Wetlands Associated with the Project in New Hampshire |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Facility Name | County | Town | Segment ${ }^{1}$ | Milepost ${ }^{2}$ |  | $\begin{gathered} \text { Wetland } \\ \mathbf{I D}^{3,4} \end{gathered}$ | Wetland Class ${ }^{5}$ | State Wetland Classification ${ }^{6}$ | Latitude | Longitude | Quadrangle | $\begin{aligned} & \text { Crossing } \\ & \text { Method } \end{aligned}$ | Comments | Wetland Impact (acres) |  |  |  |  |  |  | $\begin{array}{\|c\|} \text { Crossing } \\ \text { Length } \\ \text { (feet) }^{11} \end{array}$ |
|  |  |  |  |  |  | Construction ${ }^{8}$ |  |  |  |  |  |  |  | Operation ${ }^{9}$ |  |  |  |
|  |  |  |  | Begin | End |  |  |  |  |  |  |  |  | PEM | PFO | PSS | Other ${ }^{10}$ | PFO | PSS | Other ${ }^{10}$ |  |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 10.32 | 10.34 |  | WPI-1705 | PFO | N/A | $42^{\circ} 477^{\prime 24.826 " ~} \mathrm{~N}$ | 72 ${ }^{\circ} 14^{\prime} 40.986{ }^{\prime \prime} \mathrm{W}$ | Troy | II |  | 0.00 | 0.09 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 38 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 10.33 | 10.33 | WPI-1706 | PSS/PEM | N/A | $42^{\circ} 47^{\prime} 25.4855^{\prime \prime} \mathrm{N}$ | 720 $14^{\prime} 40.535^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 10.40 | 10.42 | WPI-1708 | Other | N/A | $42^{\circ} 47^{\prime} 26.269^{\prime \prime} \mathrm{N}$ | 72 ${ }^{\circ} 14^{\prime} 35.183{ }^{\prime \prime} \mathrm{W}$ | Troy | II |  | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 23 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 10.47 | 10.50 | RI-D-W004 | PSS | N/A | $42^{\circ} 47^{\prime} 26.995{ }^{\prime \prime} \mathrm{N}$ | 72 ${ }^{\circ} 14^{\prime} 30.675^{\prime \prime} \mathrm{W}$ | Troy | II |  | 0.00 | 0.00 | 0.08 | 0.00 | 0.00 | 0.02 | 0.00 | 97 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 10.48 | 10.50 | RI-D-w004 | PFO | N/A | $42^{\circ} 47^{\prime} 27.019{ }^{\prime \prime} \mathrm{N}$ | 72 $2^{\circ} 14^{\prime 2} 29.969^{\prime \prime} \mathrm{W}$ | Troy | II |  | 0.00 | 0.11 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 12 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 10.58 | 10.61 | RI-D-w005 | PEM | N/A | $42^{\circ} 47^{\prime} 28.378^{\prime \prime} \mathrm{N}$ | 720 ${ }^{14}{ }^{\text {2 } 23.1711 " ~ W ~}$ | Troy | N/A |  | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 10.58 | 10.60 | RI-D-w005 | PFO | N/A | $42^{\circ} 47^{\prime} 28.277^{\prime \prime} \mathrm{N}$ | 720 $14^{\prime 222.889 " ~ W ~}$ | Troy | II |  | 0.00 | 0.09 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 108 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 10.80 | 10.81 | RI-Y-W003 | PEM | N/A | $42^{\circ} 47^{\prime} 30.865^{\prime \prime} \mathrm{N}$ | $72^{\circ} 14^{\prime} 8.182^{\prime \prime} \mathrm{W}$ | Troy | II |  | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 32 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 11.14 | 11.15 | RI-L-W002 | PFO | N/A | $42^{\circ} 47^{\prime} 34.116^{\prime \prime} \mathrm{N}$ | 720 $13^{\prime} 44.386^{\prime \prime} \mathrm{W}$ | Troy | II |  | 0.00 | 0.03 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 6 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 11.15 | 11.16 | WPI-1711 | PSSPEM | N/A | $42^{\circ} 47^{\prime} 34.654{ }^{\prime \prime} \mathrm{N}$ | 72 $2^{\circ} 13^{\prime} 43.919{ }^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 11.39 | 11.41 | RI-D-W001 | PFO | N/A | $42^{\circ} 47^{\prime} 36.498{ }^{\prime \prime} \mathrm{N}$ | 720 ${ }^{\circ} 13^{\prime} 27.123^{\prime \prime} \mathrm{W}$ | Troy | II |  | 0.00 | 0.05 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 40 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 11.40 | 11.41 | RI-D-w001 | PEM | N/A | $42^{\circ} 47^{\prime} 37.316{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 13^{\prime} 26.504^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 11.40 | 11.40 | WPI-1713 | PSS/PEM | N/A | $42^{\circ} 47^{\prime} 37.603^{\prime \prime} \mathrm{N}$ | 72 ${ }^{\circ} 13^{\prime} 26.213^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 11.43 | 11.44 | WPI-1713 | PSS/PEM | N/A | $42^{\circ} 47^{\prime} 37.874{ }^{\prime \prime} \mathrm{N}$ | 720 $13^{\prime} 24.515^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 11.46 | 11.48 | RI-Y-w001 | PFO | N/A | $42^{\circ} 47^{\prime} 37.3855^{\prime \prime} \mathrm{N}$ | 720 ${ }^{\circ} 3^{\prime} 21.825^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 11.47 | 11.48 | RI-Y-W001 | PEM | N/A | $42^{\circ} 477^{\prime} 37.935{ }^{\prime \prime} \mathrm{N}$ | 720 ${ }^{\circ} 13^{\prime} 21.725^{\prime \prime} \mathrm{W}$ | Troy | II |  | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 56 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 11.48 | 11.48 | RI-Y-w001 | PEM | N/A | $42^{\circ} 47^{\prime} 37.9211^{\prime N}$ | 72 ${ }^{\circ} 13^{\prime} 20.951{ }^{\prime \prime} \mathrm{W}$ | Troy | II |  | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 39 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 11.48 | 11.48 | RI-Y-w001 | PFO | N/A | $42^{\circ} 47^{\prime} 37.493{ }^{\prime \prime} \mathrm{N}$ | 72 $2^{\circ} 13^{\prime} 20.8801 \mathrm{~W}$ | Troy | N/A |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 11.48 | 11.48 | RI-Y-W001 | PFO | N/A | $42^{\circ} 47^{\prime} 37.613^{\prime \prime} \mathrm{N}$ | 720 ${ }^{13^{\prime} 20.905^{\prime \prime} \mathrm{W}}$ | Troy | N/A |  | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 11.51 | 11.51 | RI-L-W001 | PFO | N/A | $42^{\circ} 47^{\prime} 37.863^{\prime \prime} \mathrm{N}$ | 72 $2^{\circ} 13^{\prime} 18.554^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 11.51 | 11.51 | RI-L-w001 | PFO | N/A | $42^{\circ} 477^{\prime} 37.897$ " N | 72 ${ }^{\circ} 13^{\prime} 18.340^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Richmond | I | 11.51 | 11.52 | WPI-1716 | PSS/PEM | N/A | $42^{\circ} 477^{\prime} 38.672^{\prime \prime} \mathrm{N}$ | 720 ${ }^{\circ} 13^{\prime} 18.726^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Troy | I | 11.63 | 11.64 | TR-Y-W008 | PEM | N/A | $42^{\circ}{ }^{\circ} 77^{\prime} 39.232^{\prime \prime} \mathrm{N}$ | $72^{\circ} 13^{\prime} 9.962^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Troy | I | 11.63 | 11.64 | WPI-1717 | PSS/PEM | N/A | $42^{\circ} 47^{\prime} 40.150^{\prime \prime} \mathrm{N}$ | 720 ${ }^{\circ} 13^{\prime} 10.225^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Troy | I | 11.65 | 11.67 | TR-D-W003 | PFO | N/A | $42^{\circ} 47^{\prime} 39.464^{\prime \prime} \mathrm{N}$ | $72^{\circ} 13^{\prime} 8.504{ }^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Troy | I | 11.66 | 11.68 | TR-D-W003 | PFO | N/A | $42^{\circ} 477^{\prime} 39.576{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 13^{\prime} 7.798^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Troy | I | 11.67 | 11.68 | TR-D-W003 | PEM | N/A | $42^{\circ} 47^{\prime} 39.953^{\prime \prime} \mathrm{N}$ | $72^{\circ} 13^{\prime} 7.639^{\prime \prime} \mathrm{W}$ | Troy | II |  | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 43 |
| Wright to Dracut Pipeline Segment | Cheshire | Troy | I | 11.67 | 11.68 | TR-D-W003 | PFO | N/A | $42^{\circ} 47^{\prime} 39.750^{\prime \prime} \mathrm{N}$ | $72^{\circ} 13^{\prime} 7.556^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Troy | I | 11.67 | 11.68 | WPI-1717 | PSSPEM | N/A | $42^{\circ} 47^{\prime} 40.517{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 13^{\prime} 7.915^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |

[^12]Table 3.9 - Wetlands Associated with the Project in New Hampshire (continued)

| Table 3.9 (cont'd) <br> Wetlands Associated with the Project in New Hampshire |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Facility Name | County | Town | Segment ${ }^{1}$ | Milepost ${ }^{2}$ |  | $\begin{gathered} \text { Wetland } \\ \mathbf{I D}^{3,4} \end{gathered}$ | Wetland Class ${ }^{5}$ | State Wetland Classification ${ }^{6}$ | Latitude | Longitude | Quadrangle | Crossing <br> Method | Comments | Wetland Impact (acres) |  |  |  |  |  |  | $\begin{array}{\|c\|c\|} \hline \text { Crossing } \\ \text { Length } \\ \text { (feet) }^{11} \end{array}$ |
|  |  |  |  |  |  | Construction ${ }^{8}$ |  |  |  |  |  |  |  | Operation ${ }^{\text {² }}$ |  |  |  |
|  |  |  |  | Begin | End |  |  |  |  |  |  |  |  | PEM | PFO | PSS | Other ${ }^{10}$ | PFO | PSS | Other ${ }^{10}$ |  |
| Wright to Dracut Pipeline Segment | Cheshire | Troy | I | 11.68 | 11.70 |  | TR-D-W003 | PFO | N/A | $42^{\circ} 47^{\prime} 40.458{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 13^{\prime} 6.940^{\prime \prime} \mathrm{W}$ | Troy | II |  | 0.00 | 0.04 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 59 |
| Wright to Dracut Pipeline Segment | Cheshire | Troy | I | 11.69 | 11.70 | wPI-1717 | PSS/PEM | N/A | $42^{\circ} 47^{\prime} 40.816^{\prime \prime} \mathrm{N}$ | $72^{\circ} 13^{\prime} 6.040^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Troy | I | 11.70 | 11.71 | TR-Y-W007 | PFO | N/A | $42^{\circ} 47^{\prime} 39.848{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 13^{\prime} 5.563^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Troy | I | 11.74 | 11.76 | WPI-1719 | PSS/PEM | N/A | $42^{\circ} 47^{\prime} 41.079{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 13^{\prime} 2.862^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Troy | I | 11.76 | 11.77 | TR-D-W001 | PSS | N/A | $42^{\circ} 47{ }^{\prime} 40.995{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 13^{\prime} 1.216^{\prime \prime} \mathrm{W}$ | Troy | II |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 12 |
| Wright to Dracut Pipeline Segment | Cheshire | Troy | I | 11.76 | 11.77 | wPI-1720 | PSS/PEM | N/A | $42^{\circ} 47^{\prime} 41.3322^{\prime \prime}$ | $72^{\circ} 13^{\prime} 1.284^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Troy | I | 11.76 | 11.77 | TR-D-W001 | PSS | N/A | $42^{\circ} 47^{\prime} 41.223^{\prime \prime} \mathrm{N}$ | $72^{\circ} 13^{\prime} 1.153^{\prime \prime} \mathrm{W}$ | Troy | II |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 1 |
| Wright to Dracut Pipeline Segment | Cheshire | Troy | I | 11.83 | 11.85 | WPI-1723 | PSS/PEM | N/A | $42^{\circ} 47^{\prime} 42.104{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 12^{\prime} 56.4766^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Troy | I | 11.84 | 11.85 | WPI-1721 | Other | N/A | $42^{\circ} 47^{\prime} 42.346{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 12^{\prime} 55.799^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Troy | I | 11.85 | 11.85 | wPI-1723 | PSS/PEM | N/A | $42^{\circ} 47^{\prime} 42.274{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 12^{\prime} 55.416^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Troy | I | 11.89 | 11.91 | WPI-1725 | PSS/PEM | N/A | $42^{\circ} 47^{\prime} 42.778^{\prime \prime} \mathrm{N}$ | $72^{\circ} 12^{\prime} 52.278^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Troy | I | 11.92 | 11.94 | WPI-1726 | PSS/PEM | N/A | $42^{\circ} 47^{\prime} 43.2511^{\prime N}$ | $72^{\circ} 12^{\prime} 50.114^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Troy | I | 11.93 | 11.93 | TR-L-W001 | PFO | N/A | $42^{\circ} 47^{\prime} 42.558{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 12^{\prime} 49.705^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Troy | I | 11.94 | 11.96 | TR-G-W001 | PFO | N/A | $42^{\circ} 47^{\prime} 43.296{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 12^{\prime} 49.043^{\prime \prime} \mathrm{W}$ | Troy | II |  | 0.00 | 0.15 | 0.00 | 0.00 | 0.08 | 0.00 | 0.00 | 118 |
| Wright to Dracut Pipeline Segment | Cheshire | Troy | I | 11.99 | 12.00 | TR-L-W002 | PFO | N/A | $42^{\circ} 47^{\prime} 42.795^{\prime \prime} \mathrm{N}$ | $72^{\circ} 12^{\prime} 45.397{ }^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Troy | I | 12.29 | 12.29 | WPI-1731 | PSS/PEM | N/A | $42^{\circ} 47{ }^{\prime} 47.018{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 12^{\prime} 24.8733^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Troy | I | 12.29 | 12.30 | wPI-1732 | PSS/PEM | N/A | $42^{\circ} 47^{\prime} 47.093{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 12^{\prime} 24.451^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Troy | I | 12.44 | 12.46 | wPI-1733 | Other | N/A | $42^{\circ} 47^{\prime} 49.037{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 12^{\prime} 14.3866^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Troy | I | 12.56 | 12.58 | WPI-1736 | PFO | N/A | $42^{\circ} 47^{\prime} 49.569{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 12^{\prime} 5.9211^{\prime \prime} \mathrm{W}$ | Troy | II |  | 0.00 | 0.08 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 62 |
| Wright to Dracut Pipeline Segment | Cheshire | Troy | I | 12.56 | 12.58 | WPI-1735 | PSS/PEM | N/A | $42^{\circ} 47^{\prime} 50.270{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 12^{\prime} 5.856^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Troy | I | 13.04 | 13.05 | TR-X-W004 | PSS | N/A | $42^{\circ} 47^{\prime} 57.655^{\prime \prime} \mathrm{N}$ | $72^{\circ} 11^{\prime} 35.030^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 13.13 | 13.16 | TR-X-W001 | PEM | N/A | $42^{\circ} 47^{\prime} 58.400 " \mathrm{~N}$ | $72^{\circ} 11^{\prime} 28.478{ }^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Troy | I | 13.13 | 13.13 | TR-X-W001 | PEM | N/A | $42^{\circ} 47^{\prime} 58.490{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 11^{\prime} 28.519^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Troy | I | 13.14 | 13.15 | TR-X-W001 | PEM | N/A | $42^{\circ} 47^{\prime} 58.155^{\prime \prime} \mathrm{N}$ | $72^{\circ} 11^{\prime} 27.865^{\prime \prime} \mathrm{W}$ | Troy | II |  | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 80 |
| Wright to Dracut Pipeline Segment | Cheshire | Troy | I | 13.17 | 13.20 | TR-X-w001 | PEM | N/A | $42^{\circ} 47^{\prime} 59.3711^{\prime N}$ | $72^{\circ} 11^{\prime} 26.141^{\prime \prime} \mathrm{W}$ | Troy | II |  | 0.19 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 93 |
| Wright to Dracut Pipeline Segment | Cheshire | Troy | I | 13.19 | 13.20 | TR-X-W001 | PEM | N/A | $42^{\circ} 47^{\prime} 59.062^{\prime \prime} \mathrm{N}$ | $72^{\circ} 11^{\prime} 24.258{ }^{\prime \prime} \mathrm{W}$ | Troy | II |  | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 23 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 13.20 | 13.21 | TR-X-W001 | PEM | N/A | $42^{\circ} 47^{\prime} 59.987^{\prime \prime} \mathrm{N}$ | $72^{\circ} 11^{\prime} 23.694^{\prime \prime} \mathrm{W}$ | Troy | II |  | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 8 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | 1 | 13.22 | 13.23 | TR-X-W002 | PEM | N/A | $42^{\circ} 48^{\prime} 0.318^{\prime \prime} \mathrm{N}$ | $72^{\circ} 11^{\prime} 22.262^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 13.33 | 13.34 | TR-X-W003 | PEM | N/A | $42^{\circ} 48^{\prime} 2.150{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 11^{\prime} 15.487^{\prime \prime} \mathrm{W}$ | Troy | II |  | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 33 |

[^13]Table 3.9 - Wetlands Associated with the Project in New Hampshire (continued)

| Table 3.9 (cont'd) <br> Wetlands Associated with the Project in New Hampshire |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Facility Name | County | Town | Segment ${ }^{1}$ | Milepost ${ }^{2}$ |  | $\underset{\mathbf{I D}^{3,4}}{\text { Wetland }}$ | Wetland Class ${ }^{5}$ | State Wetland Classification ${ }^{6}$ | Latitude | Longitude | Quadrangle | Crossing Method | Comments | Wetland Impact (acres) |  |  |  |  |  |  | Crossing Length (feet) |
|  |  |  |  |  |  | Construction ${ }^{8}$ |  |  |  |  |  |  |  | Operation' |  |  |  |
|  |  |  |  | Begin | End |  |  |  |  |  |  |  |  | PEM | PFO | PSS | Other ${ }^{10}$ | PFO | PSS | Other ${ }^{10}$ |  |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 13.41 | 13.42 |  | TR-Y-W003 | PFO | N/A | $42^{\circ} 48^{\prime} 3.670^{\prime \prime} \mathrm{N}$ | $72^{\circ} 11^{\prime} 9.864{ }^{\prime \prime} \mathrm{W}$ | Troy | II |  | 0.00 | 0.03 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 21 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 13.44 | 13.46 | TR-Y-W002 | PSS | N/A | $42^{\circ} 48^{\prime} 4.124^{\prime \prime} \mathrm{N}$ | $72^{\circ} 11^{\prime} 7.772^{\prime \prime} \mathrm{W}$ | Troy | II |  | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.01 | 0.00 | 32 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 13.49 | 13.49 | TR-Y-W001 | PSS | N/A | $42^{\circ} 48^{\prime} 4.677^{\prime \prime} \mathrm{N}$ | $72^{\circ} 11^{\prime} 4.651^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 13.54 | 13.62 | WPI-1746 | PSS/PEM | N/A | $42^{\circ} 48^{\prime} 5.146^{\prime \prime} \mathrm{N}$ | $72^{\circ} 111^{\prime} 1.089^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 13.72 | 13.78 | WPI-1748 | PFO | N/A | $42^{\circ} 48^{\prime} 9.142^{\prime \prime} \mathrm{N}$ | 720 $10^{\prime} 49.605^{\prime \prime} \mathrm{W}$ | Troy | II |  | 0.00 | 0.53 | 0.00 | 0.00 | 0.20 | 0.00 | 0.00 | 288 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 14.16 | 14.16 | wPI-1750 | PFO | N/A | $42^{\circ} 48^{\prime} 13.873^{\prime \prime} \mathrm{N}$ | 720 $10^{\prime} 19.783^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Troy | I | 14.16 | 14.19 | wPI-1750 | PFO | N/A | $42^{\circ} 48^{\prime} 13.880{ }^{\prime \prime} \mathrm{N}$ | 720 $10^{\prime} 19.782^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.00 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 14.31 | 14.32 | WPI-1752 | PEM | N/A | $42^{\circ} 48^{\prime} 17.403^{\prime \prime} \mathrm{N}$ | 720 $10^{\prime} 10.262^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 14.31 | 14.34 | FT-X-W001 | PFO | N/A | $42^{\circ} 48^{\prime} 17.358{ }^{\prime \prime} \mathrm{N}$ | 720 $10^{\prime} 10.180^{\prime \prime} \mathrm{W}$ | Troy | II |  | 0.00 | 0.03 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 23 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 14.31 | 14.34 | wPI-1751 | Other | N/A | $42^{\circ} 48^{\prime} 17.479{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 10^{\prime} 9.988^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 14.34 | 14.35 | WPI-1752 | PEM | N/A | $42^{\circ} 48^{\prime} 17.792^{\prime \prime} \mathrm{N}$ | $72^{\circ} 10^{\prime} 8.242^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 14.41 | 14.44 | FT-X-W001 | PEM | N/A | $42^{\circ} 48^{\prime} 19.147^{\prime \prime} \mathrm{N}$ | $72^{\circ} 10^{\prime} 3.628^{\prime \prime} \mathrm{W}$ | Troy | II |  | 0.15 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 77 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 14.54 | 14.55 | WPI-1754 | PEM | N/A | $42^{\circ} 48^{\prime} 21.978{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 9^{\prime} 55.229^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 14.56 | 14.58 | WPI-1754 | PEM | N/A | $42^{\circ} 48^{\prime} 22.135{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 9{ }^{\prime} 53.4655^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 14.65 | 14.68 | WPI-1756 | PSS/PEM | N/A | $42^{\circ} 48^{\prime} 23.775^{\prime \prime} \mathrm{N}$ | $72^{\circ} 9^{\prime} 47.376^{\prime \prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 14.81 | 14.88 | WPI-1757 | PEM | N/A | $42^{\circ} 48^{\prime} 27.187^{\prime \prime} \mathrm{N}$ | $72^{\circ} 9{ }^{9} 37.878^{\prime \prime} \mathrm{W}$ | Troy | II |  | 0.21 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 80 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 15.45 | 15.49 | WPI-1760 | PSS | N/A | $42^{\circ} 48^{\prime} 16.805^{\prime \prime} \mathrm{N}$ | $72^{\circ} 9^{\prime} 2.116^{\prime \prime} \mathrm{W}$ | Troy | II |  | 0.00 | 0.00 | 0.18 | 0.00 | 0.00 | 0.02 | 0.00 | 105 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 15.47 | 15.49 | WPI-1761 | PSS/PEM | N/A | $42^{\circ} 48^{\prime} 16.112^{\prime \prime} \mathrm{N}$ | 72 ${ }^{\circ}{ }^{\text {9 }}$ '1.199" W | Troy | II |  | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 0.01 | 0.00 | 46 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 15.48 | 15.52 | WPI-1762 | PFO | N/A | $42^{\circ} 48^{\prime} 15.714^{\prime \prime} \mathrm{N}$ | $72^{\circ} 9^{\prime} 0.743^{\prime \prime} \mathrm{W}$ | Troy | II |  | 0.00 | 0.29 | 0.00 | 0.00 | 0.12 | 0.00 | 0.00 | 181 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 15.52 | 15.53 | WPI-1763 | PEM | N/A | $42^{\circ} 48^{\prime} 14.242^{\prime \prime} \mathrm{N}$ | $72^{\circ} 8^{\prime} 59.053^{\prime \prime} \mathrm{W}$ | Troy | II |  | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 32 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 15.52 | 15.55 | wPI-1764 | PFO | N/A | $42^{\circ} 48^{\prime} 14.435{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 8^{\prime} 58.496{ }^{\prime \prime} \mathrm{W}$ | Troy | II |  | 0.00 | 0.20 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 93 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 15.66 | 15.67 | WPI-1766 | PSS/PEM | N/A | $42^{\circ} 48^{\prime} 8.757^{\prime \prime} \mathrm{N}$ | $72^{\circ} 8^{\prime} 52.222^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 15.94 | 15.94 | wPI-1771 | Other | N/A | $42^{\circ} 47^{\prime} 59.3422^{\prime \prime} \mathrm{N}$ | $72^{\circ} 8^{\prime} 37.184^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 16.21 | 16.23 | WPI-1772 | PSS/PEM | N/A | $42^{\circ} 47^{\prime} 47.749^{\prime \prime} \mathrm{N}$ | $72^{\circ} 8^{\prime} 28.798^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 16.42 | 16.44 | WPI-1775 | Other | N/A | $42^{\circ} 47^{\prime} 40.444^{\prime \prime} \mathrm{N}$ | $72^{\circ} 8^{\prime} 18.2599^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 16.49 | 16.52 | wPI-1777 | PSS | N/A | $42^{\circ} 47^{\prime} 37.545^{\prime \prime} \mathrm{N}$ | $72^{\circ} 8^{\prime} 14.436^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.00 | 0.00 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 16.52 | 16.61 | wPI-1779 | PSS | N/A | $42^{\circ} 47^{\prime} 36.752^{\prime \prime} \mathrm{N}$ | $72^{\circ} 8^{\prime} 13.350^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.00 | 0.00 | 0.26 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 16.62 | 16.64 | FT-T-W007 | PSS | N/A | $42^{\circ} 47^{\prime} 33.087{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 8^{\prime} 7.4466^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 16.70 | 16.72 | FT-T-W006 | PFO | N/A | $42^{\circ} 47^{\prime} 29.923^{\prime \prime} \mathrm{N}$ | $72^{\circ} 8^{\prime} 3.917^{\prime \prime} \mathrm{W}$ | Troy | II |  | 0.00 | 0.07 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 71 |

[^14]Table 3.9 - Wetlands Associated with the Project in New Hampshire (continued)

| Table 3.9 (cont'd) <br> Wetlands Associated with the Project in New Hampshire |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Facility Name | County | Town | Segment ${ }^{1}$ | Milepost ${ }^{2}$ |  | $\underset{\mathbf{I D}^{3,4}}{\text { Wetland }}$ | Wetland Class ${ }^{5}$ | State Wetland Classification ${ }^{6}$ | Latitude | Longitude | Quadrangle | Crossing Method | Comments | Wetland Impact (acres) |  |  |  |  |  |  | Crossing Length (feet) |
|  |  |  |  |  |  | Construction ${ }^{8}$ |  |  |  |  |  |  |  | Operation' |  |  |  |
|  |  |  |  | Begin | End |  |  |  |  |  |  |  |  | PEM | PFO | PSS | Other ${ }^{10}$ | PFO | PSS | Other ${ }^{10}$ |  |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 16.70 | 16.72 |  | FT-T-W006 | PSS | N/A | $42^{\circ} 47^{\prime} 30.237^{\prime \prime} \mathrm{N}$ | $72^{\circ} 8^{\prime} 3.4811^{\text {W }}$ | Troy | N/A |  | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 16.72 | 16.72 | FT-T-W006 | PFO | N/A | $42^{\circ} 47^{\prime} 29.215^{\prime \prime} \mathrm{N}$ | $72^{\circ} 8^{\prime} 3.468{ }^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 16.72 | 16.77 | FT-T-W006 | PFO | N/A | $42^{\circ} 47^{\prime} 29.094{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 8^{\prime} 3.291{ }^{\prime \prime} \mathrm{W}$ | Troy | II |  | 0.00 | 0.23 | 0.00 | 0.00 | 0.10 | 0.00 | 0.00 | 157 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 16.73 | 16.77 | FT-T-W006 | PSS | N/A | $42^{\circ} 47^{\prime} 29.219{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 8^{\prime} 1.998{ }^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 16.77 | 16.77 | FT-T-W006 | PFO | N/A | $42^{\circ} 47^{\prime} 27.378{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 8^{\prime} 0.791{ }^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 16.80 | 16.84 | FT-T-W006 | PFO | N/A | $42^{\circ} 47^{\prime} 26.348{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 7^{\prime} 59.292^{\prime \prime} \mathrm{W}$ | Troy | II |  | 0.00 | 0.30 | 0.00 | 0.00 | 0.12 | 0.00 | 0.00 | 170 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 16.81 | 16.84 | FT-T-W006 | PSS | N/A | $42^{\circ} 47^{\prime} 26.527^{\prime \prime} \mathrm{N}$ | $72^{\circ} 7^{\prime} 58.078^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 16.98 | 17.01 | FT-T-W001 | PFO | N/A | $42^{\circ} 47^{\prime} 19.2855^{\prime \prime} \mathrm{N}$ | $72^{\circ} 7^{\prime} 50.184^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.00 | 0.17 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 17.11 | 17.11 | FT-T-W002 | PSS | N/A | $42^{\circ} 47^{\prime} 15.873{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 7^{\prime} 42.363^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 17.12 | 17.13 | FT-T-W002 | PSS | N/A | $42^{\circ} 47^{\prime} 15.577^{\prime \prime} \mathrm{N}$ | $72^{\circ} 7^{\prime} 41.932^{\prime \prime} \mathrm{W}$ | Troy | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 17.18 | 17.19 | FT-T-W005 | PFO | N/A | $42^{\circ} 47^{\prime} 12.737{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 7^{\prime} 39.2911 \mathrm{~W}$ | Troy | II |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 13 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 17.27 | 17.30 | WPI-1790 | PEM | N/A | $42^{\circ} 47^{\prime} 10.509{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 7^{\prime} 33.9599^{\prime \prime} \mathrm{W}$ | Troy | II |  | 0.18 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 31 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 17.27 | 17.38 | WPI-1791 | Other | N/A | $42^{\circ} 47^{\prime} 10.477^{\prime \prime} \mathrm{N}$ | $72^{\circ} 7^{\prime} 33.359^{\prime \prime} \mathrm{W}$ | Troy | II |  | 0.00 | 0.00 | 0.00 | 2.03 | 0.00 | 0.00 | 0.00 | 361 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 17.34 | 17.49 | WPI-1791 | Other | N/A | $42^{\circ} 47^{\prime} 8.398{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 7^{\prime} 30.002^{\prime \prime} \mathrm{W}$ | Monadnock Mountain | II |  | 0.00 | 0.00 | 0.00 | 3.00 | 0.00 | 0.00 | 0.00 | 508 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 17.47 | 17.50 | WPI-1792 | PFO | N/A | $42^{\circ} 47^{\prime} 2.808{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ}{ }^{\prime} 24.086^{\prime \prime} \mathrm{W}$ | Monadnock Mountain | N/A |  | 0.00 | 0.18 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 17.63 | 17.64 | WPI-1793 | PFO/PSS | N/A | $42^{\circ} 46^{\prime} 57.314{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 7^{\prime} 15.337^{\prime \prime} \mathrm{W}$ | Monadnock Mountain | N/A |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 17.81 | 17.82 | WPI-1794 | PSS/PEM | N/A | $42^{\circ} 46^{\prime} 50.914{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 7^{\prime} 6.018{ }^{\prime \prime} \mathrm{W}$ | Monadnock Mountain | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 17.83 | 17.87 | WPI-1796 | PFO | N/A | $42^{\circ} 46^{\prime} 49.829{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 7^{\prime} 6.110^{\prime \prime} \mathrm{W}$ | Monadnock Mountain | II |  | 0.00 | 0.29 | 0.00 | 0.00 | 0.10 | 0.00 | 0.00 | 151 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 17.86 | 17.86 | WPI-1797 | PSS | N/A | $42^{\circ} 46^{\prime} 49.1766^{\prime \prime} \mathrm{N}$ | 72 $2^{\circ} 7^{\prime} 3.684{ }^{\prime \prime} \mathrm{W}$ | Monadnock Mountain | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 17.86 | 17.93 | WPI-1801 | PSS/PEM | N/A | $42^{\circ} 46^{\prime} 48.886^{\prime \prime} \mathrm{N}$ | 72 ${ }^{\circ} 7^{\prime} 3.507{ }^{\prime \prime} \mathrm{W}$ | Monadnock Mountain | II |  | 0.00 | 0.00 | 0.38 | 0.00 | 0.00 | 0.06 | 0.00 | 257 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 17.91 | 18.01 | wPI-1799 | PFO | N/A | $42^{\circ} 46^{\prime} 46.905^{\prime \prime} \mathrm{N}$ | 72 ${ }^{\circ} 7^{\prime} 1.783^{\prime \prime} \mathrm{W}$ | Monadnock Mountain | II |  | 0.00 | 0.73 | 0.00 | 0.00 | 0.31 | 0.00 | 0.00 | 510 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 17.93 | 18.00 | WPI-1800 | PSS | N/A | $42^{\circ} 46^{\prime} 46.442^{\prime \prime} \mathrm{N}$ | $72^{\circ} 6^{\prime} 59.860^{\prime \prime} \mathrm{W}$ | Monadnock Mountain | N/A |  | 0.00 | 0.00 | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 17.99 | 18.10 | wPI-1801 | PSS/PEM | N/A | $42^{\circ} 46^{\prime} 44.340^{\prime \prime} \mathrm{N}$ | $72^{\circ} 6^{\prime} 56.644^{\prime \prime} \mathrm{W}$ | Monadnock Mountain | N/A |  | 0.00 | 0.00 | 0.16 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 18.01 | 18.10 | WPI-1803 | PFO | N/A | $42^{\circ} 46^{\prime} 43.3900^{\prime \prime}$ | $72^{\circ} 6^{6} 56.736^{\prime \prime} \mathrm{W}$ | Monadnock Mountain | II |  | 0.00 | 0.64 | 0.00 | 0.00 | 0.29 | 0.00 | 0.00 | 463 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 18.09 | 18.09 | WPI-1805 | PFO | N/A | $42^{\circ} 46^{\prime} 40.559^{\prime \prime} \mathrm{N}$ | $72^{\circ} 6^{\prime} 52.614^{\prime \prime} \mathrm{W}$ | Monadnock Mountain | N/A |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 18.13 | 18.18 | WPI-1801 | PSS/PEM | N/A | $42^{\circ} 46^{\prime} 39.706{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 6^{\prime} 49.898{ }^{\prime \prime} \mathrm{W}$ | Monadnock Mountain | N/A |  | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 18.42 | 18.65 | WPI-1808 | PSS/PEM | N/A | $42^{\circ} 46^{\prime} 29.247{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 6^{\prime} 34.674^{\prime \prime} \mathrm{W}$ | Monadnock Mountain | N/A |  | 0.00 | 0.00 | 0.31 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | 1 | 18.44 | 18.65 | WPI-1809 | PFO | N/A | $42^{\circ} 46^{\prime} 28.119^{\prime \prime} \mathrm{N}$ | $72^{\circ} 6^{6} 34.507{ }^{\text {W W }}$ | Monadnock Mountain | II |  | 0.00 | 1.60 | 0.00 | 0.00 | 0.68 | 0.00 | 0.00 | 1,070 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 18.83 | 18.88 | WPI-1810 | PSS/PEM | N/A | $42^{\circ} 46^{\prime} 14.528^{\prime \prime} \mathrm{N}$ | $72^{\circ} 6^{\prime} 13.095^{\prime \prime} \mathrm{W}$ | Monadnock Mountain | N/A |  | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |

[^15]Table 3.9 - Wetlands Associated with the Project in New Hampshire (continued)

| Table 3.9 (cont'd) <br> Wetlands Associated with the Project in New Hampshire |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Facility Name | County | Town | Segment ${ }^{1}$ | Milepost ${ }^{2}$ |  | $\begin{gathered} \text { Wetland } \\ \mathbf{I D}^{3,4} \end{gathered}$ | Wetland Class ${ }^{5}$ | State Wetland Classification ${ }^{6}$ | Latitude | Longitude | Quadrangle | Crossing Method | Comments | Wetland Impact (acres) |  |  |  |  |  |  |  |
|  |  |  |  |  |  | Construction ${ }^{8}$ |  |  |  |  |  |  |  | Operation ${ }^{\text {9 }}$ |  |  |  |
|  |  |  |  | Begin | End |  |  |  |  |  |  |  |  | PEM | PFO | PSS | Other ${ }^{10}$ | PFO | PSS | Other ${ }^{10}$ |  |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 18.96 | 19.09 |  | WPI-1814 | PFO | N/A | $42^{\circ} 46^{\prime} 9.589^{\prime \prime} \mathrm{N}$ | 72 ${ }^{\circ} 6^{\prime} 6.787$ " W | Monadnock Mountain | N/A |  | 0.00 | 0.68 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 18.98 | 19.02 | WPI-1812 | PEM | N/A | $42^{\circ} 46^{\prime} 9.535^{\prime \prime} \mathrm{N}$ | $72^{\circ} 6^{\prime} 5.792^{\prime \prime} \mathrm{W}$ | Monadnock Mountain | N/A |  | 0.11 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 19.07 | 19.08 | WPI-1816 | PEM | N/A | $42^{\circ} 46^{\prime} 6.143^{\prime \prime} \mathrm{N}$ | $72^{\circ} 6^{\prime} 0.855^{\prime \prime} \mathrm{W}$ | Monadnock Mountain | N/A |  | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 19.08 | 19.21 | WPI-1817 | PFO | N/A | $42^{\circ} 46^{\prime} 5.455^{\prime \prime} \mathrm{N}$ | $72^{\circ} 6^{\prime} 0.787{ }^{\prime \prime} \mathrm{W}$ | Monadnock Mountain | N/A |  | 0.00 | 0.66 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 19.25 | 19.31 | WPI-1818 | PSS | N/A | $42^{\circ} 45^{\prime} 59.637^{\prime \prime} \mathrm{N}$ | 720 5' 51.391" W | Monadnock Mountain | N/A |  | 0.00 | 0.00 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 19.27 | 19.29 | WPI-1819 | Other | N/A | $42^{\circ} 45^{\prime} 58.948{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 5^{\prime} 50.462^{\prime \prime} \mathrm{W}$ | Monadnock Mountain | N/A |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 19.32 | 19.33 | WPI-1818 | PSS | N/A | $42^{\circ} 45^{\prime} 57.320{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 5^{\prime} 48.018^{\prime \prime} \mathrm{W}$ | Monadnock Mountain | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 19.78 | 19.85 | WPI-1821 | PFO | N/A | $42^{\circ} 45^{\prime} 44.503^{\prime \prime} \mathrm{N}$ | $72^{\circ} 5^{\prime} 22.296{ }^{\prime \prime} \mathrm{W}$ | Monadnock Mountain | N/A |  | 0.00 | 0.23 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 19.79 | 19.80 | WPI-1820 | PSS | N/A | $42^{\circ} 45^{\prime} 43.954{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 5^{\prime} 22.460^{\prime \prime} \mathrm{W}$ | Monadnock Mountain | II |  | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 0.02 | 0.00 | 78 |
| Wright to Dracut Pipeline Segment | Cheshire | Fitzwilliam | I | 19.80 | 19.85 | WPI-1822 | PSS/PEM | N/A | $42^{\circ} 45^{\prime} 43.692^{\prime \prime} \mathrm{N}$ | $72^{\circ} 5^{\prime} 21.616^{\prime \prime} \mathrm{W}$ | Monadnock Mountain | II |  | 0.00 | 0.00 | 0.28 | 0.00 | 0.00 | 0.06 | 0.00 | 261 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 20.37 | 20.44 | WPI-1824 | PFO | N/A | $42^{\circ} 45^{\prime} 22.528^{\prime \prime} \mathrm{N}$ | $72^{\circ} 4^{\prime} 54.174^{\prime \prime} \mathrm{W}$ | Monadnock Mountain | II |  | 0.00 | 0.29 | 0.00 | 0.00 | 0.23 | 0.00 | 0.00 | 359 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 20.37 | 20.44 | WPI-1825 | PSS | N/A | $42^{\circ} 45^{\prime} 22.064{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 4^{\prime} 54.323^{\prime \prime} \mathrm{W}$ | Monadnock Mountain | N/A |  | 0.00 | 0.00 | 0.21 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 20.41 | 20.48 | NWI-1102 | PEM | N/A | $42^{\circ} 45^{\prime} 21.0911^{\prime N}$ | $72^{\circ}{ }^{\prime} 51.846^{\prime \prime} \mathrm{W}$ | Monadnock Mountain | N/A |  | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 20.44 | 20.45 | WPI-1830 | PSS/PEM | N/A | $42^{\circ} 45^{\prime} 19.791{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 4^{\prime} 51.008{ }^{\text {W }} \mathrm{W}$ | Monadnock Mountain | II |  | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.01 | 0.00 | 14 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 20.44 | 20.48 | WPI-1828 | Other | N/A | $42^{\circ} 45^{\prime} 19.990{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 4^{\prime} 50.484^{\prime \prime} \mathrm{W}$ | Monadnock Mountain | II |  | 0.00 | 0.00 | 0.00 | 0.22 | 0.00 | 0.00 | 0.00 | 142 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 20.47 | 20.53 | WPI-1831 | PFO | N/A | $42^{\circ} 45^{\prime} 18.992^{\prime \prime} \mathrm{N}$ | $72^{\circ}$ ' $^{\prime} 49.0311^{\prime \prime} \mathrm{W}$ | Monadnock Mountain | II |  | 0.00 | 0.17 | 0.00 | 0.00 | 0.11 | 0.00 | 0.00 | 153 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 20.47 | 20.49 | WPI-1830 | PSS/PEM | N/A | $42^{\circ} 45^{\prime} 18.779{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 4^{\prime} 49.082^{\prime \prime} \mathrm{W}$ | Monadnock Mountain | N/A |  | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 20.48 | 20.59 | WPI-1832 | PSS | N/A | $42^{\circ} 45^{\prime} 18.709{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 4^{\prime} 48.518^{\prime \prime} \mathrm{W}$ | Monadnock Mountain | II |  | 0.00 | 0.00 | 0.45 | 0.00 | 0.00 | 0.05 | 0.00 | 209 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 20.52 | 20.53 | WPI-1833 | Other | N/A | $42^{\circ} 45^{\prime} 16.796{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ}{ }^{\prime} 47.003^{\prime \prime} \mathrm{W}$ | Monadnock Mountain | N/A |  | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 20.54 | 20.59 | WPI-1834 | PFO | N/A | $42^{\circ} 45^{\prime} 16.410^{\prime \prime} \mathrm{N}$ | $72^{\circ} 4^{\prime} 45.716^{\prime \prime} \mathrm{W}$ | Monadnock Mountain | II |  | 0.00 | 0.21 | 0.00 | 0.00 | 0.15 | 0.00 | 0.00 | 267 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 20.66 | 20.68 | WPI-1837 | PSS | N/A | $42^{\circ} 45^{\prime} 11.813^{\prime \prime} \mathrm{N}$ | $72^{\circ} 4^{\prime} 39.836{ }^{\prime \prime} \mathrm{W}$ | Monadnock Mountain | II |  | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 0.01 | 0.00 | 26 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 20.80 | 20.84 | NWI-1106 | PFO | N/A | $42^{\circ} 45^{\prime} 9.019{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 4^{\prime} 31.270^{\prime \prime} \mathrm{W}$ | Monadnock Mountain | II |  | 0.00 | 0.21 | 0.00 | 0.00 | 0.10 | 0.00 | 0.00 | 143 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 20.87 | 20.91 | NWI-520 | Other | N/A | $42^{\circ} 45^{\prime} 6.839{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 4^{\prime} 27.130^{\prime \prime} \mathrm{W}$ | Monadnock Mountain | II |  | 0.00 | 0.00 | 0.00 | 0.23 | 0.00 | 0.00 | 0.00 | 128 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 20.90 | 20.95 | NWI-1107 | Other | N/A | $42^{\circ} 45^{\prime} 5.680^{\prime \prime} \mathrm{N}$ | $72^{\circ} 4^{\prime} 25.463^{\prime \prime} \mathrm{W}$ | Monadnock Mountain | II |  | 0.00 | 0.00 | 0.00 | 0.38 | 0.00 | 0.00 | 0.00 | 233 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 20.94 | 20.96 | NWI-520 | Other | N/A | $42^{\circ} 45^{\prime} 3.666^{\prime \prime} \mathrm{N}$ | $72^{\circ} 4^{\prime} 24.030^{\prime \prime} \mathrm{W}$ | Monadnock Mountain | N/A |  | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 21.39 | 21.48 | NWI-521 | PEM | N/A | $42^{\circ} 44^{\prime} 48.153^{\prime \prime} \mathrm{N}$ | $72^{\circ} 4^{\prime} 0.439{ }^{\prime \prime} \mathrm{W}$ | Winchendon | II |  | 0.77 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 467 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 21.48 | 21.53 | NWI-1109 | PEM | N/A | $42^{\circ} 44^{\prime} 44.546^{\prime \prime} \mathrm{N}$ | $72^{\circ} 3^{\prime} 56.713^{\prime \prime} \mathrm{W}$ | Winchendon | II |  | 0.40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 218 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 21.52 | 21.67 | NWI-521 | PEM | N/A | $42^{\circ} 44^{\prime} 43.446^{\prime \prime} \mathrm{N}$ | $72^{\circ} 3^{\prime} 53.666^{\prime \prime} \mathrm{W}$ | Winchendon | II |  | 1.32 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 771 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 21.67 | 21.76 | NWI-1111 | PEM | N/A | $42^{\circ} 44^{\prime} 37.877{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 3^{\prime} 46.748^{\prime \prime} \mathrm{W}$ | Winchendon | II |  | 0.71 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 402 |

[^16]Table 3.9 - Wetlands Associated with the Project in New Hampshire (continued)

| Table 3.9 (cont'd) <br> Wetlands Associated with the Project in New Hampshire |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Facility Name | County | Town | Segment ${ }^{1}$ | Milepost ${ }^{2}$ |  | $\underset{\mathbf{I D}^{3,4}}{\text { Wetland }}$ | Wetland Class ${ }^{5}$ | State Wetland Classification ${ }^{6}$ | Latitude | Longitude | Quadrangle | Crossing Method | Comments | Wetland Impact (acres) |  |  |  |  |  |  | Crossing Length (feet) |
|  |  |  |  |  |  | Construction ${ }^{8}$ |  |  |  |  |  |  |  | Operation ${ }^{9}$ |  |  |  |
|  |  |  |  | Begin | End |  |  |  |  |  |  |  |  | PEM | PFO | PSS | Other ${ }^{10}$ | PFO | PSS | Other ${ }^{10}$ |  |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 21.86 | 21.91 |  | NWI-1112 | PSS | N/A | $42^{\circ} 44^{\prime} 30.761^{\prime \prime} \mathrm{N}$ | $72^{\circ} 3^{\prime} 36.687^{\prime \prime} \mathrm{W}$ | Winchendon | II |  | 0.00 | 0.00 | 0.33 | 0.00 | 0.00 | 0.05 | 0.00 | 199 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 21.95 | 21.97 | WPI-1859 | PEM | N/A | $42^{\circ} 44^{\prime} 27.574^{\prime \prime} \mathrm{N}$ | $72^{\circ} 3^{\prime} 31.944{ }^{\prime \prime} \mathrm{W}$ | Winchendon | N/A |  | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 22.10 | 22.15 | WPI-1864 | PFO | N/A | $42^{\circ} 44^{\prime} 25.353^{\prime \prime} \mathrm{N}$ | $72^{\circ} 3^{\prime} 22.610^{\prime \prime} \mathrm{W}$ | Winchendon | N/A |  | 0.00 | 0.17 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 22.10 | 22.13 | WPI-1863 | PSS/PEM | N/A | $42^{\circ} 44^{\prime} 25.619^{\prime \prime} \mathrm{N}$ | $72^{\circ} 3^{\prime} 22.634^{\prime \prime} \mathrm{W}$ | Winchendon | II |  | 0.00 | 0.00 | 0.14 | 0.00 | 0.00 | 0.03 | 0.00 | 148 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 22.13 | 22.17 | WPI-1862 | PEM | N/A | $42^{\circ} 44^{\prime} 25.154{ }^{\prime \prime} \mathrm{N}$ | 720 ${ }^{\circ}{ }^{\prime} 20.674^{\prime \prime} \mathrm{W}$ | Winchendon | II |  | 0.23 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 162 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 22.16 | 22.23 | WPI-1864 | PFO | N/A | $42^{\circ} 44^{\prime} 25.157^{\prime \prime} \mathrm{N}$ | $72^{\circ} 3^{\prime} 18.415^{\prime \prime} \mathrm{W}$ | Winchendon | II |  | 0.00 | 0.58 | 0.00 | 0.00 | 0.24 | 0.00 | 0.00 | 348 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 22.16 | 22.17 | WPI-1863 | PSS/PEM | N/A | $42^{\circ} 44^{\prime} 25.446{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 3^{\prime} 18.869^{\prime \prime} \mathrm{W}$ | Winchendon | II |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 4 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 22.35 | 22.37 | WPI-1867 | PFO | N/A | $42^{\circ} 44^{\prime} 24.34010 \mathrm{~N}$ | $72^{\circ} 3^{\prime} 5.118^{\prime \prime} \mathrm{W}$ | Winchendon | II |  | 0.00 | 0.08 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 3 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 22.43 | 22.48 | WPI-1871 | PFO | N/A | $42^{\circ} 44^{\prime} 24.623^{\prime \prime} \mathrm{N}$ | $72^{\circ} 2^{\prime} 59.912^{\prime \prime} \mathrm{W}$ | Winchendon | II |  | 0.00 | 0.41 | 0.00 | 0.00 | 0.17 | 0.00 | 0.00 | 240 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 22.60 | 22.63 | WPI-1874 | PFO | N/A | $42^{\circ} 44^{\prime} 23.332^{\prime \prime} \mathrm{N}$ | $72^{\circ} 2^{\prime} 47.299^{\prime \prime} \mathrm{W}$ | Winchendon | II |  | 0.00 | 0.19 | 0.00 | 0.00 | 0.08 | 0.00 | 0.00 | 118 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 22.62 | 22.65 | WPI-1872 | PFO | N/A | $42^{\circ} 44^{\prime} 23.278{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 2^{\prime} 46.046^{\prime \prime} \mathrm{W}$ | Winchendon | II |  | 0.00 | 0.24 | 0.00 | 0.00 | 0.09 | 0.00 | 0.00 | 130 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 22.65 | 22.74 | WPI-1874 | PFO | N/A | $42^{\circ} 44^{\prime} 23.925{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 2^{\prime} 43.873^{\prime \prime} \mathrm{W}$ | Winchendon | II |  | 0.00 | 0.75 | 0.00 | 0.00 | 0.30 | 0.00 | 0.00 | 439 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 22.74 | 22.86 | WPI-1876 | PFO | N/A | $42^{\circ} 44^{\prime} 22.9311^{\prime N}$ | $72^{\circ} 2^{\prime} 38.096{ }^{\prime \prime} \mathrm{W}$ | Winchendon | II |  | 0.00 | 1.14 | 0.00 | 0.00 | 0.45 | 0.00 | 0.00 | 657 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 22.86 | 22.94 | WPI-1879 | PFO | N/A | $42^{\circ} 44^{\prime} 23.282^{\prime \prime} \mathrm{N}$ | $72^{\circ} 2^{\prime} 29.108^{\prime \prime} \mathrm{W}$ | Winchendon | II |  | 0.00 | 0.70 | 0.00 | 0.00 | 0.28 | 0.00 | 0.00 | 401 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 23.08 | 23.11 | WPI-1884 | PEM | N/A | $42^{\circ} 44^{\prime} 22.247^{\prime \prime} \mathrm{N}$ | $72^{\circ} 2^{\prime} 13.655^{\prime \prime} \mathrm{W}$ | Winchendon | II |  | 0.15 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 95 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 23.14 | 23.15 | WPI-1891 | PFO | N/A | $42^{\circ} 44^{\prime} 24.388{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 2^{\prime} 9.978^{\prime \prime} \mathrm{W}$ | Winchendon | N/A |  | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 23.14 | 23.14 | WPI-1885 | PSS/PEM | N/A | $42^{\circ} 44^{\prime} 22.703^{\prime \prime} \mathrm{N}$ | $72^{\circ} 2^{\prime} 9.671{ }^{\prime \prime} \mathrm{W}$ | Winchendon | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 23.18 | 23.20 | WPI-1886 | PFO | N/A | $42^{\circ} 44^{\prime} 22.260^{\prime \prime} \mathrm{N}$ | $72^{\circ} 2^{\prime} 6.876^{\prime \prime} \mathrm{W}$ | Winchendon | II |  | 0.00 | 0.15 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 113 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 23.19 | 23.22 | WPI-1887 | PSS/PEM | N/A | $42^{\circ} 44^{\prime} 22.792^{\prime \prime} \mathrm{N}$ | $72^{\circ} 2^{\prime} 6.137{ }^{\prime \prime} \mathrm{W}$ | Winchendon | II |  | 0.00 | 0.00 | 0.13 | 0.00 | 0.00 | 0.02 | 0.00 | 89 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 23.23 | 23.23 | WPI-1888 | PSS/PEM | N/A | $42^{\circ} 44^{\prime} 22.879{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 2^{\prime} 3.534{ }^{\prime \prime} \mathrm{W}$ | Winchendon | II |  | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.01 | 0.00 | 25 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 23.24 | 23.38 | WPI-1889 | PFO | N/A | $42^{\circ} 44^{\prime 2} 22.527^{\prime \prime} \mathrm{N}$ | $72^{\circ} 2^{2} 2.923{ }^{\prime \prime} \mathrm{W}$ | Winchendon | II |  | 0.00 | 0.90 | 0.00 | 0.00 | 0.34 | 0.00 | 0.00 | 765 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 23.25 | 23.39 | WPI-1888 | PSS/PEM | N/A | $42^{\circ} 44^{\prime} 22.805^{\prime \prime} \mathrm{N}$ | $72^{\circ} 2^{\prime} 1.547{ }^{\prime \prime} \mathrm{W}$ | Winchendon | II |  | 0.00 | 0.00 | 0.33 | 0.00 | 0.00 | 0.01 | 0.00 | 4 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 23.42 | 23.43 | WPI-1892 | Other | N/A | $42^{\circ} 44^{\prime} 22.248^{\prime \prime} \mathrm{N}$ | $72^{\circ} 1^{\prime} 49.713^{\prime \prime} \mathrm{W}$ | Winchendon | N/A |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 23.43 | 23.49 | WPI-1888 | PSS/PEM | N/A | $42^{\circ} 44^{\prime} 21.948^{\prime \prime} \mathrm{N}$ | $72^{\circ} 1^{\prime} 48.921^{\prime \prime} \mathrm{W}$ | Winchendon | II |  | 0.00 | 0.00 | 0.23 | 0.00 | 0.00 | 0.06 | 0.00 | 283 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 23.46 | 23.61 | WPI-1894 | PFO | N/A | $42^{\circ} 44^{\prime} 21.940^{\prime \prime} \mathrm{N}$ | $72^{\circ} 1^{\prime} 46.885^{\prime \prime} \mathrm{W}$ | Winchendon | N/A |  | 0.00 | 0.69 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 23.49 | 23.53 | WPI-1893 | PSS/PEM | N/A | $42^{\circ} 44^{\prime} 21.846^{\prime \prime} \mathrm{N}$ | $72^{\circ} 1^{1} 44.689^{\prime \prime} \mathrm{W}$ | Winchendon | II |  | 0.00 | 0.00 | 0.13 | 0.00 | 0.00 | 0.04 | 0.00 | 180 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 23.55 | 23.59 | WPI-1895 | PSS/PEM | N/A | $42^{\circ} 44^{\prime} 21.846^{\prime \prime} \mathrm{N}$ | $72^{\circ} 1^{\prime} 40.774^{\prime \prime} \mathrm{W}$ | Winchendon | II |  | 0.00 | 0.00 | 0.20 | 0.00 | 0.00 | 0.05 | 0.00 | 216 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 23.66 | 23.69 | WPI-1896 | PFO | N/A | $42^{\circ} 44^{\prime} 21.283^{\prime \prime} \mathrm{N}$ | $72^{\circ} 1{ }^{1} 32.910^{\prime \prime} \mathrm{W}$ | Winchendon | N/A |  | 0.00 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 23.67 | 23.72 | WPI-1899 | PSS | N/A | $42^{\circ} 44^{\prime} 21.689^{\prime \prime} \mathrm{N}$ | $72^{\circ} 1{ }^{1} 32.116^{\prime \prime} \mathrm{W}$ | Winchendon | II |  | 0.00 | 0.00 | 0.20 | 0.00 | 0.00 | 0.04 | 0.00 | 186 |

[^17]Table 3.9 - Wetlands Associated with the Project in New Hampshire (continued)

| Table 3.9 (cont'd) <br> Wetlands Associated with the Project in New Hampshire |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Facility Name | County | Town | Segment ${ }^{1}$ | Milepost ${ }^{2}$ |  | $\underset{\text { ID }^{3,4}}{\text { Wetland }}$ | Wetland Class ${ }^{5}$ | State Wetland Classification ${ }^{6}$ | Latitude | Longitude | Quadrangle | Crossing Method | Comments | Wetland Impact (acres) |  |  |  |  |  |  | Crossing Length (feet) |
|  |  |  |  |  |  | Construction ${ }^{8}$ |  |  |  |  |  |  |  | Operation ${ }^{9}$ |  |  |  |
|  |  |  |  | Begin | End |  |  |  |  |  |  |  |  | PEM | PFO | PSS | Other ${ }^{10}$ | PFO | PSS | Other ${ }^{10}$ |  |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 23.67 | 23.69 |  | WPI-1897 | Other | N/A | $42^{\circ} 44^{\prime 21.706 " ~ N ~}$ | $72^{\circ} 11^{132.115 " W}$ | Winchendon | N/A |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 23.69 | 23.72 | WPI-1900 | PFO | N/A | $42^{\circ} 44^{\prime} 21.2511^{\prime N}$ | $72^{\circ} 1{ }^{\prime} 31.114^{\prime \prime} \mathrm{W}$ | Winchendon | N/A |  | 0.00 | 0.11 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 23.72 | 23.74 | WPI-1896 | PFO | N/A | $42^{\circ} 44^{\prime} 21.175^{\prime \prime} \mathrm{N}$ | $72^{\circ} 1{ }^{1} 28.760^{\prime \prime} \mathrm{W}$ | Winchendon | N/A |  | 0.00 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 23.77 | 23.78 | WPI-1901 | PFO | N/A | $42^{\circ} 44^{\prime} 20.733^{\prime \prime} \mathrm{N}$ | $72^{\circ} 1{ }^{\prime} 25.440^{\prime \prime} \mathrm{W}$ | Winchendon | II |  | 0.00 | 0.08 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 47 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 23.78 | 23.79 | WPI-1902 | PSS/PEM | N/A | $42^{\circ} 44^{\prime} 22.203^{\prime \prime} \mathrm{N}$ | $72^{\circ} 1{ }^{\prime} 24.668^{\prime \prime} \mathrm{W}$ | Winchendon | N/A |  | 0.00 | 0.00 | 0.11 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 23.80 | 23.84 | WPI-1902 | PSS/PEM | N/A | $42^{\circ} 44^{\prime} 21.376{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 1{ }^{\prime} 22.767^{\prime \prime} \mathrm{W}$ | Winchendon | N/A |  | 0.00 | 0.00 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 23.83 | 23.84 | WPI-1903 | PSS | N/A | $42^{\circ} 44^{\prime} 21.708{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 1{ }^{1} 20.606{ }^{\prime \prime} \mathrm{W}$ | Winchendon | N/A |  | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 23.84 | 23.86 | WPI-1904 | PFO | N/A | $42^{\circ} 44^{\prime} 21.175^{\prime \prime} \mathrm{N}$ | $72^{\circ} 1{ }^{1} 20.386^{\prime \prime} \mathrm{W}$ | Winchendon | II |  | 0.00 | 0.10 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 15 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 23.84 | 23.86 | WPI-1903 | PSS | N/A | $42^{\circ} 44^{\prime} 21.292{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 1{ }^{\prime} 20.482^{\prime \prime} \mathrm{W}$ | Winchendon | II |  | 0.00 | 0.00 | 0.11 | 0.00 | 0.00 | 0.02 | 0.00 | 107 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 23.96 | 24.04 | WPI-1907 | PFO/PSS | N/A | $42^{\circ} 44^{\prime} 20.953{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 11^{11.893 " ~ W ~}$ | Winchendon | II |  | 0.00 | 0.65 | 0.00 | 0.00 | 0.20 | 0.00 | 0.00 | 411 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 24.01 | 24.02 | WPI-1908 | Other | N/A | $42^{\circ} 44^{\prime} 20.320{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 1{ }^{1} 8.065^{\prime \prime} \mathrm{W}$ | Winchendon | N/A |  | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 24.02 | 24.04 | WPI-1910 | PSS | N/A | $42^{\circ} 44^{\prime} 20.810^{\prime \prime} \mathrm{N}$ | $72^{\circ} 1{ }^{\prime} 7.442^{\prime \prime} \mathrm{W}$ | Winchendon | N/A |  | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 24.04 | 24.06 | WPI-1910 | PSS | N/A | $42^{\circ} 44^{\prime} 20.777^{\prime \prime} \mathrm{N}$ | $72^{\circ} 11^{\prime} 5.856{ }^{\prime \prime} \mathrm{W}$ | Winchendon | N/A |  | 0.00 | 0.00 | 0.11 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 24.35 | 24.37 | WPI-1913 | PFO | N/A | $42^{\circ} 44^{\prime} 19.221^{\prime \prime} \mathrm{N}$ | $72^{\circ} 0^{\prime} 44.526^{\prime \prime} \mathrm{W}$ | Winchendon | II |  | 0.00 | 0.15 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 80 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 24.35 | 24.37 | WPI-1912 | PSS | N/A | $42^{\circ} 44^{\prime} 19.960^{\prime \prime} \mathrm{N}$ | $72^{\circ} 0^{\prime} 44.4411^{\prime \prime} \mathrm{W}$ | Winchendon | II |  | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 0.01 | 0.00 | 46 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 24.37 | 24.38 | WPI-1916 | PFO | N/A | $42^{\circ} 44^{\prime} 19.5066^{\prime \prime}$ | $72^{\circ} 0^{\circ} 42.666^{\prime \prime} \mathrm{W}$ | Winchendon | N/A |  | 0.00 | 0.02 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 24.37 | 24.37 | WPI-1914 | PSS | N/A | $42^{\circ} 44^{\prime} 19.8866^{\prime \prime} \mathrm{N}$ | $72^{\circ} 0^{\prime} 42.983^{\prime \prime} \mathrm{W}$ | Winchendon | II |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 13 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 24.41 | 24.44 | WPI-1917 | PFO | N/A | $42^{\circ} 44^{\prime} 19.058{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 0^{\prime} 40.115^{\prime \prime} \mathrm{W}$ | Winchendon | II |  | 0.00 | 0.19 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 131 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 24.42 | 24.45 | WPI-1918 | PEM | N/A | $42^{\circ} 44^{\prime} 19.6244^{\prime \prime}$ | $72^{\circ} 0^{\prime} 39.442^{\prime \prime} \mathrm{W}$ | Winchendon | N/A |  | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 24.65 | 24.67 | WPI-1921 | PFO | N/A | $42^{\circ} 44^{\prime} 18.946{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 0^{\prime} 22.853^{\prime \prime} \mathrm{W}$ | Winchendon | II |  | 0.00 | 0.03 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 53 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 24.65 | 24.68 | WPI-1920 | PSS/PEM | N/A | $42^{\circ} 44^{\prime} 19.270{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 0^{\prime} 23.153^{\prime \prime} \mathrm{W}$ | Winchendon | II |  | 0.00 | 0.00 | 0.10 | 0.00 | 0.00 | 0.01 | 0.00 | 56 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 24.75 | 24.81 | WPI-1925 | PFO | N/A | $42^{\circ} 44^{\prime} 18.156{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 0^{\prime} 15.760^{\prime \prime} \mathrm{W}$ | Winchendon | II |  | 0.00 | 0.33 | 0.00 | 0.00 | 0.09 | 0.00 | 0.00 | 142 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 24.76 | 24.80 | WPI-1923 | PSS | N/A | $42^{\circ} 44^{\prime} 18.8855^{\prime \prime} \mathrm{N}$ | $72^{\circ} 0^{\prime} 15.418^{\prime \prime} \mathrm{W}$ | Winchendon | II |  | 0.00 | 0.00 | 0.12 | 0.00 | 0.00 | 0.02 | 0.00 | 93 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 24.80 | 24.81 | WPI-1930 | PFO | N/A | $42^{\circ} 44^{\prime} 18.553^{\prime \prime} \mathrm{N}$ | $72^{\circ} 0^{\prime} 12.192^{\prime \prime} \mathrm{W}$ | Winchendon | II |  | 0.00 | 0.03 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 55 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 24.80 | 24.81 | WPI-1926 | PSS/PEM | N/A | $42^{\circ} 44^{\prime} 18.555^{\prime \prime} \mathrm{N}$ | $72^{\circ} 0^{\prime} 12.523^{\prime \prime} \mathrm{W}$ | Winchendon | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 24.80 | 24.81 | WPI-1929 | PSS/PEM | N/A | $42^{\circ} 44^{\prime} 18.5711^{\prime N}$ | $72^{\circ} 0^{\prime} 12.187^{\prime \prime} \mathrm{W}$ | Winchendon | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 24.81 | 24.82 | WPI-1933 | PFO | N/A | $42^{\circ} 44^{\prime} 18.1811^{\prime N}$ | $72^{\circ} 0^{\prime} 11.4611^{\prime} \mathrm{W}$ | Winchendon | II |  | 0.00 | 0.02 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 22 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | 1 | 24.81 | 24.82 | WPI-1935 | PSS/PEM | N/A | $42^{\circ} 44^{\prime} 18.739{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 0^{\prime} 11.493^{\prime \prime} \mathrm{W}$ | Winchendon | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 24.82 | 24.88 | WPI-1940 | PFO | N/A | $42^{\circ} 44^{\prime} 18.197{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 0^{\prime} 11.105{ }^{\text {W }} \mathrm{W}$ | Winchendon | II |  | 0.00 | 0.37 | 0.00 | 0.00 | 0.11 | 0.00 | 0.00 | 169 |

[^18]Table 3.9 - Wetlands Associated with the Project in New Hampshire (continued)

| Table 3.9 (cont'd)Wetlands Associated with the Project in New Hampshire |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Facility Name | County | Town | Segment ${ }^{1}$ | Milepost ${ }^{2}$ |  | $\underset{\mathbf{I D}^{3,4}}{\text { Wetland }}$ | Wetland Class ${ }^{5}$ | State Wetland Classification ${ }^{6}$ | Latitude | Longitude | Quadrangle | Crossing Method | Comments | Wetland Impact (acres) |  |  |  |  |  |  | $\begin{gathered} \text { Crossing } \\ \text { Length } \\ \text { (feet) } \\ \hline \end{gathered}$ |
|  |  |  |  |  |  | Construction ${ }^{8}$ |  |  |  |  |  |  |  | Operation ${ }^{9}$ |  |  |  |
|  |  |  |  | Begin | End |  |  |  |  |  |  |  |  | PEM | PFO | PSS | Other ${ }^{10}$ | PFO | PSS | Other ${ }^{10}$ |  |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 24.82 | 24.82 |  | WPI-1937 | PSS/PEM | N/A | $42^{\circ} 44^{\prime 18.601 " ~} \mathrm{~N}$ | $72^{\circ} 0^{\prime} 11.329^{\prime \prime} \mathrm{W}$ | Winchendon | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 24.82 | 24.88 | WPI-1942 | PSS/PEM | N/A | $42^{\circ} 44^{\prime} 18.503^{\prime \prime} \mathrm{N}$ | $72^{\circ} 0^{\prime} 10.9811^{\prime \prime} \mathrm{W}$ | Winchendon | II |  | 0.00 | 0.00 | 0.18 | 0.00 | 0.00 | 0.04 | 0.00 | 163 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 25.25 | 25.35 | WPI-1943 | Other | N/A | $42^{\circ} 44^{\prime \prime} 17.6811^{\prime N}$ | $71^{\circ} 59^{\prime} 40.319^{\prime \prime} \mathrm{W}$ | Ashburnham | II |  | 0.00 | 0.00 | 0.00 | 0.87 | 0.00 | 0.00 | 0.00 | 508 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 25.81 | 25.84 | WPI-1946 | PEM | N/A | $42^{\circ} 44^{\prime} 33.978{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 59^{\prime} 15.980$ " W | Ashburnham | N/A |  | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 25.81 | 25.82 | WPI-1944 | PSS | N/A | $42^{\circ} 44^{\prime} 34.258{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 59^{\prime} 15.793{ }^{\prime \prime} \mathrm{W}$ | Ashburnham | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 25.86 | 25.89 | WPI-1946 | PEM | N/A | $42^{\circ} 44^{\prime} 36.6288^{\prime \prime} \mathrm{N}$ | $71^{\circ} 59^{\prime} 14.212{ }^{\prime \prime} \mathrm{W}$ | Ashburnham | II |  | 0.19 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 10 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 25.89 | 25.89 | WPI-1947 | PSS | N/A | $42^{\circ} 44^{\prime} 37.884^{\prime \prime} \mathrm{N}$ | $71^{\circ} 59^{\prime} 13.374{ }^{\prime \prime} \mathrm{W}$ | Ashburnham | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 26.56 | 26.57 | WPI-1951 | PEM | N/A | $42^{\circ} 45^{\prime} 8.981^{\prime \prime} \mathrm{N}$ | $71^{\circ} 58^{\prime} 53.527^{\prime \prime} \mathrm{W}$ | Peterborough South | N/A |  | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 26.63 | 26.65 | WPI-1952 | PSS | N/A | $42^{\circ} 45^{\prime} 11.230{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 58^{\prime} 49.946 " \mathrm{~W}$ | Peterborough South | N/A |  | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 26.65 | 26.67 | RN-L-W001 | PFO | N/A | $42^{\circ} 45^{\prime} 11.013{ }^{\prime \prime} \mathrm{N}$ | 71${ }^{\circ} 58^{\prime} 47.949{ }^{\text {W W }}$ | Peterborough South | II |  | 0.00 | 0.09 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 10 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 26.76 | 26.80 | WPI-1953 | PSS | N/A | $42^{\circ} 45^{\prime} 14.048^{\prime \prime} \mathrm{N}$ | $71^{\circ} 58^{\prime} 41.138{ }^{\prime \prime} \mathrm{W}$ | Peterborough South | N/A |  | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 26.77 | 26.81 | WPI-1954 | PFO | N/A | $42^{\circ} 45^{\prime} 13.997{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 58^{\prime} 40.890^{\prime \prime} \mathrm{W}$ | Peterborough South | II |  | 0.00 | 0.31 | 0.00 | 0.00 | 0.12 | 0.00 | 0.00 | 198 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 26.95 | 26.97 | WPI-1955 | PFO | N/A | $42^{\circ} 45^{\prime} 17.143{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 58^{\prime} 28.946 " \mathrm{~W}$ | Peterborough South | II |  | 0.00 | 0.11 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 71 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 26.96 | 26.97 | WPI-1957 | PSS | N/A | $42^{\circ} 45^{\prime} 17.846{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 58^{\prime 2} 28.610^{\prime \prime} \mathrm{W}$ | Peterborough South | N/A |  | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 26.97 | 27.02 | WPI-1956 | PFO | N/A | $42^{\circ} 45^{\prime} 17.565^{\prime \prime} \mathrm{N}$ | $71^{\circ} 58^{\prime} 27.628{ }^{\prime \prime} \mathrm{W}$ | Peterborough South | II |  | 0.00 | 0.22 | 0.00 | 0.00 | 0.11 | 0.00 | 0.00 | 252 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 26.97 | 27.02 | WPI-1957 | PSS | N/A | $42^{\circ} 45^{\prime} 18.138^{\prime \prime} \mathrm{N}$ | $71^{\circ} 58^{\prime} 27.669^{\prime \prime} \mathrm{W}$ | Peterborough South | N/A |  | 0.00 | 0.00 | 0.12 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 27.06 | 27.13 | WPI-1961 | PSS | N/A | $42^{\circ} 45^{\prime} 20.3011^{\prime N}$ | $71^{\circ} 58^{\prime} 21.600{ }^{\prime \prime} \mathrm{W}$ | Peterborough South | N/A |  | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 27.07 | 27.12 | WPI-1962 | PFO | N/A | $42^{\circ} 45^{\prime} 20.226{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 58^{\prime} 21.443^{\prime \prime} \mathrm{W}$ | Peterborough South | II |  | 0.00 | 0.44 | 0.00 | 0.00 | 0.20 | 0.00 | 0.00 | 293 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 27.30 | 27.36 | WPI-1964 | PFO | N/A | $42^{\circ} 45^{\prime} 24.509{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 588^{6.158 " W}$ | Peterborough South | N/A |  | 0.00 | 0.25 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 27.30 | 27.36 | WPI-1966 | PSS | N/A | $42^{\circ} 45^{\prime} 24.788{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 58^{\prime} 5.974^{\prime \prime} \mathrm{W}$ | Peterborough South | II |  | 0.00 | 0.00 | 0.32 | 0.00 | 0.00 | 0.08 | 0.00 | 329 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 27.72 | 27.82 | WPI-1968 | PFO | N/A | $42^{\circ} 45^{\prime} 33.310^{\prime \prime} \mathrm{N}$ | $71^{\circ} 57$ '38.411" W | Peterborough South | II |  | 0.00 | 0.46 | 0.00 | 0.00 | 0.13 | 0.00 | 0.00 | 55 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 27.74 | 27.82 | WPI-1969 | PSS/PEM | N/A | $42^{\circ} 45^{\prime} 33.963^{\prime \prime} \mathrm{N}$ | $71^{\circ} 57$ '37.923" W | Peterborough South | II |  | 0.00 | 0.00 | 0.26 | 0.00 | 0.00 | 0.07 | 0.00 | 368 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 27.82 | 27.84 | WPI-1971 | PEM | N/A | $42^{\circ} 45^{\prime} 35.724^{\prime \prime} \mathrm{N}$ | $71^{\circ} 57{ }^{\prime} 32.674{ }^{\prime \prime} \mathrm{W}$ | Peterborough South | N/A |  | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 27.83 | 27.84 | WPI-1972 | PFO | N/A | $42^{\circ} 45^{\prime} 35.977{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 57{ }^{\prime} 31.956{ }^{\prime \prime} \mathrm{W}$ | Peterborough South | II |  | 0.00 | 0.04 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 48 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 27.87 | 27.88 | WPI-1974 | Other | N/A | $42^{\circ} 45^{\prime} 36.243 " \mathrm{~N}$ | 71 $57{ }^{\prime} 29.238{ }^{\prime \prime} \mathrm{W}$ | Peterborough South | N/A |  | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 27.94 | 27.94 | WPI-1975 | PSS | N/A | $42^{\circ} 45^{\prime} 37.735^{\prime \prime} \mathrm{N}$ | 71${ }^{\circ} 57$ 24.572" W | Peterborough South | II |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 6 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 28.03 | 28.07 | WPI-1980 | PEM | N/A | $42^{\circ} 45^{\prime} 40.378^{\prime \prime} \mathrm{N}$ | $71^{\circ} 57^{\prime 1} 18.802{ }^{\prime \prime} \mathrm{W}$ | Peterborough South | N/A |  | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 28.06 | 28.07 | WPI-1976 | PFO/PSS | N/A | $42^{\circ} 45^{\prime} 40.223{ }^{\prime \prime} \mathrm{N}$ | 715 57 16.792" W | Peterborough South | II |  | 0.00 | 0.05 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 33 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 28.07 | 28.12 | WPI-1977 | PSS | N/A | $42^{\circ} 45^{\prime} 40.397{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 57^{\prime 1} 16.248{ }^{\prime \prime} \mathrm{W}$ | Peterborough South | II |  | 0.00 | 0.00 | 0.34 | 0.00 | 0.00 | 0.02 | 0.00 | 178 |

[^19]Table 3.9 - Wetlands Associated with the Project in New Hampshire (continued)

| Table 3.9 (cont'd) <br> Wetlands Associated with the Project in New Hampshire |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Facility Name | County | Town | Segment ${ }^{1}$ | Milepost ${ }^{2}$ |  | $\begin{gathered} \text { Wetland } \\ \mathbf{I D}^{3,4} \end{gathered}$ | Wetland Class ${ }^{5}$ | State Wetland Classification ${ }^{6}$ | Latitude | Longitude | Quadrangle | Crossing Method | Comments | Wetland Impact (acres) |  |  |  |  |  |  |  |
|  |  |  |  |  |  | Construction ${ }^{8}$ |  |  |  |  |  |  |  | Operation ${ }^{\text {9 }}$ |  |  |  |
|  |  |  |  | Begin | End |  |  |  |  |  |  |  |  | PEM | PFO | PSS | Other ${ }^{10}$ | PFO | PSS | Other ${ }^{10}$ |  |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 28.08 | 28.08 |  | WPI-1980 | PEM | N/A | $42^{\circ} 45^{\prime} 41.301$ " N | 71 ${ }^{\circ} 7^{\prime \prime 15.946 " ~ W ~}$ | Peterborough South | N/A |  | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 28.08 | 28.09 | WPI-1978 | Other | N/A | $42^{\circ} 45^{\prime} 41.307{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 57^{\prime} 15.920$ W | Peterborough South | II |  | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 4 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 28.09 | 28.13 | WPI-1980 | PEM | N/A | $42^{\circ} 45^{\prime} 41.298{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 57^{\prime} 15.098{ }^{\prime \prime} \mathrm{W}$ | Peterborough South | II |  | 0.13 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 111 |
| Wright to Dracut Pipeline Segment | Cheshire | Rindge | I | 28.11 | 28.13 | WPI-1981 | PFO | N/A | $42^{\circ} 45^{\prime} 41.359{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 57^{\prime} 13.239^{\prime \prime} \mathrm{W}$ | Peterborough South | II |  | 0.00 | 0.07 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 36 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 0.03 | 0.04 | WPI-1986 | PSS | N/A | $42^{\circ} 45^{\prime} 56.245^{\prime \prime} \mathrm{N}$ | 71 $566^{29.129 " ~ W ~}$ | Peterborough South | N/A |  | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 0.10 | 0.10 | WPI-1989 | PEM | N/A | $42^{\circ} 45^{\prime} 57.678^{\prime \prime} \mathrm{N}$ | $71^{\circ} 56^{\prime 2} 25.051 " \mathrm{~W}$ | Peterborough South | N/A |  | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 0.20 | 0.23 | WPI-1992 | PSS | N/A | $42^{\circ} 45^{\prime} 59.770{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 56^{\prime} 18.166^{\prime \prime} \mathrm{W}$ | Peterborough South | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 0.25 | 0.30 | WPI-1994 | PFO | N/A | $42^{\circ} 46^{\prime} 0.668^{\prime \prime} \mathrm{N}$ | $71^{\circ} 56^{\prime} 14.783{ }^{\prime \prime} \mathrm{W}$ | Peterborough South | II |  | 0.00 | 0.23 | 0.00 | 0.00 | 0.11 | 0.00 | 0.00 | 184 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 0.25 | 0.36 | WPI-1992 | PSS | N/A | $42^{\circ} 46^{\prime} 0.742^{\prime \prime} \mathrm{N}$ | $71^{\circ} 56^{\prime} 14.843{ }^{\prime \prime} \mathrm{W}$ | Peterborough South | N/A |  | 0.00 | 0.00 | 0.16 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 0.28 | 0.28 | WPI-1996 | Other | N/A | $42^{\circ} 46^{\prime} 1.362^{\prime \prime} \mathrm{N}$ | $71^{\circ} 56^{\prime} 13.183^{\prime \prime} \mathrm{W}$ | Peterborough South | N/A |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 0.44 | 0.54 | WPI-2003 | PFO | N/A | $42^{\circ} 46^{\prime} 3.921^{\prime \prime} \mathrm{N}$ | $71^{\circ} 56^{\prime} 2.648^{\prime \prime} \mathrm{W}$ | Peterborough South | II |  | 0.00 | 0.65 | 0.00 | 0.00 | 0.29 | 0.00 | 0.00 | 442 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 0.44 | 0.47 | WPI-2000 | PSS | N/A | $42^{\circ} 46^{\prime} 4.646{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 56^{\prime 2} 2.514^{\prime \prime} \mathrm{W}$ | Peterborough South | N/A |  | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 0.48 | 0.49 | WPI-2000 | PSS | N/A | $42^{\circ} 46^{\prime} 5.524^{\prime \prime} \mathrm{N}$ | $71^{\circ} 56^{\prime} 0.158^{\prime \prime} \mathrm{W}$ | Peterborough South | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 0.51 | 0.52 | wPI-2000 | PSS | N/A | $42^{\circ} 46^{6} 6.0566^{\prime \prime} \mathrm{N}$ | $71^{\circ} 55^{\prime} 58.494{ }^{\prime \prime} \mathrm{W}$ | Peterborough South | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 0.61 | 0.62 | WPI-2010 | PFO | N/A | $42^{\circ} 46^{\prime} 7.6000^{\prime N}$ | $71^{\circ} 55^{\prime} 51.132^{\prime \prime} \mathrm{W}$ | Peterborough South | N/A |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 0.64 | 0.64 | WPI-2010 | PFO | N/A | $42^{\circ} 46^{\prime} 8.1344^{\prime N}$ | $71^{\circ} 55^{\prime} 49.462^{\prime \prime} \mathrm{W}$ | Peterborough South | N/A |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 0.76 | 0.79 | WPI-2011 | PFO | N/A | $42^{\circ} 46^{\prime} 10.724^{\prime \prime} \mathrm{N}$ | $71^{\circ} 55^{\prime} 41.352^{\prime \prime} \mathrm{W}$ | Peterborough South | II |  | 0.00 | 0.12 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 43 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 0.77 | 0.79 | wPI-2012 | PSS | N/A | $42^{\circ} 46^{\prime} 11.169^{\prime \prime} \mathrm{N}$ | $71^{\circ} 55^{\prime} 41.438{ }^{\prime \prime} \mathrm{W}$ | Peterborough South | II |  | 0.00 | 0.00 | 0.08 | 0.00 | 0.00 | 0.02 | 0.00 | 84 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 1.03 | 1.03 | WPI-2015 | PEM | N/A | $42^{\circ} 46^{\prime} 16.8844^{\prime N}$ | $71^{\circ} 55^{\prime} 24.553^{\prime \prime} \mathrm{W}$ | Peterborough South | N/A |  | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 1.03 | 1.06 | WPI-2016 | PFO | N/A | $42^{\circ} 46^{\prime} 16.265^{\prime \prime} \mathrm{N}$ | $71^{\circ} 55^{\prime} 24.132^{\prime \prime} \mathrm{W}$ | Peterborough South | II |  | 0.00 | 0.17 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 106 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 1.05 | 1.07 | WPI-2018 | Other | N/A | $42^{\circ} 46^{\prime} 17.434{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 55^{\prime} 22.871{ }^{\prime \prime} \mathrm{W}$ | Peterborough South | N/A |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 1.34 | 1.36 | WPI-2020 | PEM | N/A | $42^{\circ} 46^{\prime} 23.153^{\prime \prime} \mathrm{N}$ | $71{ }^{\circ} 55^{\prime} 4.204{ }^{\prime \prime} \mathrm{W}$ | Peterborough South | II |  | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 50 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 1.50 | 1.52 | WPI-2024 | PSS | N/A | $42^{\circ} 46^{\prime} 26.448^{\prime \prime} \mathrm{N}$ | $71^{\circ} 54^{\prime} 53.868^{\prime \prime} \mathrm{W}$ | Peterborough South | N/A |  | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 1.68 | 1.68 | WPI-2025 | PSS | N/A | $42^{\circ} 46^{\prime} 32.209{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 54{ }^{\prime} 44.486{ }^{\prime \prime} \mathrm{W}$ | Peterborough South | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 1.68 | 1.71 | WPI-2027 | Other | N/A | $42^{\circ} 46^{\prime} 32.026^{\prime \prime} \mathrm{N}$ | $71^{\circ} 54{ }^{\prime} 44.443{ }^{\prime \prime} \mathrm{W}$ | Peterborough South | II |  | 0.00 | 0.00 | 0.00 | 0.21 | 0.00 | 0.00 | 0.00 | 135 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 1.72 | 1.75 | WPI-2030 | PEM | N/A | $42^{\circ} 46^{\prime} 32.347{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 54^{\prime} 41.887$ " W | Peterborough South | N/A |  | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 1.93 | 1.94 | WPI-2032 | PEM | N/A | $42^{\circ} 46^{\prime} 36.091 " \mathrm{~N}$ | $71^{\circ} 54{ }^{\text {2 } 27.676 " ~ W ~}$ | Peterborough South | N/A |  | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 2.08 | 2.10 | WPI-2034 | Other | N/A | $42^{\circ} 46^{\prime} 36.835^{\prime \prime} \mathrm{N}$ | 710 ${ }^{\circ} 4^{\prime} 17.647 \mathrm{l}$ W | Peterborough South | N/A |  | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 2.33 | 2.33 | WPI-2037 | PSS/PEM | N/A | $42^{\circ} 46^{\prime} 37.075^{\prime \prime} \mathrm{N}$ | $71^{\circ} 54^{\prime} 0.781^{\prime \prime} \mathrm{W}$ | Peterborough South | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |

[^20]Table 3.9 - Wetlands Associated with the Project in New Hampshire (continued)

| Table 3.9 (cont'd) <br> Wetlands Associated with the Project in New Hampshire |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Facility Name | County | Town | Segment ${ }^{1}$ | Milepost ${ }^{2}$ |  | $\begin{gathered} \text { Wetland } \\ \mathbf{I D}^{3,4} \end{gathered}$ | Wetland Class ${ }^{5}$ | State Wetland Classification ${ }^{6}$ | Latitude | Longitude | Quadrangle | Crossing Method | Comments | Wetland Impact (acres) |  |  |  |  |  |  | Crossing Length (feet) |
|  |  |  |  |  |  | Construction ${ }^{8}$ |  |  |  |  |  |  |  | Operation' |  |  |  |
|  |  |  |  | Begin | End |  |  |  |  |  |  |  |  | PEM | PFO | PSS | Other ${ }^{10}$ | PFO | PSS | Other ${ }^{10}$ |  |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 2.42 | 2.42 |  | WPI-2038 | PFO | N/A | $42^{\circ} 46^{\prime} 36.814^{\prime \prime} \mathrm{N}$ | 715 53' 54.051" W | Peterborough South | N/A |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 2.42 | 2.44 | WPI-2039 | PFO | N/A | $42^{\circ} 46^{\prime} 37.4444^{\prime \prime} \mathrm{N}$ | 71${ }^{\circ} 53^{\prime} 54.088{ }^{\prime \prime} \mathrm{W}$ | Peterborough South | II |  | 0.00 | 0.08 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 46 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 2.53 | 2.53 | WPI-2040 | PSS/PEM | N/A | $42^{\circ} 46^{\prime} 38.294{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 53^{\prime} 46.727^{\prime \prime} \mathrm{W}$ | Peterborough South | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 2.77 | 2.79 | WPI-2042 | PSS | N/A | $42^{\circ} 46^{\prime} 39.649{ }^{\prime \prime} \mathrm{N}$ | 7153' $29.653{ }^{\prime \prime} \mathrm{W}$ | Peterborough South | II |  | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.01 | 0.00 | 36 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 2.79 | 2.79 | WPI-2043 | PSS | N/A | $42^{\circ} 46^{\prime} 39.4244^{\text {N }}$ | 715 $53^{\prime} 28.456{ }^{\prime \prime} \mathrm{W}$ | Peterborough South | II |  | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.01 | 0.00 | 19 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 3.47 | 3.47 | WPI-2049 | PSS | N/A | $42^{\circ} 46^{\prime} 44.026{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 52^{\prime} 40.597{ }^{\prime \prime} \mathrm{W}$ | Peterborough South | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 3.61 | 3.62 | WPI-2052 | PFO | N/A | $42^{\circ} 46^{\prime} 44.070{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 52^{\prime} 30.3301 \mathrm{~W}$ | Peterborough South | N/A |  | 0.00 | 0.02 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 3.61 | 3.62 | WPI-2051 | PSS | N/A | $42^{\circ} 46^{\prime} 44.515^{\prime \prime} \mathrm{N}$ | $71^{\circ} 52^{\prime} 30.336 " \mathrm{~W}$ | Peterborough South | II |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 22 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 3.62 | 3.62 | WPI-2052 | PFO | N/A | $42^{\circ} 46^{\prime} 44.096{ }^{\prime \prime} \mathrm{N}$ | 71 $52^{\prime} 30.029$ " W | Greenville | N/A |  | 0.00 | 0.02 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 3.62 | 3.63 | WPI-2053 | PFO | N/A | $42^{\circ} 46^{\prime} 44.118^{\prime \prime} \mathrm{N}$ | $71^{\circ} 52^{\prime} 29.776{ }^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 8 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 3.62 | 3.63 | WPI-2051 | PSS | N/A | $42^{\circ} 46^{\prime} 44.558{ }^{\prime \prime} \mathrm{N}$ | 71 $52^{\prime} 30.029{ }^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.01 | 0.00 | 29 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 3.63 | 3.63 | WPI-2051 | PSS | N/A | $42^{\circ} 46^{\prime} 44.8244^{\prime \prime}$ | 715 $52^{\prime} 29.315^{\prime \prime} \mathrm{W}$ | Greenville | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 3.91 | 3.93 | WPI-2056 | PFO | N/A | $42^{\circ} 46^{\prime} 46.346{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 52^{\prime} 9.718^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.00 | 0.11 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 86 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 3.91 | 3.93 | WPI-2057 | PSS | N/A | $42^{\circ} 46^{\prime} 46.549{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 52^{\prime} 9.7944^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 0.01 | 0.00 | 16 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 3.94 | 3.97 | WPI-2061 | PSS | N/A | $42^{\circ} 466^{\prime} 46.077^{\prime \prime} \mathrm{N}$ | $71^{\circ} 52^{\prime} 7.140^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.00 | 0.00 | 0.14 | 0.00 | 0.00 | 0.01 | 0.00 | 56 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 3.96 | 3.97 | WPI-2062 | PFO | N/A | $42^{\circ} 46^{\prime} 46.628{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 52^{\prime} 6.195{ }^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.00 | 0.06 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 74 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 3.97 | 3.98 | WPI-2063 | Other | N/A | $42^{\circ} 46^{\prime} 46.986{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 52^{\prime} 5.247^{\prime \prime} \mathrm{W}$ | Greenville | N/A |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 4.06 | 4.08 | WPI-2066 | Other | N/A | $42^{\circ} 46^{\prime} 47.490^{\prime \prime} \mathrm{N}$ | 7151' 58.969" W | Greenville | N/A |  | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 4.13 | 4.17 | WPI-2070 | PFO/PSS | N/A | $42^{\circ} 46^{\prime} 47.3111^{\prime N}$ | $71^{\circ} 51{ }^{\prime} 53.917{ }^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.00 | 0.13 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 41 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 4.13 | 4.15 | WPI-2075 | PFO | N/A | $42^{\circ} 46^{\prime} 47.312^{\prime \prime} \mathrm{N}$ | 7151' 53.915" W | Greenville | N/A |  | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 4.13 | 4.15 | WPI-2069 | PSS/PEM | N/A | $42^{\circ} 466^{\prime} 47.569^{\prime \prime} \mathrm{N}$ | 7151' 53.767" W | Greenville | II |  | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.01 | 0.00 | 25 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 4.15 | 4.15 | WPI-2075 | PFO | N/A | $42^{\circ} 46^{\prime} 47.344{ }^{\prime \prime} \mathrm{N}$ | 71 $511^{\prime} 52.486{ }^{\prime \prime} \mathrm{W}$ | Greenville | N/A |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 4.15 | 4.16 | wPI-2072 | PSS/PEM | N/A | $42^{\circ} 46^{\prime} 47.927{ }^{\prime \prime} \mathrm{N}$ |  | Greenville | N/A |  | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 4.15 | 4.18 | WPI-2071 | Other | N/A | $42^{\circ} 46^{\prime} 47.549^{\prime \prime} \mathrm{N}$ | 7151' 52.972" W | Greenville | II |  | 0.00 | 0.00 | 0.00 | 0.17 | 0.00 | 0.00 | 0.00 | 183 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 4.17 | 4.19 | WPI-2072 | PSS/PEM | N/A | $42^{\circ} 46^{\prime} 47.655^{\prime \prime} \mathrm{N}$ | 7151' $51.555{ }^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.01 | 0.00 | 12 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 4.17 | 4.17 | wPI-2072 | PSS/PEM | N/A | $42^{\circ} 46^{\prime} 48.171{ }^{\prime \prime} \mathrm{N}$ | 71${ }^{\circ} 51{ }^{\prime} 51.552^{\prime \prime} \mathrm{W}$ | Greenville | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 4.18 | 4.19 | wPI-2075 | PFO | N/A | $42^{\circ} 46^{\prime} 47.490^{\prime \prime} \mathrm{N}$ | $71^{\circ} 511^{\prime} 50.804{ }^{\prime \prime} \mathrm{W}$ | Greenville | N/A |  | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 4.42 | 4.45 | WPI-2081 | PSS | N/A | $42^{\circ} 46^{\prime} 49.737{ }^{\prime \prime} \mathrm{N}$ | 7151'33.434" W | Greenville | II |  | 0.00 | 0.00 | 0.11 | 0.00 | 0.00 | 0.03 | 0.00 | 128 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 4.43 | 4.46 | WPI-2085 | PFO | N/A | $42^{\circ} 46^{\prime} 49.395{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 51{ }^{\prime} 33.001 \mathrm{l}$ W | Greenville | N/A |  | 0.00 | 0.11 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |

[^21]Table 3.9 - Wetlands Associated with the Project in New Hampshire (continued)

| Table 3.9 (cont'd) <br> Wetlands Associated with the Project in New Hampshire |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Facility Name | County | Town | Segment ${ }^{1}$ | Milepost ${ }^{2}$ |  | $\underset{\mathbf{I D}^{3,4}}{\text { Wetland }}$ | Wetland Class ${ }^{5}$ | State Wetland Classification ${ }^{6}$ | Latitude | Longitude | Quadrangle | Crossing Method | Comments | Wetland Impact (acres) |  |  |  |  |  |  | Crossing Length (feet) |
|  |  |  |  |  |  | Construction ${ }^{8}$ |  |  |  |  |  |  |  | Operation' |  |  |  |
|  |  |  |  | Begin | End |  |  |  |  |  |  |  |  | PEM | PFO | PSS | Other ${ }^{10}$ | PFO | PSS | Other ${ }^{10}$ |  |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 4.69 | 4.77 |  | WPI-2090 | PSS | N/A | $42^{\circ} 46^{\prime} 51.367^{\prime \prime} \mathrm{N}$ | 71 $51{ }^{\prime} 14.564{ }^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.00 | 0.00 | 0.37 | 0.00 | 0.00 | 0.09 | 0.00 | 404 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 5.15 | 5.17 | WPI-2091 | PSS | N/A | $42^{\circ} 46^{\prime} 53.487^{\prime \prime} \mathrm{N}$ | $71^{\circ} 50^{\prime} 42.086{ }^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.00 | 0.00 | 0.11 | 0.00 | 0.00 | 0.01 | 0.00 | 66 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 5.26 | 5.29 | NI-V-w009 | PEM | N/A | $42^{\circ} 46^{\prime} 54.820^{\prime \prime} \mathrm{N}$ | $71^{\circ} 50^{\prime} 34.633^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 6 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 5.27 | 5.28 | NI-V-W009 | PEM | N/A | $42^{\circ} 466^{54.794 " \mathrm{~N}}$ | $71^{\circ} 50^{\prime} 34.051 " \mathrm{~W}$ | Greenville | II |  | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 23 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 5.27 | 5.28 | NI-V-W009 | PEM | N/A | $42^{\circ} 46{ }^{\prime} 54.297{ }^{\prime \prime} \mathrm{N}$ | 71 $50^{\prime} 33.575{ }^{\prime \prime} \mathrm{W}$ | Greenville | N/A |  | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 5.53 | 5.56 | NI-V-W003 | PEM | N/A | $42^{\circ} 46^{\prime} 55.450{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 50^{\prime} 15.8055^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.13 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 139 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 5.55 | 5.59 | NI-V-w003 | PSS | N/A | $42^{\circ} 46^{\prime} 55.443^{\prime \prime} \mathrm{N}$ | 71${ }^{\circ} 50^{\prime} 13.986{ }^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.00 | 0.00 | 0.30 | 0.00 | 0.00 | 0.04 | 0.00 | 185 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 5.59 | 5.59 | NI-V-W003 | PEM | N/A | $42^{\circ} 46^{\prime} 55.824^{\prime \prime} \mathrm{N}$ | $71^{\circ} 50^{\prime 11.734 " ~ W ~}$ | Greenville | N/A |  | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 5.63 | 5.63 | NI-V-W003 | PFO | N/A | $42^{\circ} 466^{\prime 5} 5.795^{\prime \prime} \mathrm{N}$ | $71^{\circ} 50^{\prime} 8.8066^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.00 | 0.05 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 24 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 6.02 | 6.06 | N-R-W001 | PFO | N/A | $42^{\circ} 46^{\prime} 54.645^{\prime \prime} \mathrm{N}$ | $71^{\circ} 49^{\prime} 43.818^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.00 | 0.27 | 0.00 | 0.00 | 0.11 | 0.00 | 0.00 | 146 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 6.10 | 6.14 | NI-R-W001 | PFO | N/A | $42^{\circ} 46^{\prime} 55.245{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 49^{\prime} 38.051{ }^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.00 | 0.12 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 29 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 6.13 | 6.15 | NI-R-W001 | PFO | N/A | $42^{\circ} 466^{\prime} 55.220{ }^{\prime \prime} \mathrm{N}$ | 71* 49' 36.072" W | Greenville | II |  | 0.00 | 0.10 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 58 |
| Wright to Dracut Pipeline Segment | Hillsborough | Greenville | J | 6.45 | 6.46 | WPI-2092 | PSS | N/A | $42^{\circ} 46^{\prime} 57.161^{\prime \prime} \mathrm{N}$ | $71^{\circ} 49^{\prime} 14.460{ }^{\prime \prime} \mathrm{W}$ | Greenville | N/A |  | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Greenville | J | 6.72 | 6.75 | WPI-2099 | PSS/PEM | N/A | $42^{\circ} 47^{\prime} 4.097{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 48^{\prime} 57.656{ }^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.00 | 0.00 | 0.12 | 0.00 | 0.00 | 0.02 | 0.00 | 108 |
| Wright to Dracut Pipeline Segment | Hillsborough | Greenville | J | 7.71 | 7.72 | GN-M-W001 | PSS | N/A | $42^{\circ} 47^{\prime} 12.977^{\prime \prime} \mathrm{N}$ | $71^{\circ} 477^{\prime} 49.650^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 0.01 | 0.00 | 49 |
| Wright to Dracut Pipeline Segment | Hillsborough | Greenville | J | 7.79 | 7.80 | GN-M-W001 | PSS | N/A | $42^{\circ} 47^{\prime} 13.293{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 47^{\prime} 43.800$ W | Greenville | II |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 3 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 8.30 | 8.31 | WPI-2105 | Other | N/A | $42^{\circ} 47^{\prime} 6.572^{\prime \prime} \mathrm{N}$ | $71^{\circ} 477^{\prime} 9.479{ }^{\prime \prime} \mathrm{W}$ | Greenville | N/A |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 8.38 | 8.40 | WPI-2107 | PEM | N/A | $42^{\circ} 47^{\prime} 5.308{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 47^{\prime} 4.160^{\prime \prime} \mathrm{W}$ | Greenville | N/A |  | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 8.38 | 8.40 | wPI-2106 | PFO | N/A | $42^{\circ} 47^{\prime} 5.247{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 47^{\prime} 4.111^{\prime \prime} \mathrm{W}$ | Greenville | N/A |  | 0.00 | 0.04 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 8.59 | 8.60 | WPI-2109 | PSS/PEM | N/A | $42^{\circ} 47^{\prime} 2.341^{\prime \prime} \mathrm{N}$ | $71^{\circ} 46^{\prime} 49.769^{\prime \prime} \mathrm{W}$ | Greenville | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 8.81 | 8.83 | WPI-2115 | PFO | N/A | $42^{\circ} 46^{\prime} 59.082{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 46^{\prime 3} 34.466{ }^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.00 | 0.11 | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 90 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 8.82 | 8.83 | WPI-2113 | Other | N/A | $42^{\circ} 466^{59.027 " ~} \mathrm{~N}$ | $71^{\circ} 46^{\prime} 34.200{ }^{\prime \prime} \mathrm{W}$ | Greenville | N/A |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 8.87 | 8.92 | wPI-2116 | PFO | N/A | $42^{\circ} 46^{\prime} 58.226{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 46^{\prime} 30.314{ }^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.00 | 0.30 | 0.00 | 0.00 | 0.15 | 0.00 | 0.00 | 211 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 8.91 | 8.96 | WPI-2117 | Other | N/A | $42^{\circ} 466^{57.758 " \mathrm{~N}}$ | $71^{\circ} 46^{\prime 2} 28.045$ " W | Greenville | N/A |  | 0.00 | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 8.94 | 8.97 | WPI-2118 | PFO | N/A | $42^{\circ} 466^{\prime 56.557 " ~} \mathrm{~N}$ | $71^{\circ} 46^{\prime 2} 25.952^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.00 | 0.17 | 0.00 | 0.00 | 0.08 | 0.00 | 0.00 | 110 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 9.06 | 9.08 | WPI-2119 | PFO | N/A | $42^{\circ} 46^{\prime} 54.863^{\prime \prime} \mathrm{N}$ | $71^{\circ} 46^{\prime} 17.740{ }^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.00 | 0.12 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 65 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 9.13 | 9.14 | wPI-2120 | PSS | N/A | $42^{\circ} 466^{\prime 5} .147^{\prime \prime} \mathrm{N}$ | $71^{\circ} 46^{\prime} 12.407$ " W | Greenville | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 9.14 | 9.15 | WPI-2120 | PSS | N/A | $42^{\circ} 466^{\prime 5} .0311^{\prime N}$ | $71^{\circ} 46^{\prime} 11.845$ W | Greenville | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 9.20 | 9.21 | WPI-2121 | Other | N/A | $42^{\circ} 46^{\prime} 53.672^{\prime \prime} \mathrm{N}$ | $71^{\circ} 46^{\prime} 7.743^{\prime \prime} \mathrm{W}$ | Greenville | N/A |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0 |

[^22]Table 3.9 - Wetlands Associated with the Project in New Hampshire (continued)

| Table 3.9 (cont'd) <br> Wetlands Associated with the Project in New Hampshire |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Facility Name | County | Town | Segment ${ }^{1}$ | Milepost ${ }^{2}$ |  | $\begin{gathered} \text { Wetland } \\ \mathbf{I D}^{3,4} \end{gathered}$ | Wetland Class ${ }^{5}$ | State Wetland Classification ${ }^{6}$ | Latitude | Longitude | Quadrangle | Crossing <br> Method | Comments | Wetland Impact (acres) |  |  |  |  |  |  | $\begin{array}{\|c\|c\|} \hline \text { Crossing } \\ \text { Length } \\ \text { (feet) }^{11} \end{array}$ |
|  |  |  |  |  |  | Construction ${ }^{8}$ |  |  |  |  |  |  |  | Operation ${ }^{\text {² }}$ |  |  |  |
|  |  |  |  | Begin | End |  |  |  |  |  |  |  |  | PEM | PFO | PSS | Other ${ }^{10}$ | PFO | PSS | Other ${ }^{10}$ |  |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 9.21 | 9.21 |  | WPI-2122 | PSS | N/A | $42^{\circ} 466^{\prime 53.584 " ~} \mathrm{~N}$ | $71^{\circ} 46^{\prime} 7.317^{\prime \prime} \mathrm{W}$ | Greenville | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 9.33 | 9.35 | wPI-2125 | Other | N/A | $42^{\circ} 46^{\prime} 51.0966^{\prime \prime} \mathrm{N}$ | $71^{\circ} 45^{\prime} 59.483{ }^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.00 | 0.00 | 0.00 | 0.11 | 0.00 | 0.00 | 0.00 | 49 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 9.41 | 9.42 | WPI-2126 | Other | N/A | $42^{\circ} 46^{\prime} 49.939{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 45^{\prime} 54.374{ }^{\prime \prime} \mathrm{W}$ | Greenville | N/A |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 9.55 | 9.60 | WPI-2129 | PFO | N/A | $42^{\circ} 46^{\prime} 48.4200^{\prime \prime}$ | $71^{\circ} 45^{\prime} 43.981 \mathrm{lW}$ | Greenville | II |  | 0.00 | 0.44 | 0.00 | 0.00 | 0.18 | 0.00 | 0.00 | 261 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 9.60 | 9.62 | WPI-2131 | PFO | N/A | $42^{\circ} 46^{\prime} 47.733^{\prime \prime} \mathrm{N}$ | $71^{\circ} 45^{\prime} 40.601 \mathrm{lW}$ | Greenville | II |  | 0.00 | 0.11 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 58 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 9.62 | 9.68 | WPI-2131 | PFO | N/A | $42^{\circ} 46^{\prime} 46.999{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 45^{\prime} 39.633^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.00 | 0.23 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 37 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 9.79 | 9.93 | WPI-2139 | PFO | N/A | $42^{\circ} 46^{\prime} 45.335{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 45^{\prime} 28.136{ }^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.00 | 1.22 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 732 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 9.87 | 9.90 | WPI-2138 | PSS/PEM | N/A | $42^{\circ} 46^{\prime} 44.2711^{\prime N}$ | $71^{\circ} 45^{\prime} 22.695^{\prime \prime} \mathrm{W}$ | Greenville | N/A |  | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 9.96 | 10.00 | WPI-2139 | PFO | N/A | $42^{\circ} 46^{\prime} 42.157^{\prime \prime} \mathrm{N}$ | 710 ${ }^{\circ} 5^{\prime} 16.182^{\prime \prime} \mathrm{W}$ | Greenville | N/A |  | 0.00 | 0.15 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 10.00 | 10.01 | WPI-2142 | PFO | N/A | $42^{\circ} 46^{\prime} 42.396{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 45^{\prime} 13.611^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.00 | 0.06 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 38 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 10.03 | 10.05 | WPI-2144 | PFO | N/A | $42^{\circ} 46^{\prime} 41.954{ }^{\prime \prime} \mathrm{N}$ | 710 ${ }^{\circ} 5^{\prime} 11.472{ }^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.00 | 0.10 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 52 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 10.23 | 10.25 | WPI-2152 | PFO | N/A | $42^{\circ} 46^{\prime} 38.423^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime} 58.096{ }^{\prime \prime} \mathrm{W}$ | Milford | II |  | 0.00 | 0.10 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 65 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 10.40 | 10.41 | WPI-2156 | Other | N/A | $42^{\circ} 46^{\prime} 36.2888^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime} 46.600{ }^{\prime \prime} \mathrm{W}$ | Milford | II |  | 0.00 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 0.00 | 69 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 10.47 | 10.48 | WPI-2157 | Other | N/A | $42^{\circ} 46^{\prime} 35.0866^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime} 41.408{ }^{\text {W }} \mathrm{W}$ | Milford | N/A |  | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 10.52 | 10.55 | WPI-2159 | PFO | N/A | $42^{\circ} 46^{\prime} 35.0766^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime} 38.171{ }^{\prime \prime} \mathrm{W}$ | Milford | II |  | 0.00 | 0.23 | 0.00 | 0.00 | 0.10 | 0.00 | 0.00 | 141 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 10.61 | 10.69 | WPI-2161 | PFO | N/A | $42^{\circ} 46^{\prime} 33.829{ }^{\prime \prime} \mathrm{N}$ | 71* $44^{\prime} 32.137{ }^{\prime \prime} \mathrm{W}$ | Milford | II |  | 0.00 | 0.69 | 0.00 | 0.00 | 0.28 | 0.00 | 0.00 | 409 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 10.76 | 10.77 | WPI-2164 | PSS | N/A | $42^{\circ} 46^{\prime} 31.6500^{\prime \prime} \mathrm{N}$ | 71 ${ }^{\circ} 44^{2} 21.749{ }^{\prime \prime} \mathrm{W}$ | Milford | II |  | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.01 | 0.00 | 25 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 10.77 | 10.83 | WPI-2166 | PFO | N/A | $42^{\circ} 46^{\prime} 30.8666^{\prime \prime}$ | $71^{\circ} 44^{\prime 2} 21.521$ W | Milford | II |  | 0.00 | 0.57 | 0.00 | 0.00 | 0.22 | 0.00 | 0.00 | 322 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 10.78 | 10.81 | WPI-2165 | PSS | N/A | $42^{\circ} 46^{\prime} 31.8566^{\prime \prime} \mathrm{N}$ | 71* $44^{\prime} 20.474{ }^{\prime \prime} \mathrm{W}$ | Milford | N/A |  | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 10.79 | 10.80 | WPI-2164 | PSS | N/A | $42^{\circ} 46^{\prime} 32.903^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime 19.010 " ~ W ~}$ | Milford | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 10.84 | 10.85 | WPI-2167 | PFO | N/A | $42^{\circ} 46^{\prime} 30.560^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime} 16.316^{\prime \prime} \mathrm{W}$ | Milford | II |  | 0.00 | 0.06 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 40 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 10.96 | 11.05 | WPI-2168 | PFO | N/A | $42^{\circ} 46^{\prime} 28.493^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime} 8.337^{\prime \prime} \mathrm{W}$ | Milford | II |  | 0.00 | 0.81 | 0.00 | 0.00 | 0.32 | 0.00 | 0.00 | 466 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 10.96 | 10.96 | WPI-2168 | PFO | N/A | $42^{\circ} 46^{\prime} 28.403^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime} 8.362^{\prime \prime} \mathrm{W}$ | Milford | N/A |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 10.96 | 10.96 | WPI-2168 | PFO | N/A | $42^{\circ} 46^{\prime} 28.403^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime} 8.362^{\prime \prime} \mathrm{W}$ | Milford | N/A |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 11.15 | 11.19 | WPI-2170 | PEM | N/A | $42^{\circ} 46^{\prime} 30.133^{\prime \prime} \mathrm{N}$ | 710 ${ }^{\circ} 3^{\prime} 55.134{ }^{\prime \prime} \mathrm{W}$ | Milford | II |  | 0.32 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 193 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 11.50 | 11.50 | WPI-2175 | Other | N/A | $42^{\circ} 46^{\prime} 33.277{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 43^{\prime} 30.954{ }^{\prime \prime} \mathrm{W}$ | Milford | N/A |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 11.64 | 11.66 | WPI-2176 | PFO | N/A | $42^{\circ} 46^{\prime} 33.112^{\prime \prime} \mathrm{N}$ | 711 ${ }^{\circ} 3^{\prime}$ 20.675" W | Milford | II |  | 0.00 | 0.14 | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 83 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 11.65 | 11.66 | WPI-2177 | PSS | N/A | $42^{\circ} 46^{\prime 3} 33.665^{\prime \prime} \mathrm{N}$ | 710 ${ }^{\circ} 3^{\prime} 20.377^{\prime \prime} \mathrm{W}$ | Milford | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 11.93 | 11.95 | WPI-2181 | PFO | N/A | $42^{\circ} 46^{\prime} 34.202^{\prime \prime} \mathrm{N}$ | $71^{\circ} 43^{\prime} 0.637^{\prime \prime} \mathrm{W}$ | Milford | II |  | 0.00 | 0.18 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 106 |

[^23]Table 3.9 - Wetlands Associated with the Project in New Hampshire (continued)

| Table 3.9 (cont'd) <br> Wetlands Associated with the Project in New Hampshire |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Facility Name | County | Town | Segment ${ }^{1}$ | Milepost ${ }^{2}$ |  | $\underset{\mathbf{I D}^{3,4}}{\text { Wetland }}$ | Wetland Class ${ }^{5}$ | State Wetland Classification ${ }^{6}$ | Latitude | Longitude | Quadrangle | Crossing Method ${ }^{7}$ | Comments | Wetland Impact (acres) |  |  |  |  |  |  | Crossing Length (feet) |
|  |  |  |  |  |  | Construction ${ }^{8}$ |  |  |  |  |  |  |  | Operation' |  |  |  |
|  |  |  |  | Begin | End |  |  |  |  |  |  |  |  | PEM | PFO | PSS | Other ${ }^{10}$ | PFO | PSS | Other ${ }^{10}$ |  |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 11.95 | 12.05 |  | WPI-2182 | PFO | N/A | $42^{\circ} 46^{\prime} 34.518^{\prime \prime} \mathrm{N}$ | 710 ${ }^{\circ} 2^{\prime} 58.685^{\prime \prime} \mathrm{W}$ | Milford | II |  | 0.00 | 0.82 | 0.00 | 0.00 | 0.26 | 0.00 | 0.00 | 380 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 12.05 | 12.08 | WPI-2187 | PFO | N/A | $42^{\circ} 46^{\prime} 35.4666^{\prime \prime} \mathrm{N}$ | $71^{\circ} 42^{\prime} 51.687{ }^{\prime \prime} \mathrm{W}$ | Milford | II |  | 0.00 | 0.13 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 63 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 12.13 | 12.17 | WPI-2188 | Other | N/A | $42^{\circ} 46^{\prime} 35.467^{\prime \prime} \mathrm{N}$ | $71^{\circ} 42^{\prime} 46.440 " \mathrm{~W}$ | Milford | II |  | 0.00 | 0.00 | 0.00 | 0.29 | 0.00 | 0.00 | 0.00 | 226 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 12.14 | 12.15 | WPI-2190 | PFO | N/A | $42^{\circ} 46^{\prime} 35.261^{\prime \prime} \mathrm{N}$ | 71* $42^{\prime} 45.637{ }^{\prime \prime} \mathrm{W}$ | Milford | N/A |  | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 12.14 | 12.18 | WPI-2189 | PSS/PEM | N/A | $42^{\circ} 46^{\prime} 35.387{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 42^{\prime} 45.751{ }^{\prime \prime} \mathrm{W}$ | Milford | II |  | 0.00 | 0.00 | 0.16 | 0.00 | 0.00 | 0.01 | 0.00 | 57 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 12.15 | 12.16 | WPI-2189 | PSS/PEM | N/A | $42^{\circ} 46^{\prime} 35.881^{\prime \prime} \mathrm{N}$ | $71^{\circ} 42^{\prime} 44.546 " \mathrm{~W}$ | Milford | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 12.17 | 12.23 | WPI-2190 | PFO | N/A | $42^{\circ} 46^{\prime} 35.228{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 42^{\prime} 43.005^{\prime \prime} \mathrm{W}$ | Milford | II |  | 0.00 | 0.42 | 0.00 | 0.00 | 0.16 | 0.00 | 0.00 | 226 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 12.20 | 12.21 | WPI-2191 | Other | N/A | $42^{\circ} 46^{\prime} 36.0877^{\prime \prime} \mathrm{N}$ | $71^{\circ} 42^{\prime} 41.016{ }^{\prime \prime} \mathrm{W}$ | Milford | N/A |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 12.43 | 12.44 | WPI-2195 | PFO/PSS | N/A | $42^{\circ} 46^{\prime} 36.739^{\prime \prime} \mathrm{N}$ | 710 $42^{\prime} 24.997$ W | Milford | II |  | 0.00 | 0.06 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 38 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 12.49 | 12.52 | WPI-2197 | PFO | N/A | $42^{\circ} 46^{\prime} 37.242^{\prime \prime} \mathrm{N}$ | $71^{\circ} 42^{\prime} 21.159{ }^{\prime \prime} \mathrm{W}$ | Milford | II |  | 0.00 | 0.23 | 0.00 | 0.00 | 0.10 | 0.00 | 0.00 | 140 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 12.58 | 12.58 | WPI-2199 | PSS | N/A | $42^{\circ} 46^{\prime} 37.744{ }^{\prime \prime} \mathrm{N}$ | 710 $42^{\prime} 14.199{ }^{\prime \prime} \mathrm{W}$ | Milford | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 12.58 | 12.59 | WPI-2198 | Other | N/A | $42^{\circ} 46^{\prime} 36.950$ " N | $71^{\circ} 42^{\prime} 14.245{ }^{\prime \prime} \mathrm{W}$ | Milford | N/A |  | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 12.72 | 12.76 | WPI-2201 | PFO | N/A | $42^{\circ} 46^{\prime} 37.355^{\prime \prime} \mathrm{N}$ | $71^{\circ} 42^{\prime} 4.713^{\prime \prime} \mathrm{W}$ | Milford | II |  | 0.00 | 0.20 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 12 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 12.96 | 12.98 | WPI-2202 | PFO | N/A | $42^{\circ} 46^{\prime} 38.455^{\prime \prime} \mathrm{N}$ | 71* 41 ' 77.479 W | Milford | II |  | 0.00 | 0.15 | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 93 |
| Wright to Dracut Pipeline Segment | Hillsborough | Brookline | J | 13.13 | 13.19 | WPI-2206 | PFO | N/A | $42^{\circ} 46^{\prime} 39.9266^{\prime \prime} \mathrm{N}$ | 71* 41 ' $35.840^{\prime \prime} \mathrm{W}$ | Milford | II |  | 0.00 | 0.48 | 0.00 | 0.00 | 0.19 | 0.00 | 0.00 | 278 |
| Wright to Dracut Pipeline Segment | Hillsborough | Brookline | J | 13.23 | 13.31 | WPI-2209 | PFO | N/A | $42^{\circ} 46^{\prime} 42.805^{\prime \prime} \mathrm{N}$ | 71 ${ }^{\circ} 41^{\prime} 29.927$ " W | Milford | II |  | 0.00 | 0.63 | 0.00 | 0.00 | 0.26 | 0.00 | 0.00 | 374 |
| Wright to Dracut Pipeline Segment | Hillsborough | Brookline | J | 13.29 | 13.34 | WPI-2213 | PFO | N/A | $42^{\circ} 46^{\prime} 44.680$ " N | 71 ${ }^{\circ} 41^{\prime} 26.077{ }^{\prime \prime} \mathrm{W}$ | Milford | II |  | 0.00 | 0.28 | 0.00 | 0.00 | 0.11 | 0.00 | 0.00 | 156 |
| Wright to Dracut Pipeline Segment | Hillsborough | Brookline | J | 13.34 | 13.37 | WPI-2215 | PFO | N/A | $42^{\circ} 46^{\prime} 45.980$ " N | 71* $41^{\prime} 23.408{ }^{\prime \prime} \mathrm{W}$ | Milford | II |  | 0.00 | 0.09 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 31 |
| Wright to Dracut Pipeline Segment | Hillsborough | Brookline | J | 13.68 | 13.69 | WPI-2218 | Other | N/A | $42^{\circ} 46^{\prime} 56.0511^{\prime N}$ | $71^{\circ} 41^{\prime} 3.520^{\prime \prime} \mathrm{W}$ | Milford | II |  | 0.00 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 43 |
| Wright to Dracut Pipeline Segment | Hillsborough | Brookline | J | 14.18 | 14.27 | WPI-2223 | PFO | N/A | $42^{\circ} 47^{\prime} 10.939{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 40^{\prime} 34.210^{\prime \prime} \mathrm{W}$ | Milford | II |  | 0.00 | 0.26 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 146 |
| Wright to Dracut Pipeline Segment | Hillsborough | Brookline | J | 14.28 | 14.30 | WPI-2224 | PFO | N/A | $42^{\circ} 47^{\prime} 13.086{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 40^{\prime} 27.732$ W | Milford | II |  | 0.00 | 0.13 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 57 |
| Wright to Dracut Pipeline Segment | Hillsborough | Brookline | J | 14.72 | 14.77 | WPI-2228 | PFO | N/A | $42^{\circ} 47^{\prime} 25.583^{\prime \prime} \mathrm{N}$ | $71^{\circ} 40^{\prime} 2.053^{\prime \prime} \mathrm{W}$ | Milford | II |  | 0.00 | 0.48 | 0.00 | 0.00 | 0.19 | 0.00 | 0.00 | 278 |
| Wright to Dracut Pipeline Segment | Hillsborough | Brookline | J | 15.02 | 15.02 | BK-M-W002 | PFO | N/A | $42^{\circ} 47^{\prime} 31.6966^{\prime \prime}$ | $71^{\circ} 39^{\prime} 43.0801 \mathrm{~W}$ | Milford | N/A |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Brookline | J | 15.22 | 15.28 | WPI-2232 | PFO | N/A | $42^{\circ} 47^{\prime} 33.928^{\prime \prime} \mathrm{N}$ | $71^{\circ} 39^{\prime 2} 29.287{ }^{\prime \prime} \mathrm{W}$ | Milford | II |  | 0.00 | 0.41 | 0.00 | 0.00 | 0.21 | 0.00 | 0.00 | 320 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 15.86 | 15.90 | WPI-2234 | PEM | N/A | $42^{\circ} 47^{\prime} 42.767^{\prime \prime} \mathrm{N}$ | $71^{\circ} 388^{\prime} 46.661 " \mathrm{~W}$ | Milford | N/A |  | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 15.88 | 15.90 | WPI-2235 | PFO | N/A | $42^{\circ} 47^{\prime} 42.865^{\prime \prime} \mathrm{N}$ | 71 ${ }^{\circ} 38^{\prime} 45.494{ }^{\prime \prime} \mathrm{W}$ | Milford | II |  | 0.00 | 0.10 | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 108 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 15.98 | 15.99 | wPI-2236 | PEM | N/A | $42^{\circ} 47^{\prime} 44.222^{\prime \prime} \mathrm{N}$ | $71^{\circ} 38^{\prime} 38.847$ " W | Milford | N/A |  | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 16.34 | 16.37 | WPI-2239 | PEM | N/A | $42^{\circ} 47^{\prime} 48.934{ }^{\prime \prime} \mathrm{N}$ | 71 ${ }^{\circ} 38^{\prime} 14.085{ }^{\prime \prime} \mathrm{W}$ | Milford | II |  | 0.19 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 122 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 16.35 | 16.37 | WPI-2240 | PFO | N/A | $42^{\circ} 47^{\prime} 48.530^{\prime \prime} \mathrm{N}$ | $71^{\circ} 38^{\prime} 13.129{ }^{\prime \prime} \mathrm{W}$ | Milford | N/A |  | 0.00 | 0.03 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0 |

[^24]Table 3.9 - Wetlands Associated with the Project in New Hampshire (continued)

| Table 3.9 (cont'd) <br> Wetlands Associated with the Project in New Hampshire |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Facility Name | County | Town | Segment ${ }^{1}$ | Milepost ${ }^{2}$ |  | $\begin{gathered} \text { Wetland } \\ \mathbf{I D}^{3,4} \end{gathered}$ | Wetland Class ${ }^{5}$ | State Wetland Classification ${ }^{6}$ | Latitude | Longitude | Quadrangle | Crossing Method | Comments | Wetland Impact (acres) |  |  |  |  |  |  | Crossing Length (feet) |
|  |  |  |  |  |  | Construction ${ }^{8}$ |  |  |  |  |  |  |  | Operation ${ }^{9}$ |  |  |  |
|  |  |  |  | Begin | End |  |  |  |  |  |  |  |  | PEM | PFO | PSS | Other ${ }^{10}$ | PFO | PSS | Other ${ }^{10}$ |  |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 16.52 | 16.55 |  | WPI-2242 | PEM | N/A | $42^{\circ} 47^{\prime} 51.1966^{\prime \prime}$ | $71^{\circ} 38^{\prime} 1.245^{\prime \prime} \mathrm{W}$ | Milford | II |  | 0.20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 142 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 16.56 | 16.58 | WPI-2243 | PSS | N/A | $42^{\circ} 47^{\prime} 51.186^{\prime \prime} \mathrm{N}$ | 71 $37^{\circ} 58.696{ }^{\prime \prime} \mathrm{W}$ | Milford | II |  | 0.00 | 0.00 | 0.14 | 0.00 | 0.00 | 0.02 | 0.00 | 95 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 16.60 | 16.61 | WPI-2244 | Other | N/A | $42^{\circ} 47^{\prime} 52.097{ }^{\prime \prime} \mathrm{N}$ | 71 $3{ }^{\circ} 3{ }^{\prime} 55.708{ }^{\prime \prime} \mathrm{W}$ | Milford | N/A |  | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 16.61 | 16.61 | WPI-2244 | Other | N/A | $42^{\circ} 47^{\prime} 52.275^{\prime \prime} \mathrm{N}$ | 71³7' 55.117" W | Milford | N/A |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 16.62 | 16.72 | WPI-2245 | PSS/PEM | N/A | $42^{\circ} 47^{\prime} 51.645^{\prime \prime} \mathrm{N}$ | 71³7' 54.3711 W | Milford | II |  | 0.00 | 0.00 | 0.85 | 0.00 | 0.00 | 0.12 | 0.00 | 507 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 16.63 | 16.63 | WPI-2245 | PSS/PEM | N/A | $42^{\circ} 47^{\prime} 53.961{ }^{\prime \prime} \mathrm{N}$ | 71³7' 54.189" W | Milford | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 16.82 | 16.83 | WPI-2246 | PEM | N/A | $42^{\circ} 47^{\prime} 54.360{ }^{\prime \prime} \mathrm{N}$ | 71 $37^{\circ} 41.009{ }^{\text {W }}$ W | Milford | N/A |  | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 16.88 | 16.90 | WPI-2247 | PEM | N/A | $42^{\circ} 47^{\prime} 55.241^{\prime \prime} \mathrm{N}$ | $71^{\circ} 37^{\prime} 36.464{ }^{\prime \prime} \mathrm{W}$ | Milford | II |  | 0.13 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 79 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 17.06 | 17.08 | WPI-2250 | PSS | N/A | $42^{\circ} 47^{\prime} 56.948{ }^{\prime \prime} \mathrm{N}$ | 71³7' $24.259^{\prime \prime} \mathrm{W}$ | South Merrimack | II |  | 0.00 | 0.00 | 0.19 | 0.00 | 0.00 | 0.03 | 0.00 | 113 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 17.30 | 17.34 | WPI-2251 | PFO | N/A | $42^{\circ} 48^{\prime} 3.430{ }^{\prime \prime} \mathrm{N}$ | 71 ${ }^{\circ} 37^{\prime \prime} 10.291{ }^{\prime \prime} \mathrm{W}$ | South Merrimack | N/A |  | 0.00 | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 17.32 | 17.35 | WPI-2253 | PEM | N/A | $42^{\circ} 48^{\prime} 4.383{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 37{ }^{\prime} 9.434{ }^{\prime \prime} \mathrm{W}$ | South Merrimack | II |  | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 86 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 17.39 | 17.39 | WPI-2256 | Other | N/A | $42^{\circ} 48^{\prime} 7.455{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 37^{\prime} 7.0411^{\prime} \mathrm{W}$ | South Merrimack | N/A |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Amherst | J | 17.86 | 17.88 | WPI-2258 | Other | N/A | $42^{\circ} 48^{\prime} 27.223^{\prime \prime} \mathrm{N}$ | $71^{\circ} 36^{\prime} 47.419{ }^{\prime \prime} \mathrm{W}$ | South Merrimack | II |  | 0.00 | 0.00 | 0.00 | 0.10 | 0.00 | 0.00 | 0.00 | 80 |
| Wright to Dracut Pipeline Segment | Hillsborough | Amherst | J | 17.87 | 17.94 | WPI-2259 | PFO | N/A | $42^{\circ} 48^{\prime} 27.261^{\prime \prime} \mathrm{N}$ | $71^{\circ} 366^{46.681 " \mathrm{~W}}$ | South Merrimack | II |  | 0.00 | 0.42 | 0.00 | 0.00 | 0.16 | 0.00 | 0.00 | 312 |
| Wright to Dracut Pipeline Segment | Hillsborough | Amherst | J | 17.88 | 17.94 | WPI-2262 | PSS/PEM | N/A | $42^{\circ} 48^{\prime} 27.923{ }^{\prime \prime} \mathrm{N}$ | 71³6' $46.796{ }^{\text {" W }}$ | South Merrimack | N/A |  | 0.00 | 0.00 | 0.12 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 2.77 | 2.79 | WPI-2042 | PSS | N/A | $42^{\circ} 46^{\prime} 39.649{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 53^{\prime 2} 29.653^{\prime \prime} \mathrm{W}$ | Peterborough South | II |  | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.01 | 0.00 | 36 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 2.79 | 2.79 | WPI-2043 | PSS | N/A | $42^{\circ} 46^{\prime} 39.4244^{\prime \prime}$ | 715 $53^{\prime} 28.456{ }^{\prime \prime} \mathrm{W}$ | Peterborough South | II |  | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.01 | 0.00 | 19 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 3.47 | 3.47 | WPI-2049 | PSS | N/A | $42^{\circ} 46^{\prime} 44.0266^{\prime \prime} \mathrm{N}$ | $71^{\circ} 52^{\prime} 40.597{ }^{\prime \prime} \mathrm{W}$ | Peterborough South | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 3.61 | 3.62 | WPI-2052 | PFO | N/A | $42^{\circ} 46^{\prime} 44.070{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 52^{\prime} 30.3301 \mathrm{~W}$ | Peterborough South | N/A |  | 0.00 | 0.02 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 3.61 | 3.62 | WPI-2051 | PSS | N/A | $42^{\circ} 46^{\prime} 44.515^{\prime \prime} \mathrm{N}$ | $71^{\circ} 52^{\prime} 30.336 " \mathrm{~W}$ | Peterborough South | II |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 22 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 3.62 | 3.62 | WPI-2052 | PFO | N/A | $42^{\circ} 46^{\prime} 44.096{ }^{\prime \prime} \mathrm{N}$ | 71 $52^{\prime} 30.029{ }^{\prime \prime} \mathrm{W}$ | Greenville | N/A |  | 0.00 | 0.02 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 3.62 | 3.63 | WPI-2053 | PFO | N/A | $42^{\circ} 46^{\prime} 44.118^{\prime \prime} \mathrm{N}$ | 71 $522^{\prime 2} 2.776{ }^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 8 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 3.62 | 3.63 | WPI-2051 | PSS | N/A | $42^{\circ} 46^{\prime} 44.558^{\prime \prime} \mathrm{N}$ | $71^{\circ} 52^{\prime} 30.029{ }^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.01 | 0.00 | 29 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 3.63 | 3.63 | WPI-2051 | PSS | N/A | $42^{\circ} 46^{\prime} 44.824^{\prime \prime} \mathrm{N}$ | $71^{\circ} 52^{\prime 2} 29.315^{\prime \prime} \mathrm{W}$ | Greenville | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 3.91 | 3.93 | WPI-2056 | PFO | N/A | $42^{\circ} 46^{\prime} 46.346^{\prime \prime} \mathrm{N}$ | 710 52' $9.718^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.00 | 0.11 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 86 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 3.91 | 3.93 | WPI-2057 | PSS | N/A | $42^{\circ} 46^{\prime} 46.549^{\prime \prime} \mathrm{N}$ | $71^{\circ} 52^{\prime} 9.794{ }^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 0.01 | 0.00 | 16 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 3.94 | 3.97 | WPI-2061 | PSS | N/A | $42^{\circ} 46^{\prime} 46.077{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 52^{\prime} 7.140^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.00 | 0.00 | 0.14 | 0.00 | 0.00 | 0.01 | 0.00 | 56 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 3.96 | 3.97 | WPI-2062 | PFO | N/A | $42^{\circ} 46^{\prime} 46.628^{\prime \prime} \mathrm{N}$ | 710 52' 6.195" W | Greenville | II |  | 0.00 | 0.06 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 74 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 3.97 | 3.98 | WPI-2063 | Other | N/A | $42^{\circ} 46^{\prime} 46.986^{\prime \prime} \mathrm{N}$ | $71^{\circ} 52^{\prime} 5.247{ }^{\prime \prime} \mathrm{W}$ | Greenville | N/A |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0 |

[^25]Table 3.9 - Wetlands Associated with the Project in New Hampshire (continued)

| Table 3.9 (cont'd) <br> Wetlands Associated with the Project in New Hampshire |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Facility Name | County | Town | Segment ${ }^{1}$ | Milepost ${ }^{2}$ |  | $\underset{\mathbf{I D}^{3,4}}{\text { Wetland }}$ | Wetland Class ${ }^{5}$ | State Wetland Classification ${ }^{6}$ | Latitude | Longitude | Quadrangle | Crossing Method ${ }^{7}$ | Comments | Wetland Impact (acres) |  |  |  |  |  |  | Crossing Length (feet) |
|  |  |  |  |  |  | Construction ${ }^{8}$ |  |  |  |  |  |  |  | Operation' |  |  |  |
|  |  |  |  | Begin | End |  |  |  |  |  |  |  |  | PEM | PFO | PSS | Other ${ }^{10}$ | PFO | PSS | Other ${ }^{10}$ |  |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 4.06 | 4.08 |  | WPI-2066 | Other | N/A | $42^{\circ} 46^{\prime} 47.490^{\prime \prime} \mathrm{N}$ | 71${ }^{\circ} 51$ ' 58.969" W | Greenville | N/A |  | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 4.13 | 4.17 | WPI-2070 | PFO/PSS | N/A | $42^{\circ} 46^{\prime} 47.311^{\prime \prime} \mathrm{N}$ | 7151' 53.917" W | Greenville | II |  | 0.00 | 0.13 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 41 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 4.13 | 4.15 | WPI-2075 | PFO | N/A | $42^{\circ} 46^{\prime} 47.312^{\prime \prime} \mathrm{N}$ | $71^{\circ} 511^{\prime 5} 5.915^{\prime \prime} \mathrm{W}$ | Greenville | N/A |  | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 4.13 | 4.15 | WPI-2069 | PSS/PEM | N/A | $42^{\circ} 466^{\prime} 47.569^{\prime \prime} \mathrm{N}$ | 7151' 53.767" W | Greenville | II |  | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.01 | 0.00 | 25 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 4.15 | 4.15 | WPI-2075 | PFO | N/A | $42^{\circ} 46^{\prime} 47.344{ }^{\prime \prime} \mathrm{N}$ | 7151' 52.486" W | Greenville | N/A |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 4.15 | 4.16 | WPI-2072 | PSS/PEM | N/A | $42^{\circ} 46^{\prime} 47.927^{\prime \prime} \mathrm{N}$ | $71^{\circ} 51^{\prime} 52.504{ }^{\prime \prime} \mathrm{W}$ | Greenville | N/A |  | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 4.15 | 4.18 | WPI-2071 | Other | N/A | $42^{\circ} 46^{\prime} 47.549{ }^{\prime \prime} \mathrm{N}$ | 71${ }^{\circ} 51{ }^{\text { } 5.972 " ~ W ~}$ | Greenville | II |  | 0.00 | 0.00 | 0.00 | 0.17 | 0.00 | 0.00 | 0.00 | 183 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 4.17 | 4.19 | WPI-2072 | PSS/PEM | N/A | $42^{\circ} 46^{\prime} 47.655^{\prime \prime} \mathrm{N}$ | $71^{\circ} 511^{\prime} 5.555^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.01 | 0.00 | 12 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 4.17 | 4.17 | WPI-2072 | PSS/PEM | N/A | $42^{\circ} 46^{\prime} 48.1711^{\prime N}$ | 7151' 51.552" W | Greenville | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 4.18 | 4.19 | WPI-2075 | PFO | N/A | $42^{\circ} 46^{\prime} 47.490{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 51^{\prime} 50.804{ }^{\prime \prime} \mathrm{W}$ | Greenville | N/A |  | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 4.42 | 4.45 | WPI-2081 | PSS | N/A | $42^{\circ} 46^{\prime} 49.737{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 51^{\prime} 33.434{ }^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.00 | 0.00 | 0.11 | 0.00 | 0.00 | 0.03 | 0.00 | 128 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 4.43 | 4.46 | WPI-2085 | PFO | N/A | $42^{\circ} 466^{\prime} 49.395{ }^{\prime \prime} \mathrm{N}$ | 7151'33.001" W | Greenville | N/A |  | 0.00 | 0.11 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 4.69 | 4.77 | WPI-2090 | PSS | N/A | $42^{\circ} 46^{\prime} 51.3677^{\prime \prime}$ | $71^{\circ} 51^{\prime} 14.564{ }^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.00 | 0.00 | 0.37 | 0.00 | 0.00 | 0.09 | 0.00 | 404 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 5.15 | 5.17 | WPI-2091 | PSS | N/A | $42^{\circ} 46^{\prime} 53.487{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 50^{\prime} 42.086{ }^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.00 | 0.00 | 0.11 | 0.00 | 0.00 | 0.01 | 0.00 | 66 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 5.26 | 5.29 | NI-V-W009 | PEM | N/A | $42^{\circ} 466^{\prime} 54.820$ " N | 7150 $54.633{ }^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 6 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 5.27 | 5.28 | NI-V-W009 | PEM | N/A | $42^{\circ} 46^{\prime} 54.794{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 50^{\prime} 34.051{ }^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 23 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 5.27 | 5.28 | NI-V-W009 | PEM | N/A | $42^{\circ} 46^{\prime} 54.297{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 50^{\prime} 33.575{ }^{\prime \prime} \mathrm{W}$ | Greenville | N/A |  | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 5.53 | 5.56 | NI-V-w003 | PEM | N/A | $42^{\circ} 46^{\prime} 55.450{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 50^{\prime} 15.805^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.13 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 139 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 5.55 | 5.59 | NI-V-W003 | PSS | N/A | $42^{\circ} 46^{\prime} 55.443^{\prime \prime} \mathrm{N}$ | $71^{\circ} 50^{\prime} 13.9866^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.00 | 0.00 | 0.30 | 0.00 | 0.00 | 0.04 | 0.00 | 185 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 5.59 | 5.59 | NI-v-w003 | PEM | N/A | $42^{\circ} 46^{\prime} 55.824^{\prime \prime} \mathrm{N}$ | 71${ }^{\circ} 50^{111.734 " ~ W ~}$ | Greenville | N/A |  | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 5.63 | 5.63 | NI-V-w003 | PFO | N/A | $42^{\circ} 46^{\prime} 5.7995{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 50^{\prime} 8.806{ }^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.00 | 0.05 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 24 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 6.02 | 6.06 | NI-R-W001 | PFO | N/A | $42^{\circ} 466^{54.645 " \mathrm{~N}}$ | $71^{\circ} 49^{\prime} 43.818{ }^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.00 | 0.27 | 0.00 | 0.00 | 0.11 | 0.00 | 0.00 | 146 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 6.10 | 6.14 | NI-R-W001 | PFO | N/A | $42^{\circ} 46^{\prime} 55.245^{\prime \prime} \mathrm{N}$ | 71® ${ }^{\text {4' }} 38.051{ }^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.00 | 0.12 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 29 |
| Wright to Dracut Pipeline Segment | Hillsborough | New Ipswich | J | 6.13 | 6.15 | N-R-W001 | PFO | N/A | $42^{\circ} 466^{\prime 5} 5.220^{\prime \prime} \mathrm{N}$ | $71^{\circ} 49^{\prime} 36.072{ }^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.00 | 0.10 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 58 |
| Wright to Dracut Pipeline Segment | Hillsborough | Greenville | J | 6.45 | 6.46 | WPI-2092 | PSS | N/A | $42^{\circ} 466^{57.161 " N}$ | $71^{\circ} 49^{\prime} 14.460{ }^{\prime \prime} \mathrm{W}$ | Greenville | N/A |  | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Greenville | J | 6.72 | 6.75 | WPI-2099 | PSS/PEM | N/A | $42^{\circ} 47^{\prime} 4.097{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 48^{\prime} 57.656{ }^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.00 | 0.00 | 0.12 | 0.00 | 0.00 | 0.02 | 0.00 | 108 |
| Wright to Dracut Pipeline Segment | Hillsborough | Greenville | J | 7.71 | 7.72 | GN-M-W001 | PSS | N/A | $42^{\circ} 47^{\prime} 12.977{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 47^{\prime} 49.650^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 0.01 | 0.00 | 49 |
| Wright to Dracut Pipeline Segment | Hillsborough | Greenville | J | 7.79 | 7.80 | GN-M-W001 | PSS | N/A | $42^{\circ} 47^{\prime} 13.2933^{\prime \prime} \mathrm{N}$ | $71^{\circ} 47{ }^{\prime} 43.800$ W | Greenville | II |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 3 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 8.30 | 8.31 | WPI-2105 | Other | N/A | $42^{\circ} 47^{\prime} 6.572{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 47^{\prime} 9.479^{\prime \prime} \mathrm{W}$ | Greenville | N/A |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0 |

[^26]Table 3.9 - Wetlands Associated with the Project in New Hampshire (continued)

| Table 3.9 (cont'd) <br> Wetlands Associated with the Project in New Hampshire |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Facility Name | County | Town | Segment ${ }^{1}$ | Milepost ${ }^{2}$ |  | $\begin{gathered} \text { Wetland } \\ \mathbf{I D}^{3,4} \end{gathered}$ | Wetland Class ${ }^{5}$ | State Wetland Classification ${ }^{6}$ | Latitude | Longitude | Quadrangle | Crossing Method | Comments | Wetland Impact (acres) |  |  |  |  |  |  | Crossing Length (feet) |
|  |  |  |  |  |  | Construction ${ }^{8}$ |  |  |  |  |  |  |  | Operation' |  |  |  |
|  |  |  |  | Begin | End |  |  |  |  |  |  |  |  | PEM | PFO | PSS | Other ${ }^{10}$ | PFO | PSS | Other ${ }^{10}$ |  |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 8.38 | 8.40 |  | WPI-2107 | PEM | N/A | $42^{\circ} 47^{\prime} 5.308^{\prime \prime} \mathrm{N}$ | $71^{\circ} 47^{\prime} 4.160^{\prime \prime} \mathrm{W}$ | Greenville | N/A |  | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 8.38 | 8.40 | WPI-2106 | PFO | N/A | $42^{\circ} 47^{\prime} 5.247^{\prime \prime} \mathrm{N}$ | $71^{\circ} 47^{\prime} 4.111^{\prime \prime} \mathrm{W}$ | Greenville | N/A |  | 0.00 | 0.04 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 8.59 | 8.60 | WPI-2109 | PSS/PEM | N/A | $42^{\circ} 47^{\prime} 2.3411^{\prime N}$ | $71^{\circ} 46^{\prime} 49.769{ }^{\prime \prime} \mathrm{W}$ | Greenville | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 8.81 | 8.83 | WPI-2115 | PFO | N/A | $42^{\circ} 466^{\prime} 59.082^{\prime \prime} \mathrm{N}$ | $71^{\circ} 46^{\prime} 34.466^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.00 | 0.11 | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 90 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 8.82 | 8.83 | WPI-2113 | Other | N/A | $42^{\circ} 46^{\prime} 59.027{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 46^{\prime} 34.200{ }^{\prime \prime} \mathrm{W}$ | Greenville | N/A |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 8.87 | 8.92 | WPI-2116 | PFO | N/A | $42^{\circ} 46{ }^{\prime} 58.2266^{\prime \prime} \mathrm{N}$ | $71^{\circ} 46^{\prime} 30.314{ }^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.00 | 0.30 | 0.00 | 0.00 | 0.15 | 0.00 | 0.00 | 211 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 8.91 | 8.96 | WPI-2117 | Other | N/A | $42^{\circ} 46^{\prime} 57.758{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 46^{\prime 2} 28.045^{\prime \prime} \mathrm{W}$ | Greenville | N/A |  | 0.00 | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 8.94 | 8.97 | WPI-2118 | PFO | N/A | $42^{\circ} 46^{\prime} 56.5577^{\prime \prime}$ | $71^{\circ} 46^{\prime 2} 25.952^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.00 | 0.17 | 0.00 | 0.00 | 0.08 | 0.00 | 0.00 | 110 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 9.06 | 9.08 | WPI-2119 | PFO | N/A | $42^{\circ} 46{ }^{\prime} 54.863^{\prime \prime} \mathrm{N}$ | $71^{\circ} 46^{\prime} 17.740^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.00 | 0.12 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 65 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 9.13 | 9.14 | WPI-2120 | PSS | N/A | $42^{\circ} 46^{\prime} 55.147^{\prime \prime} \mathrm{N}$ | $71^{\circ} 46^{\prime} 12.407$ " W | Greenville | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 9.14 | 9.15 | WPI-2120 | PSS | N/A | $42^{\circ} 46^{\prime} 55.0311^{\prime N}$ | $71^{\circ} 46^{\prime} 11.845^{\prime \prime} \mathrm{W}$ | Greenville | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 9.20 | 9.21 | WPI-2121 | Other | N/A | $42^{\circ} 46^{\prime} 53.672^{\prime \prime} \mathrm{N}$ | $71^{\circ} 46^{\prime} 7.743^{\prime \prime} \mathrm{W}$ | Greenville | N/A |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 9.21 | 9.21 | WPI-2122 | PSS | N/A | $42^{\circ} 46^{\prime} 53.5844^{\prime \prime}$ | $71^{\circ} 46^{\prime} 7.317^{\prime \prime} \mathrm{W}$ | Greenville | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 9.33 | 9.35 | WPI-2125 | Other | N/A | $42^{\circ} 466^{\prime 51.096 " ~ N ~}$ | $71^{\circ} 45^{\prime} 59.483{ }^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.00 | 0.00 | 0.00 | 0.11 | 0.00 | 0.00 | 0.00 | 49 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 9.41 | 9.42 | WPI-2126 | Other | N/A | $42^{\circ} 46$ ' 49.939" N | 71* $45^{\prime} 54.374^{\prime \prime} \mathrm{W}$ | Greenville | N/A |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 9.55 | 9.60 | WPI-2129 | PFO | N/A | $42^{\circ} 46^{\prime} 48.420{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 45^{\prime} 43.981 \mathrm{lW}$ | Greenville | II |  | 0.00 | 0.44 | 0.00 | 0.00 | 0.18 | 0.00 | 0.00 | 261 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 9.60 | 9.62 | WPI-2131 | PFO | N/A | $42^{\circ} 46^{\prime} 47.733^{\prime \prime} \mathrm{N}$ | $71^{\circ} 45^{\prime} 40.601 \mathrm{lW}$ | Greenville | II |  | 0.00 | 0.11 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 58 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 9.62 | 9.68 | WPI-2131 | PFO | N/A | $42^{\circ} 46^{\prime} 46.999{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 45^{\prime} 39.633^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.00 | 0.23 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 37 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 9.79 | 9.93 | WPI-2139 | PFO | N/A | $42^{\circ} 46^{\prime} 4.3 .335{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 45^{\prime} 28.136^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.00 | 1.22 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 732 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 9.87 | 9.90 | WPI-2138 | PSS/PEM | N/A | $42^{\circ} 46^{\prime} 44.2711^{\prime N}$ | 710 ${ }^{4} 5^{\prime 2} 2.695{ }^{\prime \prime} \mathrm{W}$ | Greenville | N/A |  | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 9.96 | 10.00 | WPI-2139 | PFO | N/A | $42^{\circ} 46^{\prime} 42.157 \mathrm{~N}$ | 710 ${ }^{4} 5^{\prime} 16.182^{\prime \prime} \mathrm{W}$ | Greenville | N/A |  | 0.00 | 0.15 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 10.00 | 10.01 | WPI-2142 | PFO | N/A | $42^{\circ} 466^{\prime 2} 42.396{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 45^{\prime} 13.611^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.00 | 0.06 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 38 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 10.03 | 10.05 | WPI-2144 | PFO | N/A | $42^{\circ} 46^{\prime} 41.954{ }^{\prime \prime} \mathrm{N}$ | 711 ${ }^{\circ} 5^{\prime} 11.472{ }^{\prime \prime} \mathrm{W}$ | Greenville | II |  | 0.00 | 0.10 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 52 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 10.23 | 10.25 | WPI-2152 | PFO | N/A | $42^{\circ} 46^{\prime} 38.423^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime} 58.096{ }^{\prime \prime} \mathrm{W}$ | Milford | II |  | 0.00 | 0.10 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 65 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 10.40 | 10.41 | WPI-2156 | Other | N/A | $42^{\circ} 46^{\prime} 36.2888^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime} 46.600 \mathrm{~W}$ | Milford | II |  | 0.00 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 0.00 | 69 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 10.47 | 10.48 | WPI-2157 | Other | N/A | $42^{\circ} 46^{\prime} 35.0866^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime} 41.408{ }^{\prime \prime} \mathrm{W}$ | Milford | N/A |  | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 10.52 | 10.55 | WPI-2159 | PFO | N/A | $42^{\circ} 46^{\prime} 35.0766^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime} 38.171{ }^{\prime \prime} \mathrm{W}$ | Milford | II |  | 0.00 | 0.23 | 0.00 | 0.00 | 0.10 | 0.00 | 0.00 | 141 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 10.61 | 10.69 | WPI-2161 | PFO | N/A | $42^{\circ} 46^{\prime} 33.829^{\prime \prime} \mathrm{N}$ | 71* $44^{\prime} 32.137{ }^{\prime \prime} \mathrm{W}$ | Milford | II |  | 0.00 | 0.69 | 0.00 | 0.00 | 0.28 | 0.00 | 0.00 | 409 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 10.76 | 10.77 | WPI-2164 | PSS | N/A | $42^{\circ} 46^{\prime} 31.650^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime 21.749 " ~ W ~}$ | Milford | II |  | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.01 | 0.00 | 25 |

[^27]Table 3.9 - Wetlands Associated with the Project in New Hampshire (continued)

| Table 3.9 (cont'd) <br> Wetlands Associated with the Project in New Hampshire |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Facility Name | County | Town | Segment ${ }^{1}$ | Milepost ${ }^{2}$ |  | $\begin{gathered} \text { Wetland } \\ \mathbf{I D}^{3,4} \end{gathered}$ | Wetland Class ${ }^{5}$ | State Wetland Classification ${ }^{6}$ | Latitude | Longitude | Quadrangle | Crossing <br> Method | Comments | Wetland Impact (acres) |  |  |  |  |  |  | $\begin{array}{\|c\|} \text { Crossing } \\ \text { Length } \\ \text { (feet) } \end{array}$ |
|  |  |  |  |  |  | Construction ${ }^{8}$ |  |  |  |  |  |  |  | Operation ${ }^{\text {² }}$ |  |  |  |
|  |  |  |  | Begin | End |  |  |  |  |  |  |  |  | PEM | PFO | PSS | Other ${ }^{10}$ | PFO | PSS | Other ${ }^{10}$ |  |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 10.77 | 10.83 |  | WPI-2166 | PFO | N/A | $42^{\circ} 46^{\prime 30.866 " ~} \mathrm{~N}$ | 71* $44^{\prime 2} 21.521$ W | Milford | II |  | 0.00 | 0.57 | 0.00 | 0.00 | 0.22 | 0.00 | 0.00 | 322 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 10.78 | 10.81 | WPI-2165 | PSS | N/A | $42^{\circ} 46^{\prime} 31.856^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime} 20.474{ }^{\prime \prime} \mathrm{W}$ | Milford | N/A |  | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 10.79 | 10.80 | WPI-2164 | PSS | N/A | $42^{\circ} 46^{\prime} 32.903^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime 19.010 " ~ W ~}$ | Milford | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 10.84 | 10.85 | WPI-2167 | PFO | N/A | $42^{\circ} 46^{\prime} 30.560^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime} 16.316^{\prime \prime} \mathrm{W}$ | Milford | II |  | 0.00 | 0.06 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 40 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 10.96 | 11.05 | WPI-2168 | PFO | N/A | $42^{\circ} 46^{\prime} 28.493{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime} 8.337^{\prime \prime} \mathrm{W}$ | Milford | II |  | 0.00 | 0.81 | 0.00 | 0.00 | 0.32 | 0.00 | 0.00 | 466 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 10.96 | 10.96 | WPI-2168 | PFO | N/A | $42^{\circ} 46^{\prime} 28.403^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime} 8.362^{\prime \prime} \mathrm{W}$ | Milford | N/A |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 10.96 | 10.96 | WPI-2168 | PFO | N/A | $42^{\circ} 46^{\prime} 28.403^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime} 8.362^{\prime \prime} \mathrm{W}$ | Milford | N/A |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 11.15 | 11.19 | WPI-2170 | PEM | N/A | $42^{\circ} 46^{\prime} 30.133^{\prime \prime} \mathrm{N}$ | 710 ${ }^{\circ} 3^{\prime} 55.134{ }^{\prime \prime} \mathrm{W}$ | Milford | II |  | 0.32 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 193 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 11.50 | 11.50 | WPI-2175 | Other | N/A | $42^{\circ} 46^{\prime} 33.277^{\prime \prime} \mathrm{N}$ | $71^{\circ} 43^{\prime} 30.954{ }^{\prime \prime} \mathrm{W}$ | Milford | N/A |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 11.64 | 11.66 | WPI-2176 | PFO | N/A | $42^{\circ} 46^{\prime} 33.1122^{\prime \prime}$ | 710 $43^{\prime} 20.675^{\prime \prime} \mathrm{W}$ | Milford | II |  | 0.00 | 0.14 | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 83 |
| Wright to Dracut Pipeline Segment | Hillsborough | Mason | J | 11.65 | 11.66 | WPI-2177 | PSS | N/A | $42^{\circ} 46^{\prime} 33.665^{\prime \prime} \mathrm{N}$ | 710 ${ }^{\circ} 3^{\prime} 20.377^{\prime \prime} \mathrm{W}$ | Milford | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 11.93 | 11.95 | WPI-2181 | PFO | N/A | $42^{\circ} 46^{\prime} 34.202^{\prime \prime} \mathrm{N}$ | $71^{\circ} 43^{\prime} 0.637^{\prime \prime} \mathrm{W}$ | Milford | II |  | 0.00 | 0.18 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 106 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 11.95 | 12.05 | WPI-2182 | PFO | N/A | $42^{\circ} 46^{\prime} 34.518^{\prime \prime} \mathrm{N}$ | $71^{\circ} 42^{\prime} 58.685{ }^{\prime \prime} \mathrm{W}$ | Milford | II |  | 0.00 | 0.82 | 0.00 | 0.00 | 0.26 | 0.00 | 0.00 | 380 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 12.05 | 12.08 | WPI-2187 | PFO | N/A | $42^{\circ} 46^{\prime} 35.4666^{\prime \prime} \mathrm{N}$ | $71^{\circ} 42^{\prime} 51.687 \mathrm{l}$ W | Milford | II |  | 0.00 | 0.13 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 63 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 12.13 | 12.17 | WPI-2188 | Other | N/A | $42^{\circ} 46^{\prime} 35.4677^{\prime \prime}$ | $71^{\circ} 42^{\prime} 46.440 " \mathrm{~W}$ | Milford | II |  | 0.00 | 0.00 | 0.00 | 0.29 | 0.00 | 0.00 | 0.00 | 226 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 12.14 | 12.15 | WPI-2190 | PFO | N/A | $42^{\circ} 46^{\prime} 35.261^{\prime \prime} \mathrm{N}$ | 71* $42^{\prime} 45.637 \mathrm{l}$ W | Milford | N/A |  | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 12.14 | 12.18 | WPI-2189 | PSS/PEM | N/A | $42^{\circ} 46^{\prime} 35.387^{\prime \prime} \mathrm{N}$ | 71 ${ }^{\circ} 42^{\prime} 45.751{ }^{\prime \prime} \mathrm{W}$ | Milford | II |  | 0.00 | 0.00 | 0.16 | 0.00 | 0.00 | 0.01 | 0.00 | 57 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 12.15 | 12.16 | WPI-2189 | PSS/PEM | N/A | $42^{\circ} 46^{\prime} 35.881^{\prime \prime} \mathrm{N}$ | $71^{\circ} 42^{\prime} 44.546^{\prime \prime} \mathrm{W}$ | Milford | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 12.17 | 12.23 | WPI-2190 | PFO | N/A | $42^{\circ} 46^{\prime} 35.228{ }^{\prime \prime} \mathrm{N}$ | 71* 42' 43.005" W | Milford | II |  | 0.00 | 0.42 | 0.00 | 0.00 | 0.16 | 0.00 | 0.00 | 226 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 12.20 | 12.21 | WPI-2191 | Other | N/A | $42^{\circ} 46^{\prime} 36.0877^{\prime \prime} \mathrm{N}$ | $71^{\circ} 42^{\prime} 41.016^{\prime \prime} \mathrm{W}$ | Milford | N/A |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 12.43 | 12.44 | WPI-2195 | PFO/PSS | N/A | $42^{\circ} 46^{\prime} 36.739{ }^{\prime \prime} \mathrm{N}$ | 71* $42^{\prime} 24.997 \mathrm{l}$ W | Milford | II |  | 0.00 | 0.06 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 38 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 12.49 | 12.52 | WPI-2197 | PFO | N/A | $42^{\circ} 46^{\prime} 37.242^{\prime \prime} \mathrm{N}$ | $71^{\circ} 42^{\prime} 21.159{ }^{\prime \prime} \mathrm{W}$ | Milford | II |  | 0.00 | 0.23 | 0.00 | 0.00 | 0.10 | 0.00 | 0.00 | 140 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 12.58 | 12.58 | WPI-2199 | PSS | N/A | $42^{\circ} 46^{\prime} 37.744^{\prime \prime} \mathrm{N}$ | $71^{\circ} 42^{\prime} 14.199{ }^{\prime \prime} \mathrm{W}$ | Milford | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 12.58 | 12.59 | WPI-2198 | Other | N/A | $42^{\circ} 46^{\prime} 36.950$ N | $71^{\circ} 42^{\prime} 14.245^{\prime \prime} \mathrm{W}$ | Milford | N/A |  | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 12.72 | 12.76 | WPI-2201 | PFO | N/A | $42^{\circ} 46^{\prime} 37.355^{\prime \prime} \mathrm{N}$ | $71^{\circ} 42^{\prime} 4.713^{\prime \prime} \mathrm{W}$ | Milford | II |  | 0.00 | 0.20 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 12 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 12.96 | 12.98 | WPI-2202 | PFO | N/A | $42^{\circ} 46^{\prime} 38.455^{\prime \prime} \mathrm{N}$ | 710 $41^{\prime} 47.479$ W | Milford | II |  | 0.00 | 0.15 | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 93 |
| Wright to Dracut Pipeline Segment | Hillsborough | Brookline | J | 13.13 | 13.19 | WPI-2206 | PFO | N/A | $42^{\circ} 46^{\prime} 39.926^{\prime \prime} \mathrm{N}$ | $71^{\circ} 41^{\prime} 35.840$ " W | Milford | II |  | 0.00 | 0.48 | 0.00 | 0.00 | 0.19 | 0.00 | 0.00 | 278 |
| Wright to Dracut Pipeline Segment | Hillsborough | Brookline | J | 13.23 | 13.31 | WPI-2209 | PFo | N/A | $42^{\circ} 46^{\prime} 42.805^{\prime \prime} \mathrm{N}$ | 71* $1^{\prime}$ '29.927" W | Milford | II |  | 0.00 | 0.63 | 0.00 | 0.00 | 0.26 | 0.00 | 0.00 | 374 |
| Wright to Dracut Pipeline Segment | Hillsborough | Brookline | J | 13.29 | 13.34 | WPI-2213 | PFO | N/A | $42^{\circ} 46^{\prime} 44.680^{\prime \prime} \mathrm{N}$ | 71 ${ }^{\circ} 41^{\prime} 26.077$ " W | Milford | II |  | 0.00 | 0.28 | 0.00 | 0.00 | 0.11 | 0.00 | 0.00 | 156 |

[^28]Table 3.9 - Wetlands Associated with the Project in New Hampshire (continued)

| Table 3.9 (cont'd) <br> Wetlands Associated with the Project in New Hampshire |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Facility Name | County | Town | Segment ${ }^{1}$ | Milepost ${ }^{2}$ |  | $\underset{\mathbf{I D}^{3,4}}{\text { Wetland }}$ | Wetland Class ${ }^{5}$ | State Wetland Classification ${ }^{6}$ | Latitude | Longitude | Quadrangle | Crossing Method | Comments | Wetland Impact (acres) |  |  |  |  |  |  | Crossing Length (feet) |
|  |  |  |  |  |  | Construction ${ }^{8}$ |  |  |  |  |  |  |  | Operation' |  |  |  |
|  |  |  |  | Begin | End |  |  |  |  |  |  |  |  | PEM | PFO | PSS | Other ${ }^{10}$ | PFO | PSS | Other ${ }^{10}$ |  |
| Wright to Dracut Pipeline Segment | Hillsborough | Brookline | J | 13.34 | 13.37 |  | WPI-2215 | PFO | N/A | $42^{\circ} 46^{\prime} 45.980^{\prime \prime} \mathrm{N}$ | 710 ${ }^{\circ} 1^{\prime} 23.408{ }^{\text {" W }}$ | Milford | II |  | 0.00 | 0.09 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 31 |
| Wright to Dracut Pipeline Segment | Hillsborough | Brookline | J | 13.68 | 13.69 | WPI-2218 | Other | N/A | $42^{\circ} 46^{\prime} 56.0511^{\prime \prime} \mathrm{N}$ | $71^{\circ} 41^{\prime} 3.520{ }^{\prime \prime} \mathrm{W}$ | Milford | II |  | 0.00 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 43 |
| Wright to Dracut Pipeline Segment | Hillsborough | Brookline | J | 14.18 | 14.27 | WPI-2223 | PFO | N/A | $42^{\circ} 47^{\prime} 10.939{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 40^{\prime} 34.210^{\prime \prime} \mathrm{W}$ | Milford | II |  | 0.00 | 0.26 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 146 |
| Wright to Dracut Pipeline Segment | Hillsborough | Brookline | J | 14.28 | 14.30 | WPI-2224 | PFO | N/A | $42^{\circ} 47^{\prime} 13.0866^{\prime \prime} \mathrm{N}$ | $71^{\circ} 40^{\prime} 27.732^{\prime \prime} \mathrm{W}$ | Milford | II |  | 0.00 | 0.13 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 57 |
| Wright to Dracut Pipeline Segment | Hillsborough | Brookline | J | 14.72 | 14.77 | WPI-2228 | PFO | N/A | $42^{\circ} 47^{\prime} 25.583^{\prime \prime} \mathrm{N}$ | $71^{\circ} 40^{\prime} 2.053^{\prime \prime} \mathrm{W}$ | Milford | II |  | 0.00 | 0.48 | 0.00 | 0.00 | 0.19 | 0.00 | 0.00 | 278 |
| Wright to Dracut Pipeline Segment | Hillsborough | Brookline | J | 15.02 | 15.02 | BK-M-W002 | PFO | N/A | $42^{\circ} 47^{\prime} 31.6966^{\prime \prime} \mathrm{N}$ | 71 ${ }^{\circ} 39^{\prime} 43.080$ W | Milford | N/A |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Brookline | J | 15.22 | 15.28 | wPI-2232 | PFO | N/A | $42^{\circ} 47^{\prime} 33.928{ }^{\prime \prime} \mathrm{N}$ | 71 ${ }^{\circ} 9^{\prime 2} 29.287$ " W | Milford | II |  | 0.00 | 0.41 | 0.00 | 0.00 | 0.21 | 0.00 | 0.00 | 320 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 15.86 | 15.90 | WPI-2234 | PEM | N/A | $42^{\circ} 47^{\prime} 42.767^{\prime \prime} \mathrm{N}$ | $71^{\circ} 38^{\prime} 46.661{ }^{\prime \prime} \mathrm{W}$ | Milford | N/A |  | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 15.88 | 15.90 | WPI-2235 | PFO | N/A | $42^{\circ} 47^{\prime} 42.865^{\prime \prime} \mathrm{N}$ | $71^{\circ} 38^{\prime} 45.494{ }^{\prime \prime} \mathrm{W}$ | Milford | II |  | 0.00 | 0.10 | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 108 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 15.98 | 15.99 | wPI-2236 | PEM | N/A | $42^{\circ} 47^{\prime} 44.222^{\prime \prime} \mathrm{N}$ | $71^{\circ} 38^{\prime} 38.847$ " W | Milford | N/A |  | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 16.34 | 16.37 | wPI-2239 | PEM | N/A | $42^{\circ} 47^{\prime} 48.934{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 38^{\prime} 14.085{ }^{\prime \prime} \mathrm{W}$ | Milford | II |  | 0.19 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 122 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 16.35 | 16.37 | WPI-2240 | PFO | N/A | $42^{\circ} 47^{\prime} 48.530^{\prime \prime} \mathrm{N}$ | 71³ $38^{\prime} 13.129^{\prime \prime} \mathrm{W}$ | Milford | N/A |  | 0.00 | 0.03 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 16.52 | 16.55 | WPI-2242 | PEM | N/A | $42^{\circ} 47^{\prime} 51.1966^{\prime \prime} \mathrm{N}$ | $71^{\circ} 38^{\prime} 1.245^{\prime \prime} \mathrm{W}$ | Milford | II |  | 0.20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 142 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 16.56 | 16.58 | WPI-2243 | PSS | N/A | $42^{\circ} 47^{\prime} 51.1866^{\prime \prime} \mathrm{N}$ | 71³ 37 ' 58.696" W | Milford | II |  | 0.00 | 0.00 | 0.14 | 0.00 | 0.00 | 0.02 | 0.00 | 95 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 16.60 | 16.61 | WPI-2244 | Other | N/A | $42^{\circ} 477^{\prime} 52.097{ }^{\prime \prime} \mathrm{N}$ | 71³7' 55.708" W | Milford | N/A |  | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 16.61 | 16.61 | WPI-2244 | Other | N/A | $42^{\circ} 47^{\prime} 52.275^{\prime \prime} \mathrm{N}$ | $71^{\circ} 37$ '55.117" W | Milford | N/A |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 16.62 | 16.72 | WPI-2245 | PSS/PEM | N/A | $42^{\circ} 47^{\prime} 51.645^{\prime \prime} \mathrm{N}$ | 71³7' 54.371" W | Milford | II |  | 0.00 | 0.00 | 0.85 | 0.00 | 0.00 | 0.12 | 0.00 | 507 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 16.63 | 16.63 | WPI-2245 | PSS/PEM | N/A | $42^{\circ} 47^{\prime} 53.9611^{\prime N}$ | 71® $37{ }^{\prime} 54.189{ }^{\prime \prime} \mathrm{W}$ | Milford | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 16.82 | 16.83 | WPI-2246 | PEM | N/A | $42^{\circ} 47^{\prime} 54.360{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 37{ }^{\prime} 41.009{ }^{\prime \prime} \mathrm{W}$ | Milford | N/A |  | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 16.88 | 16.90 | WPI-2247 | PEM | N/A | $42^{\circ} 47^{\prime} 55.241^{\prime \prime} \mathrm{N}$ | 71 ${ }^{\circ} 37^{\prime} 36.464^{\prime \prime} \mathrm{W}$ | Milford | II |  | 0.13 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 79 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 17.06 | 17.08 | wPI-2250 | PSS | N/A | $42^{\circ} 47^{\prime} 56.948{ }^{\prime \prime} \mathrm{N}$ | 710 $37{ }^{\prime} 24.259{ }^{\prime \prime} \mathrm{W}$ | South Merrimack | II |  | 0.00 | 0.00 | 0.19 | 0.00 | 0.00 | 0.03 | 0.00 | 113 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 17.30 | 17.34 | WPI-2251 | PFO | N/A | $42^{\circ} 48^{\prime} 3.430^{\prime \prime} \mathrm{N}$ | 71 $37^{\prime} 10.291{ }^{\prime \prime} \mathrm{W}$ | South Merrimack | N/A |  | 0.00 | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 17.32 | 17.35 | WPI-2253 | PEM | N/A | $42^{\circ} 48^{\prime} 4.383{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 37^{\prime} 9.434^{\prime \prime} \mathrm{W}$ | South Merrimack | II |  | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 86 |
| Wright to Dracut Pipeline Segment | Hillsborough | Milford | J | 17.39 | 17.39 | WPI-2256 | Other | N/A | $42^{\circ} 48^{\prime} 7.455^{\prime \prime} \mathrm{N}$ | $71^{\circ} 37^{\prime} 7.041^{\prime \prime} \mathrm{W}$ | South Merrimack | N/A |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Amherst | J | 17.86 | 17.88 | WPI-2258 | Other | N/A | $42^{\circ} 48^{\prime} 27.223^{\prime \prime} \mathrm{N}$ | 71 ${ }^{\circ} 366^{\prime} 47.419{ }^{\prime \prime} \mathrm{W}$ | South Merrimack | II |  | 0.00 | 0.00 | 0.00 | 0.10 | 0.00 | 0.00 | 0.00 | 80 |
| Wright to Dracut Pipeline Segment | Hillsborough | Amherst | J | 17.87 | 17.94 | WPI-2259 | PFO | N/A | $42^{\circ} 48^{\prime} 27.261{ }^{\prime \prime} \mathrm{N}$ | 719 $36{ }^{\text {' } 46.681 " \mathrm{~W}}$ | South Merrimack | II |  | 0.00 | 0.42 | 0.00 | 0.00 | 0.16 | 0.00 | 0.00 | 312 |
| Wright to Dracut Pipeline Segment | Hillsborough | Amherst | J | 17.88 | 17.94 | wPI-2262 | PSS/PEM | N/A | $42^{\circ} 48^{\prime} 27.923^{\prime \prime} \mathrm{N}$ | $71^{\circ} 36$ '46.796" W | South Merrimack | N/A |  | 0.00 | 0.00 | 0.12 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Amherst | J | 18.07 | 18.09 | WPI-2264 | PEM | N/A | $42^{\circ} 48^{\prime} 36.257^{\prime \prime} \mathrm{N}$ | 71 ${ }^{\circ} 366^{39} 3.372$ W | South Merrimack | II |  | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 66 |
| Wright to Dracut Pipeline Segment | Hillsborough | Amherst | J | 18.14 | 18.16 | WPI-2268 | Other | N/A | $42^{\circ} 48^{\prime} 38.726^{\prime \prime} \mathrm{N}$ | $71^{\circ} 36^{\prime} 35.340^{\prime \prime} \mathrm{W}$ | South Merrimack | II |  | 0.00 | 0.00 | 0.00 | 0.12 | 0.00 | 0.00 | 0.00 | 89 |

[^29]Table 3.9 - Wetlands Associated with the Project in New Hampshire (continued)

| Table 3.9 (cont'd) <br> Wetlands Associated with the Project in New Hampshire |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Facility Name | County | Town | Segment ${ }^{1}$ | Milepost ${ }^{2}$ |  | $\underset{\mathbf{I D}^{3,4}}{\text { Wetland }}$ | Wetland Class ${ }^{5}$ | State Wetland Classification ${ }^{6}$ | Latitude | Longitude | Quadrangle | Crossing Method | Comments | Wetland Impact (acres) |  |  |  |  |  |  | Crossing Length (feet) |
|  |  |  |  |  |  | Construction ${ }^{8}$ |  |  |  |  |  |  |  | Operation' |  |  |  |
|  |  |  |  | Begin | End |  |  |  |  |  |  |  |  | PEM | PFO | PSS | Other ${ }^{10}$ | PFO | PSS | Other ${ }^{10}$ |  |
| Wright to Dracut Pipeline Segment | Hillsborough | Amherst | J | 18.43 | 18.48 |  | NWI-1122 | PEM | N/A | $42^{\circ} 48^{\prime} 36.665^{\prime \prime} \mathrm{N}$ | $71^{\circ} 36^{\prime 15.547 " ~ W ~}$ | South Merrimack | II |  | 0.37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 229 |
| Wright to Dracut Pipeline Segment | Hillsborough | Amherst | J | 18.50 | 18.56 | NWI-1123 | PFO | N/A | $42^{\circ} 48^{\prime} 35.325^{\prime \prime} \mathrm{N}$ | 71 $36^{\circ} 10.564^{\prime \prime} \mathrm{W}$ | South Merrimack | II |  | 0.00 | 0.38 | 0.00 | 0.00 | 0.16 | 0.00 | 0.00 | 225 |
| Wright to Dracut Pipeline Segment | Hillsborough | Amherst | J | 18.58 | 18.65 | NWI-1123 | PFO | N/A | $42^{\circ} 48^{\prime} 34.562^{\prime \prime} \mathrm{N}$ | $71^{\circ} 36^{4.907 " ~ W}$ | South Merrimack | II |  | 0.00 | 0.47 | 0.00 | 0.00 | 0.19 | 0.00 | 0.00 | 268 |
| Wright to Dracut Pipeline Segment | Hillsborough | Amherst | J | 19.33 | 19.39 | NWI-1294 | PSS | N/A | $42^{\circ} 48^{\prime} 36.2599^{\prime \prime} \mathrm{N}$ | 71³ $35^{\prime} 17.157^{\prime \prime} \mathrm{W}$ | South Merrimack | II |  | 0.00 | 0.00 | 0.46 | 0.00 | 0.00 | 0.07 | 0.00 | 326 |
| Wright to Dracut Pipeline Segment | Hillsborough | Amherst | J | 19.42 | 19.45 | NWI-1295 | PFO | N/A | $42^{\circ} 48^{\prime} 35.989{ }^{\prime \prime} \mathrm{N}$ | 71³ $35^{\prime} 10.797{ }^{\prime \prime} \mathrm{W}$ | South Merrimack | II |  | 0.00 | 0.14 | 0.00 | 0.00 | 0.09 | 0.00 | 0.00 | 124 |
| Wright to Dracut Pipeline Segment | Hillsborough | Amherst | J | 20.56 | 20.58 | NWI-1298 | PSS | N/A | $42^{\circ} 48^{\prime} 15.239{ }^{\prime \prime} \mathrm{N}$ | 71³ $33^{\prime} 55.610^{\prime \prime} \mathrm{W}$ | South Merrimack | N/A |  | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Hollis | J | 20.57 | 20.60 | NWI-1298 | PSS | N/A | $42^{\circ} 48^{\prime} 15.034{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 33^{\prime} 54.860{ }^{\prime \prime} \mathrm{W}$ | South Merrimack | N/A |  | 0.00 | 0.00 | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Hollis | J | 20.85 | 20.87 | NWI-1299 | PFO/SS | N/A | $42^{\circ} 48^{\prime} 10.1644^{\prime \prime}$ | $71^{\circ} 33^{\prime} 36.024{ }^{\prime \prime} \mathrm{W}$ | South Merrimack | II |  | 0.00 | 0.10 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 42 |
| Wright to Dracut Pipeline Segment | Hillsborough | Merrimack | J | 20.86 | 20.90 | NWI-1299 | PFO/SS | N/A | $42^{\circ} 48^{\prime} 10.605{ }^{\prime \prime} \mathrm{N}$ | 71³ $33^{\prime} 34.744$ W | South Merrimack | II |  | 0.00 | 0.31 | 0.00 | 0.00 | 0.13 | 0.00 | 0.00 | 187 |
| Wright to Dracut Pipeline Segment | Hillsborough | Merrimack | J | 20.91 | 20.98 | NWI-1299 | PFO/SS | N/A | $42^{\circ} 48^{\prime} 9.720^{\prime \prime} \mathrm{N}$ | 71 ${ }^{\circ} 33^{\prime} 31.499{ }^{\prime \prime} \mathrm{W}$ | South Merrimack | II |  | 0.00 | 0.43 | 0.00 | 0.00 | 0.18 | 0.00 | 0.00 | 261 |
| Wright to Dracut Pipeline Segment | Hillsborough | Merrimack | J | 21.06 | 21.08 | NWI-1302 | PFO | N/A | $42^{\circ} 48^{\prime} 6.127^{\prime \prime} \mathrm{N}$ | $71^{\circ} 33^{\prime} 22.466^{\prime \prime} \mathrm{W}$ | South Merrimack | II |  | 0.00 | 0.18 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 78 |
| Wright to Dracut Pipeline Segment | Hillsborough | Merrimack | J | 21.97 | 22.04 | NWI-1307 | PSS/EM | N/A | $42^{\circ} 48^{\prime} 24.056{ }^{\prime \prime} \mathrm{N}$ | 71³ 32 '36.952" W | South Merrimack | II |  | 0.00 | 0.00 | 0.52 | 0.00 | 0.00 | 0.08 | 0.00 | 327 |
| Wright to Dracut Pipeline Segment | Hillsborough | Merrimack | J | 22.03 | 22.16 | NWI-1308 | PFO | N/A | $42^{\circ} 48^{\prime} 24.942^{\prime \prime} \mathrm{N}$ | $71^{\circ} 32^{\prime} 33.010^{\prime \prime} \mathrm{W}$ | South Merrimack | II |  | 0.00 | 1.07 | 0.00 | 0.00 | 0.41 | 0.00 | 0.00 | 596 |
| Wright to Dracut Pipeline Segment | Hillsborough | Merrimack | J | 22.39 | 22.40 | NWI-1309 | PFO | N/A | $42^{\circ} 48^{\prime} 24.916^{\prime \prime} \mathrm{N}$ | $71^{\circ} 32^{\prime} 7.445^{\prime \prime} \mathrm{W}$ | South Merrimack | N/A |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Merrimack | J | 22.77 | 22.80 | NWI-1312 | PSS/FO | N/A | $42^{\circ} 48^{\prime} 26.341^{\prime \prime} \mathrm{N}$ | 71³1' $00.658^{\prime \prime} \mathrm{W}$ | South Merrimack | II |  | 0.00 | 0.00 | 0.24 | 0.00 | 0.00 | 0.03 | 0.00 | 129 |
| Wright to Dracut Pipeline Segment | Hillsborough | Merrimack | J | 23.40 | 23.53 | NWI-1316 | PFO | N/A | $42^{\circ} 48^{\prime} 43.935{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 31^{\prime} 5.237^{\prime \prime} \mathrm{W}$ | South Merrimack | II |  | 0.00 | 1.06 | 0.00 | 0.00 | 0.44 | 0.00 | 0.00 | 647 |
| Wright to Dracut Pipeline Segment | Hillsborough | Merrimack | J | 26.17 | 26.19 | WPI-2358 | PFO | N/A | $42^{\circ} 49^{\prime} 44.580$ " N | $71^{\circ} 28^{\prime} 53.659{ }^{\prime \prime} \mathrm{W}$ | Nashua North | IV |  | 0.00 | 0.15 | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 93 |
| Wright to Dracut Pipeline Segment | Hillsborough | Litchfield | J | 26.18 | 26.19 | wPI-2358 | PFO | N/A | $42^{\circ} 49^{\prime} 44.088{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 28^{\prime} 52.163^{\prime \prime} \mathrm{W}$ | Nashua North | IV |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 3 |
| Wright to Dracut Pipeline Segment | Hillsborough | Litchfield | J | 26.33 | 26.35 | WPI-2359 | PFO | N/A | $42^{\circ} 49^{\prime} 46.194{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 28^{\prime} 41.968^{\prime \prime} \mathrm{W}$ | Nashua North | IV |  | 0.00 | 0.10 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 79 |
| Wright to Dracut Pipeline Segment | Hillsborough | Litchfield | J | 26.33 | 26.42 | wPI-2360 | PSS | N/A | $42^{\circ} 49^{\prime} 46.545^{\prime \prime} \mathrm{N}$ | $71^{\circ} 28^{\prime} 42.531{ }^{\prime \prime} \mathrm{W}$ | Nashua North | IV |  | 0.00 | 0.00 | 0.95 | 0.00 | 0.00 | 0.06 | 0.00 | 253 |
| Wright to Dracut Pipeline Segment | Hillsborough | Litchfield | J | 26.40 | 26.45 | wPI-2361 | PFO | N/A | $42^{\circ} 49^{\prime} 46.766^{\prime \prime} \mathrm{N}$ | $71^{\circ} 28^{\prime} 37.337{ }^{\prime \prime} \mathrm{W}$ | Nashua North | N/A |  | 0.00 | 0.60 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Litchfield | J | 26.46 | 26.47 | wPI-2363 | Other | N/A | $42^{\circ} 49^{\prime} 47.557^{\prime \prime} \mathrm{N}$ | $71^{\circ} 28^{\prime} 33.159{ }^{\prime \prime} \mathrm{W}$ | Nashua North | II |  | 0.00 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 27 |
| Wright to Dracut Pipeline Segment | Hillsborough | Litchfield | J | 26.47 | 26.47 | WPI-2362 | PEM | N/A | $42^{\circ} 49^{\prime} 47.646{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 28^{\prime} 32.737{ }^{\prime \prime} \mathrm{W}$ | Nashua North | II |  | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 21 |
| Wright to Dracut Pipeline Segment | Hillsborough | Litchfield | J | 26.47 | 26.50 | WPI-2363 | Other | N/A | $42^{\circ} 49^{\prime} 47.679^{\prime \prime} \mathrm{N}$ | $71^{\circ} 28^{\prime} 32.582^{\prime \prime} \mathrm{W}$ | Nashua North | II |  | 0.00 | 0.00 | 0.00 | 0.27 | 0.00 | 0.00 | 0.00 | 158 |
| Wright to Dracut Pipeline Segment | Hillsborough | Litchfield | J | 26.50 | 26.62 | WPI-2365 | PSS/PEM | N/A | $42^{\circ} 49^{\prime} 48.106^{\prime \prime} \mathrm{N}$ | $71^{\circ} 28^{\prime} 30.565{ }^{\prime \prime} \mathrm{W}$ | Nashua North | II |  | 0.00 | 0.00 | 0.96 | 0.00 | 0.00 | 0.12 | 0.00 | 532 |
| Wright to Dracut Pipeline Segment | Hillsborough | Litchfield | J | 26.65 | 26.75 | WPI-2371 | PSS | N/A | $42^{\circ} 49^{\prime} 50.344^{\prime \prime} \mathrm{N}$ | 719 ${ }^{\circ} 8^{\prime \prime} 19.988{ }^{\prime \prime} \mathrm{W}$ | Nashua North | II |  | 0.00 | 0.00 | 0.76 | 0.00 | 0.00 | 0.11 | 0.00 | 478 |
| Wright to Dracut Pipeline Segment | Hillsborough | Litchfield | J | 26.70 | 26.72 | WPI-2369 | PFO | N/A | $42^{\circ} 49^{\prime} 50.935^{\prime \prime} \mathrm{N}$ | $71^{\circ} 28^{\prime} 17.190^{\prime \prime} \mathrm{W}$ | Nashua North | N/A |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Litchfield | J | 26.77 | 26.81 | WPI-2371 | PSS | N/A | $42^{\circ} 49^{\prime} 52.210^{\prime \prime} \mathrm{N}$ | 710 $28^{\prime} 11.855^{\prime \prime} \mathrm{W}$ | Nashua North | II |  | 0.00 | 0.00 | 0.29 | 0.00 | 0.00 | 0.04 | 0.00 | 167 |
| Wright to Dracut Pipeline Segment | Hillsborough | Litchfield | J | 26.81 | 26.81 | WPI-2370 | Other | N/A | $42^{\circ} 49^{\prime} 52.669^{\prime \prime} \mathrm{N}$ | $71^{\circ} 28^{\prime} 9.700^{\prime \prime} \mathrm{W}$ | Nashua North | N/A |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0 |

[^30]Table 3.9 - Wetlands Associated with the Project in New Hampshire (continued)

| Table 3.9 (cont'd) <br> Wetlands Associated with the Project in New Hampshire |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Facility Name | County | Town | Segment ${ }^{1}$ | Milepost ${ }^{2}$ |  | $\underset{\mathbf{I D}^{3,4}}{\text { Wetland }}$ | Wetland Class ${ }^{5}$ | State Wetland Classification ${ }^{6}$ | Latitude | Longitude | Quadrangle | Crossing Method | Comments | Wetland Impact (acres) |  |  |  |  |  |  | Crossing Length (feet) |
|  |  |  |  |  |  | Construction ${ }^{8}$ |  |  |  |  |  |  |  | Operation ${ }^{\text {² }}$ |  |  |  |
|  |  |  |  | Begin | End |  |  |  |  |  |  |  |  | PEM | PFO | PSS | Other ${ }^{10}$ | PFO | PSS | Other ${ }^{10}$ |  |
| Wright to Dracut Pipeline Segment | Hillsborough | Litchfield | J | 26.85 | 26.87 |  | LT-G-W001 | PSS | N/A | $42^{\circ} 49^{\prime} 53.640^{\prime \prime} \mathrm{N}$ | $71^{\circ} 28^{\prime} 6.837^{\prime \prime} \mathrm{W}$ | Nashua North | II |  | 0.00 | 0.00 | 0.08 | 0.00 | 0.00 | 0.01 | 0.00 | 41 |
| Wright to Dracut Pipeline Segment | Hillsborough | Litchfield | J | 26.86 | 26.91 | WPI-2371 | PSS | N/A | $42^{\circ} 49^{\prime} 53.672^{\prime \prime} \mathrm{N}$ | $71^{\circ} 28^{\prime} 5.776^{\prime \prime} \mathrm{W}$ | Nashua North | II |  | 0.00 | 0.00 | 0.36 | 0.00 | 0.00 | 0.03 | 0.00 | 146 |
| Wright to Dracut Pipeline Segment | Hillsborough | Litchfield | J | 26.86 | 26.87 | WPI-2373 | Other | N/A | $42^{\circ} 49^{\prime} 53.785^{\prime \prime} \mathrm{N}$ | $71^{\circ} 28^{\prime} 6.302{ }^{\prime \prime} \mathrm{W}$ | Nashua North | II |  | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 51 |
| Wright to Dracut Pipeline Segment | Hillsborough | Litchfield | J | 26.89 | 26.96 | WPI-2374 | PFO | N/A | $42^{\circ} 49^{\prime} 54.3900^{\prime \prime} \mathrm{N}$ | $71^{\circ} 28^{\prime} 3.872^{\prime \prime} \mathrm{W}$ | Nashua North | II |  | 0.00 | 0.37 | 0.00 | 0.00 | 0.19 | 0.00 | 0.00 | 275 |
| Wright to Dracut Pipeline Segment | Hillsborough | Litchfield | J | 26.92 | 26.94 | WPI-2375 | Other | N/A | $42^{\circ} 49^{\prime} 54.708{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 28^{\prime} 2.245^{\prime \prime} \mathrm{W}$ | Nashua North | N/A |  | 0.00 | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Litchfield | J | 26.93 | 26.93 | WPI-2374 | PFO | N/A | $42^{\circ} 49^{\prime} 55.0422^{\prime \prime}$ | $71^{\circ} 28^{\prime} 1.6999^{\prime \prime} \mathrm{W}$ | Nashua North | N/A |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Litchfield | J | 26.93 | 26.96 | wPI-2371 | PSS | N/A | $42^{\circ} 49^{\prime} 5.5818{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 28^{\prime} 2.052^{\prime \prime} \mathrm{W}$ | Nashua North | II |  | 0.00 | 0.00 | 0.08 | 0.00 | 0.00 | 0.02 | 0.00 | 78 |
| Wright to Dracut Pipeline Segment | Hillsborough | Litchfield | J | 27.01 | 27.01 | LT-G-W003 | PSS | N/A | $42^{\circ} 49^{\prime} 57.9244^{\prime \prime}$ | 71${ }^{\circ} 27^{\prime} 57.288{ }^{\prime \prime} \mathrm{W}$ | Nashua North | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Litchfield | J | 27.02 | 27.25 | LT-G-W003 | PSS | N/A | $42^{\circ} 49^{\prime} 57.695{ }^{\prime \prime} \mathrm{N}$ | 71² $27^{\prime} 56.632^{\prime \prime} \mathrm{W}$ | Nashua North | II |  | 0.00 | 0.00 | 1.98 | 0.00 | 0.00 | 0.27 | 0.00 | 1,194 |
| Wright to Dracut Pipeline Segment | Hillsborough | Litchfield | J | 27.14 | 27.25 | LT-G-W003 | PFO | N/A | $42^{\circ} 49^{\prime} 58.819{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 27^{\prime} 48.078{ }^{\prime \prime} \mathrm{W}$ | Nashua North | N/A |  | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Litchfield | J | 27.26 | 27.27 | LT-G-W003 | PSS | N/A | $42^{\circ} 50^{\prime} 0.9799^{\prime \prime}$ | $71^{\circ} 27^{\prime} 39.849$ " W | Nashua North | II |  | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 0.01 | 0.00 | 42 |
| Wright to Dracut Pipeline Segment | Hillsborough | Litchfield | J | 27.27 | 27.27 | LT-G-W003 | PFO | N/A | $42^{\circ} 50^{\prime} 0.879{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 27^{\prime} 39.250^{\prime \prime} \mathrm{W}$ | Nashua North | N/A |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Litchfield | J | 27.32 | 27.36 | LT-G-W004 | PEM | N/A | $42^{\circ} 50^{\prime} 1.980{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 27^{\prime} 35.855^{\prime \prime} \mathrm{W}$ | Nashua North | II |  | 0.20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 166 |
| Wright to Dracut Pipeline Segment | Hillsborough | Litchfield | J | 27.39 | 27.46 | LT-G-W005 | PSS | N/A | $42^{\circ} 50^{\prime} 3.2511^{\prime N}$ | $71^{\circ} 27^{\prime} 31.583{ }^{\prime \prime} \mathrm{W}$ | Nashua North | II |  | 0.00 | 0.00 | 0.47 | 0.00 | 0.00 | 0.06 | 0.00 | 268 |
| Wright to Dracut Pipeline Segment | Hillsborough | Litchfield | J | 27.42 | 27.46 | LT-G-W005 | PFO | N/A | $42^{\circ} 50^{\prime} 3.190{ }^{\prime \prime} \mathrm{N}$ | 71² 27 ' 29.136" W | Nashua North | N/A |  | 0.00 | 0.08 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Litchfield | J | 27.46 | 27.78 | WPI-2388 | PSS/PEM | N/A | $42^{\circ} 50^{\prime} 3.665^{\prime \prime} \mathrm{N}$ | $71^{\circ} 27^{\prime 2} 26.229{ }^{\prime \prime} \mathrm{W}$ | Nashua North | II |  | 0.00 | 0.00 | 2.55 | 0.00 | 0.00 | 0.36 | 0.00 | 1,580 |
| Wright to Dracut Pipeline Segment | Hillsborough | Litchfield | J | 27.48 | 27.71 | WPI-2389 | PFO | N/A | $42^{\circ} 50^{\prime} 3.9511^{\prime N}$ | $71^{\circ} 27^{\prime} 24.939{ }^{\prime \prime} \mathrm{W}$ | Nashua North | N/A |  | 0.00 | 0.17 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Litchfield | J | 27.72 | 27.72 | WPI-2388 | PSS/PEM | N/A | $42^{\circ} 50^{\prime} 8.403{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 27^{\prime} 8.932^{\prime \prime} \mathrm{W}$ | Nashua North | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Litchfield | J | 27.72 | 27.72 | LT-G-W008 | PSS | N/A | $42^{\circ} 50^{\prime} 8.403^{\prime \prime} \mathrm{N}$ | $71^{\circ} 27^{\prime} 8.932^{\prime \prime} \mathrm{W}$ | Nashua North | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Litchfield | J | 27.72 | 27.80 | LT-G-W008 | PSS | N/A | $42^{\circ} 50^{\prime} 8.404{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 27^{\prime} 8.930^{\prime \prime} \mathrm{W}$ | Nashua North | N/A |  | 0.00 | 0.00 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Litchfield | J | 27.76 | 27.76 | WPI-2389 | PFO | N/A | $42^{\circ} 50^{\prime} 8.225{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 27^{\prime} 6.244^{\prime \prime} \mathrm{W}$ | Nashua North | N/A |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Litchfield | J | 27.78 | 27.79 | WPI-2392 | Other | N/A | $42^{\circ} 50^{\prime} 8.6644^{\prime \prime} \mathrm{N}$ | $71^{\circ} 27^{\prime} 4.520^{\prime \prime} \mathrm{W}$ | Nashua North | II |  | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 48 |
| Wright to Dracut Pipeline Segment | Hillsborough | Litchfield | J | 27.79 | 27.81 | WPI-2393 | PSS | N/A | $42^{\circ} 50^{\prime} 9.075^{\prime \prime} \mathrm{N}$ | $71^{\circ} 27^{\prime} 4.164^{\prime \prime} \mathrm{W}$ | Nashua North | II |  | 0.00 | 0.00 | 0.08 | 0.00 | 0.00 | 0.02 | 0.00 | 92 |
| Wright to Dracut Pipeline Segment | Hillsborough | Litchfield | J | 27.80 | 27.82 | WPI-2394 | PFO | N/A | $42^{\circ} 50^{\prime} 8.933^{\prime \prime} \mathrm{N}$ | $71^{\circ} 27^{\prime} 3.049^{\prime \prime} \mathrm{W}$ | Nashua North | N/A |  | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Litchfield | J | 28.32 | 28.35 | WPI-2396 | PFO | N/A | $42^{\circ} 50^{\prime} 18.025^{\prime \prime} \mathrm{N}$ | 710 $26^{\prime} 29.134{ }^{\prime \prime} \mathrm{W}$ | Nashua North | II |  | 0.00 | 0.19 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 98 |
| Wright to Dracut Pipeline Segment | Hillsborough | Litchfield | J | 28.34 | 28.47 | WPI-2397 | PFO | N/A | $42^{\circ} 50^{\prime} 18.951{ }^{\prime \prime} \mathrm{N}$ | 711 ${ }^{\circ} 6^{\prime} 27.925^{\prime \prime} \mathrm{W}$ | Nashua North | II |  | 0.00 | 1.15 | 0.00 | 0.00 | 0.46 | 0.00 | 0.00 | 666 |
| Wright to Dracut Pipeline Segment | Hillsborough | Litchfield | J | 28.36 | 28.41 | WPI-2398 | PEM | N/A | $42^{\circ} 50^{\prime} 18.590^{\prime \prime} \mathrm{N}$ | $71^{\circ} 26^{\prime 2} 26.117^{\prime \prime} \mathrm{W}$ | Nashua North | N/A |  | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Litchfield | J | 28.47 | 28.67 | LT-L-w002 | PSS | N/A | $42^{\circ} 50^{\prime} 20.946^{\prime \prime} \mathrm{N}$ | 71® $26^{\prime \prime} 19.236^{\prime \prime} \mathrm{W}$ | Nashua North | II |  | 0.00 | 0.00 | 1.57 | 0.00 | 0.00 | 0.21 | 0.00 | 903 |
| Wright to Dracut Pipeline Segment | Hillsborough | Litchfield | J | 28.65 | 28.66 | LT-L-W002 | PSS | N/A | $42^{\circ} 50^{\prime} 23.715^{\prime \prime} \mathrm{N}$ | $71^{\circ} 26^{\prime} 7.169^{\prime \prime} \mathrm{W}$ | Nashua North | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |

[^31]Table 3.9 - Wetlands Associated with the Project in New Hampshire (continued)

| Table 3.9 (cont'd) <br> Wetlands Associated with the Project in New Hampshire |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Facility Name | County | Town | Segment ${ }^{1}$ | Milepost ${ }^{2}$ |  | $\begin{gathered} \text { Wetland } \\ \mathbf{I D}^{3,4} \end{gathered}$ | Wetland Class ${ }^{5}$ | State Wetland Classification ${ }^{6}$ | Latitude | Longitude | Quadrangle | Crossing Method | Comments | Wetland Impact (acres) |  |  |  |  |  |  | Crossing Length (feet) ${ }^{11}$ |
|  |  |  |  |  |  | Construction ${ }^{8}$ |  |  |  |  |  |  |  | Operation ${ }^{\text {² }}$ |  |  |  |
|  |  |  |  | Begin | End |  |  |  |  |  |  |  |  | PEM | PFO | PSS | Other ${ }^{10}$ | PFO | PSS | Other ${ }^{10}$ |  |
| Wright to Dracut Pipeline Segment | Hillsborough | Litchfield | J | 28.71 | 28.77 |  | LT-L-W002 | PFO | N/A | $42^{\circ} 50^{\prime} 25.048{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 26^{\prime} 3.009{ }^{\prime \prime} \mathrm{W}$ | Nashua North | II |  | 0.00 | 0.33 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 107 |
| Wright to Dracut Pipeline Segment | Hillsborough | Litchfield | J | 28.71 | 28.71 | LT-L-w002 | PSS | N/A | $42^{\circ} 50^{\prime} 25.0899^{\prime \prime} \mathrm{N}$ | $71^{\circ} 26^{\prime} 3.070^{\prime \prime} \mathrm{W}$ | Nashua North | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Litchfield | J | 28.77 | 28.85 | LT-L-w002 | PSS | N/A | $42^{\circ} 50^{\prime} 24.4544^{\prime \prime} \mathrm{N}$ | $71^{\circ} 25^{\prime} 58.769{ }^{\prime \prime} \mathrm{W}$ | Nashua North | II |  | 0.00 | 0.00 | 0.76 | 0.00 | 0.00 | 0.10 | 0.00 | 442 |
| Wright to Dracut Pipeline Segment | Rockingham | Londonderry | J | 28.85 | 28.93 | LT-L-W002 | PSS | N/A | $42^{\circ} 50^{\prime} 25.675^{\prime \prime} \mathrm{N}$ | 71² $25^{\prime} 53.097{ }^{\prime \prime} \mathrm{W}$ | Nashua North | II |  | 0.00 | 0.00 | 0.69 | 0.00 | 0.00 | 0.09 | 0.00 | 391 |
| Wright to Dracut Pipeline Segment | Rockingham | Londonderry | J | 28.92 | 28.94 | WPI-2405 | PEM | N/A | $42^{\circ} 50^{\prime} 26.735^{\prime \prime} \mathrm{N}$ | 710 $25^{\prime} 48.174{ }^{\prime \prime} \mathrm{W}$ | Nashua North | II |  | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 87 |
| Wright to Dracut Pipeline Segment | Rockingham | Londonderry | J | 28.93 | 28.95 | WPI-2406 | PFO | N/A | $42^{\circ} 50^{\prime} 27.142^{\prime \prime} \mathrm{N}$ | $71^{\circ} 25^{\prime} 48.034{ }^{\prime \prime} \mathrm{W}$ | Nashua North | N/A |  | 0.00 | 0.07 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Rockingham | Londonderry | J | 29.30 | 29.32 | LD-L-w002 | PEM | N/A | $42^{\circ} 50^{\prime} 32.565^{\prime \prime} \mathrm{N}$ | $71^{\circ} 25^{\prime 2} 22.735^{\prime \prime} \mathrm{W}$ | Nashua North | II |  | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 46 |
| Wright to Dracut Pipeline Segment | Rockingham | Londonderry | J | 29.32 | 29.33 | LD-L-W002 | PEM | N/A | $42^{\circ} 50^{\prime} 32.4244^{\prime \prime}$ | $71^{\circ} 25^{\prime 2} 21.576^{\prime \prime} \mathrm{W}$ | Nashua North | II |  | 0.11 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 68 |
| Wright to Dracut Pipeline Segment | Rockingham | Londonderry | J | 30.07 | 30.08 | LD-L-W003 | PFO | N/A | $42^{\circ} 50^{\prime} 26.3055^{\prime \prime} \mathrm{N}$ | 71² $24^{\prime} 37.673{ }^{\prime \prime} \mathrm{W}$ | Nashua North | N/A |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Rockingham | Londonderry | J | 30.09 | 30.12 | LD-L-w003 | PFO | N/A | $42^{\circ} 50^{\prime 2} 25.788^{\prime \prime} \mathrm{N}$ | $71^{\circ} 24^{\prime} 37.229{ }^{\prime \prime} \mathrm{W}$ | Nashua North | II |  | 0.00 | 0.12 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 96 |
| Wright to Dracut Pipeline Segment | Rockingham | Londonderry | J | 30.22 | 30.23 | LD-L-W007 | PEM | N/A | $42^{\circ} 50^{\prime} 19.3466^{\prime \prime} \mathrm{N}$ | $71^{\circ} 24^{\prime} 32.901$ " W | Nashua North | N/A |  | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Rockingham | Londonderry | J | 30.22 | 30.23 | LD-L-W007 | PFO | N/A | $42^{\circ} 50^{\prime} 19.780{ }^{\prime \prime} \mathrm{N}$ | 71² $24^{\prime} 32.083{ }^{\prime \prime} \mathrm{W}$ | Nashua North | II |  | 0.00 | 0.02 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 13 |
| Wright to Dracut Pipeline Segment | Rockingham | Londonderry | J | 30.32 | 30.34 | WPI-2415 | PSS | N/A | $42^{\circ} 50^{\prime} 15.127^{\prime \prime} \mathrm{N}$ | $71^{\circ} 24^{\prime 2} 29.446 " \mathrm{~W}$ | Nashua North | N/A |  | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Rockingham | Londonderry | J | 30.50 | 30.63 | WPI-2421 | PFO | N/A | $42^{\circ} 50^{\prime} 7.504{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 24^{\prime 21.567 " ~ W ~}$ | Nashua North | II |  | 0.00 | 0.99 | 0.00 | 0.00 | 0.43 | 0.00 | 0.00 | 629 |
| Wright to Dracut Pipeline Segment | Rockingham | Londonderry | J | 30.50 | 30.50 | WPI-2417 | PSS | N/A | $42^{\circ} 50^{\prime} 7.280{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 24^{\prime} 22.566^{\prime \prime} \mathrm{W}$ | Nashua North | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Rockingham | Londonderry | J | 30.50 | 30.61 | WPI-2423 | PSS | N/A | $42^{\circ} 50^{\prime} 7.215^{\prime \prime} \mathrm{N}$ | $71^{\circ} 24^{\prime 2} 2.509{ }^{\text {" W }}$ | Nashua North | N/A |  | 0.00 | 0.00 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Rockingham | Londonderry | J | 30.63 | 30.64 | WPI-2423 | PSS | N/A | $42^{\circ} 50^{\prime} 1.613^{\prime \prime} \mathrm{N}$ | $71^{\circ} 24^{\prime} 17.712{ }^{\prime \prime} \mathrm{W}$ | Nashua North | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Rockingham | Londonderry | J | 30.64 | 30.66 | WPI-2427 | Other | N/A | $42^{\circ} 50^{\prime} 0.899^{\prime \prime} \mathrm{N}$ | $71^{\circ} 24^{\prime} 17.017{ }^{\prime \prime} \mathrm{W}$ | Nashua North | II |  | 0.00 | 0.00 | 0.00 | 0.10 | 0.00 | 0.00 | 0.00 | 66 |
| Wright to Dracut Pipeline Segment | Rockingham | Londonderry | J | 30.64 | 30.65 | wPI-2426 | Other | N/A | $42^{\circ} 50^{\prime} 0.822^{\prime \prime} \mathrm{N}$ | $71^{\circ} 24^{\prime 17.034 " ~ W ~}$ | Nashua North | N/A |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Rockingham | Londonderry | J | 30.65 | 30.66 | WPI-2433 | PEM | N/A | $42^{\circ} 50^{\prime} 0.4566^{\prime \prime} \mathrm{N}$ | $71^{\circ} 24^{\prime} 16.644^{\prime \prime} \mathrm{W}$ | Nashua North | N/A |  | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Rockingham | Londonderry | J | 30.66 | 30.67 | WPI-2428 | PSS | N/A | $42^{\circ} 49^{\prime} 59.941{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 24^{\prime} 16.211^{\prime \prime} \mathrm{W}$ | Nashua North | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Rockingham | Londonderry | J | 30.70 | 30.76 | WPI-2431 | PSS | N/A | $42^{\circ} 49^{\prime} 58.482^{\prime \prime} \mathrm{N}$ | $71^{\circ} 24^{\prime} 14.933{ }^{\prime \prime} \mathrm{W}$ | Nashua North | N/A |  | 0.00 | 0.00 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Rockingham | Londonderry | J | 30.75 | 30.84 | WPI-2430 | PFO | N/A | $42^{\circ} 49^{\prime} 56.362^{\prime \prime} \mathrm{N}$ | $71^{\circ} 24^{\prime 12.025 " ~ W ~}$ | Nashua North | II |  | 0.00 | 0.63 | 0.00 | 0.00 | 0.28 | 0.00 | 0.00 | 409 |
| Wright to Dracut Pipeline Segment | Rockingham | Londonderry | J | 30.76 | 30.77 | WPI-2432 | Other | N/A | $42^{\circ} 49^{\prime} 55.625^{\prime \prime} \mathrm{N}$ | $71^{\circ} 24^{\prime} 12.403^{\prime \prime} \mathrm{W}$ | Nashua North | N/A |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Rockingham | Londonderry | J | 30.77 | 30.78 | WPI-2431 | PSS | N/A | $42^{\circ} 49^{\prime} 55.359^{\prime \prime} \mathrm{N}$ | 71 ${ }^{\circ} 24^{\prime} 12.195{ }^{\text {W W }}$ | Nashua North | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Rockingham | Londonderry | J | 30.78 | 30.80 | WPI-2434 | PEM | N/A | $42^{\circ} 49^{\prime} 54.946^{\prime \prime} \mathrm{N}$ | 711 ${ }^{2} 4^{\prime} 11.865^{\prime \prime} \mathrm{W}$ | Nashua North | N/A |  | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Rockingham | Londonderry | J | 30.80 | 30.83 | wPI-2435 | PSS | N/A | $42^{\circ} 49^{\prime} 54.0500^{\prime \prime}$ | $71^{\circ} 24^{\prime} 11.155^{\prime \prime} \mathrm{W}$ | Nashua North | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Rockingham | Londonderry | J | 30.83 | 30.83 | WPI-2434 | PEM | N/A | $42^{\circ} 49^{\prime} 52.807{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 24^{\prime} 9.857^{\prime \prime} \mathrm{W}$ | Nashua North | N/A |  | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Rockingham | Londonderry | J | 30.83 | 30.90 | WPI-2437 | PFO | N/A | $42^{\circ} 49^{\prime} 52.747{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 24^{\prime} 9.392^{\prime \prime} \mathrm{W}$ | Nashua North | II |  | 0.00 | 0.49 | 0.00 | 0.00 | 0.23 | 0.00 | 0.00 | 337 |

[^32]Table 3.9 - Wetlands Associated with the Project in New Hampshire (continued)

| Table 3.9 (cont'd) <br> Wetlands Associated with the Project in New Hampshire |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Facility Name | County | Town | Segment ${ }^{1}$ | Milepost ${ }^{2}$ |  | $\begin{gathered} \text { Wetland } \\ \mathbf{I D}^{3,4} \end{gathered}$ | Wetland Class ${ }^{5}$ | State Wetland Classification ${ }^{6}$ | Latitude | Longitude | Quadrangle | Crossing Method | Comments | Wetland Impact (acres) |  |  |  |  |  |  | $\begin{array}{\|c\|} \text { Crossing } \\ \text { Length } \\ \text { (feet) } \end{array}$ |
|  |  |  |  |  |  | Construction ${ }^{8}$ |  |  |  |  |  |  |  | Operation ${ }^{\text {9 }}$ |  |  |  |
|  |  |  |  | Begin | End |  |  |  |  |  |  |  |  | PEM | PFO | PSS | Other ${ }^{10}$ | PFO | PSS | Other ${ }^{10}$ |  |
| Wright to Dracut Pipeline Segment | Rockingham | Londonderry | J | 30.83 | 30.88 |  | WPI-2438 | PSS | N/A | $42^{\circ} 49^{\prime} 52.649^{\prime \prime} \mathrm{N}$ | $71^{\circ} 24^{\prime} 9.532^{\prime \prime} \mathrm{W}$ | Nashua North | N/A |  | 0.00 | 0.00 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Rockingham | Londonderry | J | 30.89 | 30.94 | WPI-2439 | PEM | N/A | $42^{\circ} 49^{\prime} 50.1388^{\prime \prime} \mathrm{N}$ | $71^{\circ} 24^{\prime} 6.694^{\prime \prime} \mathrm{W}$ | Nashua North | II |  | 0.32 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 201 |
| Wright to Dracut Pipeline Segment | Rockingham | Londonderry | J | 30.93 | 30.95 | WPI-2440 | PSS | N/A | $42^{\circ} 49^{\prime} 48.237^{\prime \prime} \mathrm{N}$ | $71^{\circ} 24^{\prime} 6.256^{\prime \prime} \mathrm{W}$ | Nashua North | II |  | 0.00 | 0.00 | 0.08 | 0.00 | 0.00 | 0.01 | 0.00 | 13 |
| Wright to Dracut Pipeline Segment | Rockingham | Londonderry | J | 31.22 | 31.24 | WPI-2443 | Other | N/A | $42^{\circ} 49^{\prime} 36.4733^{\prime \prime} \mathrm{N}$ | 71${ }^{\circ} 23^{\prime} 52.752^{\prime \prime} \mathrm{W}$ | Nashua North | II |  | 0.00 | 0.00 | 0.00 | 0.08 | 0.00 | 0.00 | 0.00 | 61 |
| Wright to Dracut Pipeline Segment | Rockingham | Londonderry | J | 31.23 | 31.25 | WPI-2444 | PEM | N/A | $42^{\circ} 49^{\prime} 35.8644^{\prime \prime}$ | 71${ }^{\circ} 23^{\prime} 52.5644^{\prime \prime} \mathrm{W}$ | Nashua North | N/A |  | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Rockingham | Londonderry | J | 31.24 | 31.24 | WPI-2441 | PFO | N/A | $42^{\circ} 49^{\prime} 35.8911^{\prime \prime}$ | $71^{\circ} 23^{\prime} 52.393{ }^{\prime \prime} \mathrm{W}$ | Nashua North | II |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 4 |
| Wright to Dracut Pipeline Segment | Rockingham | Londonderry | J | 31.37 | 31.39 | WPI-2447 | Other | N/A | $42^{\circ} 49^{\prime} 30.593{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 23^{\prime} 46.363{ }^{\prime \prime} \mathrm{W}$ | Nashua North | II |  | 0.00 | 0.00 | 0.00 | 0.18 | 0.00 | 0.00 | 0.00 | 118 |
| Wright to Dracut Pipeline Segment | Hillsborough | Hudson | J | 31.39 | 31.40 | WPI-2451 | Other | N/A | $42^{\circ} 49^{\prime} 26.708{ }^{\prime \prime} \mathrm{N}$ | 71${ }^{\circ} 23^{\prime} 50.116^{\prime \prime} \mathrm{W}$ | Nashua North | N/A |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Rockingham | Londonderry | J | 31.40 | 31.42 | WPI-2448 | Other | N/A | $42^{\circ} 49^{\prime} 29.675{ }^{\prime \prime} \mathrm{N}$ | 71² $23^{\prime} 44.635{ }^{\prime \prime} \mathrm{W}$ | Nashua North | II |  | 0.00 | 0.00 | 0.00 | 0.13 | 0.00 | 0.00 | 0.00 | 89 |
| Wright to Dracut Pipeline Segment | Hillsborough | Hudson | J | 31.41 | 31.43 | WPI-2448 | Other | N/A | $42^{\circ} 49^{\prime} 28.821^{\prime \prime} \mathrm{N}$ | 71${ }^{\circ} 23^{\prime} 44.972{ }^{\prime \prime} \mathrm{W}$ | Nashua North | II |  | 0.00 | 0.00 | 0.00 | 0.16 | 0.00 | 0.00 | 0.00 | 78 |
| Wright to Dracut Pipeline Segment | Hillsborough | Hudson | J | 31.57 | 31.63 | WPI-2455 | PFO | N/A | $42^{\circ} 49^{\prime} 22.529^{\prime \prime} \mathrm{N}$ | 710 $23{ }^{\prime} 37.156{ }^{\prime \prime} \mathrm{W}$ | Nashua North | II |  | 0.00 | 0.31 | 0.00 | 0.00 | 0.18 | 0.00 | 0.00 | 278 |
| Wright to Dracut Pipeline Segment | Hillsborough | Hudson | J | 31.77 | 31.79 | WPI-2457 | PSS | N/A | $42^{\circ} 49^{\prime} 14.380{ }^{\prime \prime} \mathrm{N}$ | 710 $23^{\prime} 28.549^{\prime \prime} \mathrm{W}$ | Nashua North | N/A |  | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Hudson | J | 31.87 | 31.99 | WPI-2459 | PFO | N/A | $42^{\circ} 49^{\prime} 10.908{ }^{\prime \prime} \mathrm{N}$ | 71² $23^{\prime} 23.065{ }^{\prime \prime} \mathrm{W}$ | Nashua North | II |  | 0.00 | 0.47 | 0.00 | 0.00 | 0.33 | 0.00 | 0.00 | 567 |
| Wright to Dracut Pipeline Segment | Hillsborough | Hudson | J | 31.88 | 31.99 | wPI-2461 | PSS | N/A | $42^{\circ} 49^{\prime} 10.059{ }^{\prime \prime} \mathrm{N}$ | 71 ${ }^{\circ} 23^{\prime} 22.864^{\prime \prime} \mathrm{W}$ | Nashua North | N/A |  | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Hudson | J | 32.11 | 32.15 | WPI-2465 | PSS | N/A | $42^{\circ} 49^{\prime} 0.811^{\prime \prime} \mathrm{N}$ | $71^{\circ} 23^{\prime} 12.232^{\prime \prime} \mathrm{W}$ | Nashua North | II |  | 0.00 | 0.00 | 0.24 | 0.00 | 0.00 | 0.04 | 0.00 | 160 |
| Wright to Dracut Pipeline Segment | Hillsborough | Hudson | J | 32.12 | 32.15 | WPI-2466 | PFO | N/A | $42^{\circ} 49^{\prime} 0.689{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 23^{\prime} 11.522^{\prime \prime} \mathrm{W}$ | Nashua North | N/A |  | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Hudson | J | 32.18 | 32.19 | WPI-2467 | Other | N/A | $42^{\circ} 48^{\prime} 58.2811^{\prime \prime}$ | $71^{\circ} 23^{\prime} 8.825^{\prime \prime} \mathrm{W}$ | Nashua North | II |  | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 27 |
| Wright to Dracut Pipeline Segment | Hillsborough | Hudson | J | 32.32 | 32.37 | wPI-2470 | Other | N/A | $42^{\circ} 48^{\prime} 52.955^{\prime \prime} \mathrm{N}$ | $71^{\circ} 23^{\prime} 2.435^{\prime \prime} \mathrm{W}$ | Nashua North | II |  | 0.00 | 0.00 | 0.00 | 0.39 | 0.00 | 0.00 | 0.00 | 256 |
| Wright to Dracut Pipeline Segment | Hillsborough | Hudson | J | 32.37 | 32.38 | HD-T-W001 | PEM | N/A | $42^{\circ} 48^{\prime} 50.593{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 23^{\prime} 0.698^{\prime \prime} \mathrm{W}$ | Nashua North | II |  | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 7 |
| Wright to Dracut Pipeline Segment | Hillsborough | Hudson | J | 32.52 | 32.54 | HD-Y-W001 | PFO | N/A | $42^{\circ} 48^{\prime} 45.070{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 22^{\prime} 53.334{ }^{\prime \prime} \mathrm{W}$ | Nashua North | N/A |  | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Hudson | J | 32.55 | 32.56 | HD-G-W005 | PEM | N/A | $42^{\circ} 48^{\prime} 42.993{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 22^{\prime} 52.760^{\prime \prime} \mathrm{W}$ | Nashua North | N/A |  | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Hudson | J | 32.65 | 32.69 | WPI-2473 | PSS | N/A | $42^{\circ} 48^{\prime} 39.253^{\prime \prime} \mathrm{N}$ | $71^{\circ} 22^{\prime} 48.186{ }^{\prime \prime} \mathrm{W}$ | Nashua North | N/A |  | 0.00 | 0.00 | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Hudson | J | 32.88 | 32.91 | HD-G-W003 | PSS | N/A | $42^{\circ} 48^{\prime} 30.019^{\prime \prime} \mathrm{N}$ | $71^{\circ} 22^{\prime} 37.743^{\prime \prime} \mathrm{W}$ | Nashua North | N/A |  | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Hudson | J | 32.90 | 32.91 | HD-G-W003 | PSS | N/A | $42^{\circ} 48^{\prime} 29.316{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 22^{\prime} 36.964{ }^{\prime \prime} \mathrm{W}$ | Nashua North | N/A |  | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Hudson | J | 32.93 | 32.96 | WPI-2476 | PFO | N/A | $42^{\circ} 48^{\prime} 28.743^{\prime \prime} \mathrm{N}$ | 71 ${ }^{\circ} 22^{\prime} 34.856{ }^{\prime \prime} \mathrm{W}$ | Nashua North | N/A |  | 0.00 | 0.08 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Hudson | J | 32.95 | 32.96 | WPI-2477 | PSS | N/A | $42^{\circ} 48^{\prime} 27.797$ " N | $71^{\circ} 22^{\prime} 34.173{ }^{\prime \prime} \mathrm{W}$ | Nashua North | II |  | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 0.01 | 0.00 | 65 |
| Wright to Dracut Pipeline Segment | Hillsborough | Hudson | J | 32.96 | 32.97 | HD-G-W002 | PEM | N/A | $42^{\circ} 48^{\prime} 27.204{ }^{\prime \prime} \mathrm{N}$ | 710 ${ }^{\circ} 2^{\prime} 33.616^{\prime \prime} \mathrm{W}$ | Nashua North | N/A |  | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Hudson | J | 32.96 | 32.96 | WPI-2476 | PFO | N/A | $42^{\circ} 48^{\prime} 27.469{ }^{\prime \prime} \mathrm{N}$ | 71 ${ }^{\circ} 22^{\prime} 33.443^{\prime \prime} \mathrm{W}$ | Nashua North | N/A |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Hudson | J | 32.96 | 32.96 | HD-G-W002 | PFO | N/A | $42^{\circ} 48^{\prime} 27.469^{\prime \prime} \mathrm{N}$ | $71^{\circ} 22^{\prime} 33.443^{\prime \prime} \mathrm{W}$ | Nashua North | N/A |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |

[^33]Table 3.9 - Wetlands Associated with the Project in New Hampshire (continued)

| Table 3.9 (cont'd) <br> Wetlands Associated with the Project in New Hampshire |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Facility Name | County | Town | Segment ${ }^{1}$ | Milepost ${ }^{2}$ |  | $\begin{gathered} \text { Wetland } \\ \mathbf{I D}^{3,4} \end{gathered}$ | Wetland Class ${ }^{5}$ | State Wetland Classification ${ }^{6}$ | Latitude | Longitude | Quadrangle | Crossing Method | Comments | Wetland Impact (acres) |  |  |  |  |  |  | $\begin{array}{\|c\|c\|} \hline \text { Crossing } \\ \text { Length } \\ \text { (feet) }^{11} \end{array}$ |
|  |  |  |  |  |  | Construction ${ }^{8}$ |  |  |  |  |  |  |  | Operation ${ }^{\text {9 }}$ |  |  |  |
|  |  |  |  | Begin | End |  |  |  |  |  |  |  |  | PEM | PFO | PSS | Other ${ }^{10}$ | PFO | PSS | Other ${ }^{10}$ |  |
| Wright to Dracut Pipeline Segment | Hillsborough | Hudson | J | 32.96 | 32.97 |  | HD-G-W002 | PFO | N/A | $42^{\circ} 48^{\prime} 27.468{ }^{\prime \prime} \mathrm{N}$ | 710 $22^{\prime} 33.442^{\prime \prime} \mathrm{W}$ | Nashua North | II |  | 0.00 | 0.02 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 26 |
| Wright to Dracut Pipeline Segment | Hillsborough | Hudson | J | 33.00 | 33.02 | WPI-2479 | PEM | N/A | $42^{\circ} 48^{\prime} 25.2922^{\prime \prime} \mathrm{N}$ | $71^{\circ} 22^{\prime} 32.3011^{\prime \prime} \mathrm{W}$ | Nashua North | N/A |  | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Hudson | J | 33.02 | 33.05 | WPI-2478 | PSS | N/A | $42^{\circ} 48^{\prime} 24.6888^{\prime \prime} \mathrm{N}$ | $71^{\circ} 22^{\prime} 30.838{ }^{\prime \prime} \mathrm{W}$ | Nashua North | II |  | 0.00 | 0.00 | 0.17 | 0.00 | 0.00 | 0.02 | 0.00 | 88 |
| Wright to Dracut Pipeline Segment | Hillsborough | Hudson | J | 33.03 | 33.08 | WPI-2478 | PSS | N/A | $42^{\circ} 48^{\prime} 24.374{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 22^{\prime} 30.010^{\prime \prime} \mathrm{W}$ | Windham | II |  | 0.00 | 0.00 | 0.22 | 0.00 | 0.00 | 0.01 | 0.00 | 130 |
| Wright to Dracut Pipeline Segment | Hillsborough | Hudson | J | 33.04 | 33.04 | WPI-2478 | PSS | N/A | $42^{\circ} 48^{\prime} 24.2322^{\prime \prime}$ | 71² $22^{\prime} 29.852^{\prime \prime} \mathrm{W}$ | Windham | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Hudson | J | 33.04 | 33.04 | HD-G-W001 | PSS | N/A | $42^{\circ} 48^{\prime} 24.2322^{\prime \prime}$ | 71 ${ }^{\circ} 22^{\prime} 29.852^{\prime \prime} \mathrm{W}$ | Windham | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Hudson | J | 33.04 | 33.04 | HD-G-W001 | PSS | N/A | $42^{\circ} 48^{\prime} 24.2311^{\prime N}$ | $71^{\circ} 22^{\prime} 29.851^{\prime \prime} \mathrm{W}$ | Windham | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Hudson | J | 33.04 | 33.05 | WPI-2478 | PSS | N/A | $42^{\circ} 48^{\prime} 24.0055^{\prime \prime} \mathrm{N}$ | $71^{\circ} 22^{\prime 2} 29.823{ }^{\prime \prime} \mathrm{W}$ | Windham | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Hudson | J | 33.04 | 33.05 | HD-G-W001 | PSS | N/A | $42^{\circ} 48^{\prime} 24.0055^{\prime \prime}$ | $71^{\circ} 22^{\prime 2} 29.823^{\prime \prime} \mathrm{W}$ | Windham | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Hudson | J | 33.04 | 33.06 | HD-G-W001 | PSS | N/A | $42^{\circ} 48^{\prime} 24.005{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 22^{\prime} 29.821^{\prime \prime} \mathrm{W}$ | Windham | II |  | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 0.01 | 0.00 | 55 |
| Wright to Dracut Pipeline Segment | Hillsborough | Hudson | J | 33.07 | 33.10 | WPI-2479 | PEM | N/A | $42^{\circ} 48^{\prime} 22.335^{\prime \prime} \mathrm{N}$ | 719 ${ }^{\circ} 2^{\prime} 29.046^{\prime \prime} \mathrm{W}$ | Windham | II |  | 0.16 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 75 |
| Wright to Dracut Pipeline Segment | Hillsborough | Hudson | J | 33.08 | 33.12 | WPI-2480 | PFO | N/A | $42^{\circ} 48^{\prime} 22.6977^{\prime \prime}$ | 710 $22^{\prime} 28.149^{\prime \prime} \mathrm{W}$ | Windham | II |  | 0.00 | 0.10 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 53 |
| Wright to Dracut Pipeline Segment | Hillsborough | Hudson | J | 33.10 | 33.10 | WPI-2481 | PSS | N/A | $42^{\circ} 48^{\prime} 21.283^{\prime \prime} \mathrm{N}$ | 710 $22^{\prime 2} 27.741{ }^{\prime \prime} \mathrm{W}$ | Windham | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Hudson | J | 33.31 | 33.32 | WPI-2486 | PEM | N/A | $42^{\circ} 48^{\prime} 12.9811^{\prime N}$ | 71${ }^{\circ} 22^{\prime} 18.365^{\prime \prime} \mathrm{W}$ | Windham | II |  | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 51 |
| Wright to Dracut Pipeline Segment | Hillsborough | Hudson | J | 33.35 | 33.39 | WPI-2486 | PEM | N/A | $42^{\circ} 48^{\prime} 11.197{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 22^{\prime} 16.797{ }^{\prime \prime} \mathrm{W}$ | Windham | II |  | 0.24 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 123 |
| Wright to Dracut Pipeline Segment | Hillsborough | Hudson | J | 33.50 | 33.54 | WPI-2493 | PEM | N/A | $42^{\circ} 48^{\prime} 4.832^{\prime \prime} \mathrm{N}$ | $71^{\circ} 22^{\prime} 10.740^{\prime \prime} \mathrm{W}$ | Windham | II |  | 0.23 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 156 |
| Wright to Dracut Pipeline Segment | Hillsborough | Hudson | J | 33.51 | 33.53 | WPI-2492 | Other | N/A | $42^{\circ} 48^{\prime} 3.876{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 22^{\prime} 10.842^{\prime \prime} \mathrm{W}$ | Windham | N/A |  | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Hudson | J | 33.58 | 33.65 | wPI-2494 | PSS | N/A | $42^{\circ} 48^{\prime} 0.780^{\prime \prime} \mathrm{N}$ | $71^{\circ} 22^{\prime} 7.794{ }^{\prime \prime} \mathrm{W}$ | Windham | II |  | 0.00 | 0.00 | 0.37 | 0.00 | 0.00 | 0.04 | 0.00 | 146 |
| Wright to Dracut Pipeline Segment | Hillsborough | Hudson | J | 33.62 | 33.65 | WPI-2495 | PEM | N/A | $42^{\circ} 47^{\prime} 59.241^{\prime \prime} \mathrm{N}$ | $71^{\circ} 22^{\prime} 6.148^{\prime \prime} \mathrm{W}$ | Windham | N/A |  | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Hudson | J | 33.73 | 33.76 | WPI-2498 | PSS | N/A | $42^{\circ} 47^{\prime} 54.872^{\prime \prime} \mathrm{N}$ | $71^{\circ} 22^{\prime} 1.486^{\prime \prime} \mathrm{W}$ | Windham | II |  | 0.00 | 0.00 | 0.15 | 0.00 | 0.00 | 0.02 | 0.00 | 85 |
| Wright to Dracut Pipeline Segment | Hillsborough | Hudson | J | 33.80 | 33.83 | WPI-2503 | PSS | N/A | $42^{\circ} 47^{\prime} 51.7766^{\prime \prime} \mathrm{N}$ | 71² 21 ' 58.439" W | Windham | II |  | 0.00 | 0.00 | 0.14 | 0.00 | 0.00 | 0.01 | 0.00 | 43 |
| Wright to Dracut Pipeline Segment | Hillsborough | Hudson | J | 33.84 | 33.88 | WPI-2505 | PSS | N/A | $42^{\circ} 47^{\prime} 50.5611^{\prime N}$ | $71^{\circ} 21^{\prime} 56.239{ }^{\prime \prime} \mathrm{W}$ | Windham | II |  | 0.00 | 0.00 | 0.18 | 0.00 | 0.00 | 0.03 | 0.00 | 118 |
| Wright to Dracut Pipeline Segment | Rockingham | Windham | J | 33.95 | 33.99 | HD-L-w001 | PSS | N/A | $42^{\circ} 47^{\prime} 45.649{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 21^{\prime} 51.406{ }^{\prime \prime} \mathrm{W}$ | Windham | II |  | 0.00 | 0.00 | 0.10 | 0.00 | 0.00 | 0.01 | 0.00 | 15 |
| Wright to Dracut Pipeline Segment | Rockingham | Windham | J | 33.99 | 34.00 | HD-L-W001 | PSS | N/A | $42^{\circ} 47^{\prime} 44.664^{\prime \prime} \mathrm{N}$ | 719 $21{ }^{\prime} 49.342{ }^{\prime \prime} \mathrm{W}$ | Windham | II |  | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.01 | 0.00 | 22 |
| Wright to Dracut Pipeline Segment | Rockingham | Windham | J | 34.00 | 34.02 | HD-L-w001 | PEM | N/A | $42^{\circ} 47^{\prime} 44.350{ }^{\prime \prime} \mathrm{N}$ | 719 $21{ }^{\prime} 48.619^{\prime \prime} \mathrm{W}$ | Windham | II |  | 0.13 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 85 |
| Wright to Dracut Pipeline Segment | Rockingham | Windham | J | 34.03 | 34.04 | WPI-2517 | PSS/PEM | N/A | $42^{\circ} 47^{\prime} 43.287{ }^{\prime \prime} \mathrm{N}$ | 71² 21 ' 47.839 " W | Windham | N/A |  | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Rockingham | Windham | J | 34.26 | 34.28 | WPI-2519 | Other | N/A | $42^{\circ} 47^{\prime} 33.134^{\prime \prime} \mathrm{N}$ | 711 ${ }^{\circ} 1^{\prime} 38.405{ }^{\prime \prime} \mathrm{W}$ | Windham | N/A |  | 0.00 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Rockingham | Windham | J | 34.31 | 34.33 | WD-K-w004 | PSS | N/A | $42^{\circ} 47^{\prime} 31.2511^{\prime N}$ | 71² 21 '36.279" W | Windham | II |  | 0.00 | 0.00 | 0.09 | 0.00 | 0.00 | 0.01 | 0.00 | 23 |
| Wright to Dracut Pipeline Segment | Rockingham | Windham | J | 34.33 | 34.37 | WD-K-W004 | PEM | N/A | $42^{\circ} 47^{\prime} 30.804{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 21^{\prime} 34.884{ }^{\prime \prime} \mathrm{W}$ | Windham | II |  | 0.22 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 99 |

[^34]Table 3.9 - Wetlands Associated with the Project in New Hampshire (continued)

| Table 3.9 (cont'd) <br> Wetlands Associated with the Project in New Hampshire |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Facility Name | County | Town | Segment ${ }^{1}$ | Milepost ${ }^{2}$ |  | $\begin{gathered} \text { Wetland } \\ \mathbf{I D}^{3,4} \end{gathered}$ | Wetland Class ${ }^{5}$ | State Wetland Classification ${ }^{6}$ | Latitude | Longitude | Quadrangle | Crossing <br> Method | Comments | Wetland Impact (acres) |  |  |  |  |  |  | $\begin{array}{\|c\|c\|} \hline \text { Crossing } \\ \text { Length } \\ \text { (feet) }^{11} \end{array}$ |
|  |  |  |  |  |  | Construction ${ }^{8}$ |  |  |  |  |  |  |  | Operation ${ }^{\text {9 }}$ |  |  |  |
|  |  |  |  | Begin | End |  |  |  |  |  |  |  |  | PEM | PFO | PSS | Other ${ }^{10}$ | PFO | PSS | Other ${ }^{10}$ |  |
| Wright to Dracut Pipeline Segment | Rockingham | Windham | J | 34.34 | 34.39 |  | WD-K-w004 | PSS | N/A | $42^{\circ} 47^{\prime} 30.172^{\prime \prime} \mathrm{N}$ | 710 21 '34.254" W | Windham | II |  | 0.00 | 0.00 | 0.27 | 0.00 | 0.00 | 0.02 | 0.00 | 226 |
| Wright to Dracut Pipeline Segment | Rockingham | Windham | J | 34.35 | 34.35 | wD-K-w004 | PFO | N/A | $42^{\circ} 47^{\prime} 29.809{ }^{\prime \prime} \mathrm{N}$ | 71² 21 '33.891" W | Windham | N/A |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Rockingham | Windham | J | 34.38 | 34.39 | WPI-2521 | PEM | N/A | $42^{\circ} 47^{\prime} 28.2944^{\prime \prime} \mathrm{N}$ | $71^{\circ} 21^{\prime} 34.964{ }^{\prime \prime} \mathrm{W}$ | Windham | N/A |  | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Rockingham | Windham | J | 34.40 | 34.41 | WPI-2523 | PSS/PEM | N/A | $42^{\circ} 47^{\prime} 27.163^{\prime \prime} \mathrm{N}$ | $71^{\circ} 21^{\prime} 35.528^{\prime \prime} \mathrm{W}$ | Windham | N/A |  | 0.00 | 0.00 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Rockingham | Windham | J | 34.70 | 34.71 | WPI-2531 | PFO | N/A | $42^{\circ} 47^{\prime} 16.774{ }^{\prime \prime} \mathrm{N}$ | 71² 21 '20.892" W | Windham | II |  | 0.00 | 0.02 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 8 |
| Wright to Dracut Pipeline Segment | Rockingham | Windham | J | 34.72 | 34.73 | wD-D-w003 | PSS | N/A | $42^{\circ} 47^{\prime} 15.8844^{\prime \prime}$ | $71^{\circ} 21^{\prime} 20.004{ }^{\prime \prime} \mathrm{W}$ | Windham | II |  | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.01 | 0.00 | 8 |
| Wright to Dracut Pipeline Segment | Rockingham | Windham | J | 34.97 | 34.98 | wD-D-w001 | PSS | N/A | $42^{\circ} 47^{\prime} 5.161^{\prime \prime} \mathrm{N}$ | $71^{\circ} 21^{\prime} 10.134{ }^{\prime \prime} \mathrm{W}$ | Windham | N/A |  | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Rockingham | Windham | J | 34.99 | 35.00 | WD-D-w002 | PFO | N/A | $42^{\circ} 47^{\prime} 4.357^{\prime \prime} \mathrm{N}$ | $71^{\circ} 21^{1} 8.952^{\prime \prime} \mathrm{W}$ | Windham | II |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 48 |
| Wright to Dracut Pipeline Segment | Rockingham | Windham | J | 35.00 | 35.01 | WD-D-w002 | PSS | N/A | $42^{\circ} 47^{\prime} 4.013^{\prime \prime} \mathrm{N}$ | $71^{\circ} 21^{18.6711 " ~ W ~}$ | Windham | II |  | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.01 | 0.00 | 19 |
| Wright to Dracut Pipeline Segment | Rockingham | Windham | J | 35.01 | 35.02 | wD-D-w002 | PSS | N/A | $42^{\circ} 47^{\prime} 3.240{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 21^{\prime} 8.350^{\prime \prime} \mathrm{W}$ | Windham | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Rockingham | Windham | J | 35.59 | 35.61 | WPI-2554 | PFO | N/A | $42^{\circ} 46^{\prime} 38.642^{\prime \prime} \mathrm{N}$ | 710 $20^{\prime} 49.794{ }^{\prime \prime} \mathrm{W}$ | Windham | II |  | 0.00 | 0.10 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 6 |
| Wright to Dracut Pipeline Segment | Rockingham | Windham | J | 35.60 | 35.61 | WPI-2555 | PSS | N/A | $42^{\circ} 46^{\prime} 38.2866^{\prime \prime} \mathrm{N}$ | $71^{\circ} 20^{\prime} 48.616^{\prime \prime} \mathrm{W}$ | Windham | II |  | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.01 | 0.00 | 61 |
| Wright to Dracut Pipeline Segment | Rockingham | Windham | J | 35.73 | 35.77 | WPI-2558 | PFO | N/A | $42^{\circ} 46^{\prime} 32.681{ }^{\prime \prime} \mathrm{N}$ | 71 ${ }^{\circ} 20^{\prime} 42.992{ }^{\prime \prime} \mathrm{W}$ | Windham | II |  | 0.00 | 0.15 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 98 |
| Wright to Dracut Pipeline Segment | Rockingham | Windham | J | 35.73 | 35.75 | WPI-2557 | PSS | N/A | $42^{\circ} 46^{\prime} 32.839^{\prime \prime} \mathrm{N}$ | 710 ${ }^{\circ} 0^{\prime} 42.781{ }^{\prime \prime} \mathrm{W}$ | Windham | N/A |  | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Rockingham | Windham | J | 36.01 | 36.06 | WPI-2568 | PEM | N/A | $42^{\circ} 46^{\prime} 21.1399^{\prime \prime}$ | $71^{\circ} 20^{\prime} 31.328{ }^{\prime \prime} \mathrm{W}$ | Windham | II |  | 0.17 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 253 |
| Wright to Dracut Pipeline Segment | Rockingham | Windham | J | 36.01 | 36.06 | WPI-2567 | PFO | N/A | $42^{\circ} 46^{\prime} 20.859{ }^{\prime \prime} \mathrm{N}$ | 71${ }^{\circ} 20^{\prime} 31.394{ }^{\prime \prime} \mathrm{W}$ | Windham | N/A |  | 0.00 | 0.14 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 36.49 | 36.50 | WPI-2572 | PFO | N/A | $42^{\circ} 46^{\prime} 8.323^{\prime \prime} \mathrm{N}$ | $71^{\circ} 20^{\prime} 8.892^{\prime \prime} \mathrm{W}$ | Windham | N/A |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 36.51 | 36.52 | WPI-2575 | PFO | N/A | $42^{\circ} 46^{\prime} 8.163^{\prime \prime} \mathrm{N}$ | $71^{\circ} 20^{\prime} 7.262^{\prime \prime} \mathrm{W}$ | Windham | II |  | 0.00 | 0.09 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 50 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 36.55 | 36.60 | WPI-2580 | PFO | N/A | $42^{\circ} 466^{6} 6.027^{\prime \prime} \mathrm{N}$ | $71^{\circ} 20^{\prime} 6.146^{\prime \prime} \mathrm{W}$ | Windham | II |  | 0.00 | 0.42 | 0.00 | 0.00 | 0.17 | 0.00 | 0.00 | 246 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 37.22 | 37.23 | WPI-2605 | PEM | N/A | $42^{\circ} 45^{\prime} 35.913^{\prime \prime} \mathrm{N}$ | $71^{\circ} 19^{\prime} 43.139{ }^{\prime \prime} \mathrm{W}$ | Windham | II |  | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 13 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 37.23 | 37.24 | WPI-2608 | PSS | N/A | $42^{\circ} 45^{\prime} 35.607{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 19^{\prime} 42.652^{\prime \prime} \mathrm{W}$ | Windham | N/A |  | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 37.35 | 37.35 | WPI-2611 | PSS | N/A | $42^{\circ} 45^{\prime} 30.470{ }^{\prime \prime} \mathrm{N}$ | 719 ${ }^{19}$ ' $38.657{ }^{\prime \prime} \mathrm{W}$ | Windham | II |  | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.01 | 0.00 | 23 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 37.37 | 37.41 | WPI-2612 | PSS | N/A | $42^{\circ} 45^{\prime} 29.143^{\prime \prime} \mathrm{N}$ | $71^{\circ} 19^{\prime} 38.051{ }^{\prime \prime} \mathrm{W}$ | Windham | II |  | 0.00 | 0.00 | 0.15 | 0.00 | 0.00 | 0.02 | 0.00 | 85 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 37.39 | 37.40 | WPI-2613 | PEM | N/A | $42^{\circ} 45^{\prime} 28.437{ }^{\prime \prime} \mathrm{N}$ | 71¹ $19^{\prime} 37.391{ }^{\text {" }} \mathrm{W}$ | Windham | N/A |  | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 37.74 | 37.75 | PH-Y-w007 | PSS | N/A | $42^{\circ} 45^{\prime} 12.734^{\prime \prime} \mathrm{N}$ | 71 ${ }^{1} 19{ }^{1} 25.588{ }^{\prime \prime} \mathrm{W}$ | Windham | N/A |  | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 37.74 | 37.74 | PH-K-W001 | PSS | N/A | $42^{\circ} 45^{\prime} 13.106^{\prime \prime} \mathrm{N}$ | $71^{\circ} 19^{\prime} 26.457{ }^{\prime \prime} \mathrm{W}$ | Windham | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 37.79 | 37.84 | PH-Y-W006 | PFO | N/A | $42^{\circ} 45^{\prime} 9.909{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 19^{\prime 2} 29.530^{\prime \prime} \mathrm{W}$ | Windham | N/A |  | 0.00 | 0.31 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 37.87 | 37.89 | PH-Y-W003 | PFO | N/A | $42^{\circ} 45^{\prime} 7.065^{\prime \prime} \mathrm{N}$ | $71^{\circ} 19{ }^{1} 25.041{ }^{\prime \prime} \mathrm{W}$ | Windham | II |  | 0.00 | 0.08 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 51 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 37.87 | 37.89 | PH-Y-W003 | PSS | N/A | $42^{\circ} 45^{\prime} 7.084{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 19^{\prime 2} 25.006{ }^{\prime \prime} \mathrm{W}$ | Windham | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |

[^35]Table 3.9 - Wetlands Associated with the Project in New Hampshire (continued)

| Table 3.9 (cont'd) <br> Wetlands Associated with the Project in New Hampshire |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Facility Name | County | Town | Segment ${ }^{1}$ | Milepost ${ }^{2}$ |  | $\begin{gathered} \text { Wetland } \\ \mathbf{I D}^{3,4} \end{gathered}$ | Wetland Class ${ }^{5}$ | State Wetland Classification ${ }^{6}$ | Latitude | Longitude | Quadrangle | Crossing <br> Method | Comments | Wetland Impact (acres) |  |  |  |  |  |  | $\begin{array}{\|c\|c\|} \hline \text { Crossing } \\ \text { Length } \\ \text { (feet) }^{11} \end{array}$ |
|  |  |  |  |  |  | Construction ${ }^{8}$ |  |  |  |  |  |  |  | Operation ${ }^{\text {² }}$ |  |  |  |
|  |  |  |  | Begin | End |  |  |  |  |  |  |  |  | PEM | PFO | PSS | Other ${ }^{10}$ | PFO | PSS | Other ${ }^{10}$ |  |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 37.99 | 38.01 |  | PH-Y-W002 | PFO | N/A | $42^{\circ} 45^{\prime} 1.154^{\prime \prime} \mathrm{N}$ | 719 $19^{\prime} 21.573{ }^{\text {" W }}$ | Windham | II |  | 0.00 | 0.10 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 63 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 37.99 | 38.00 | PH-Y-W002 | PSS | N/A | $42^{\circ} 45^{\prime} 1.504^{\prime \prime} \mathrm{N}$ | $71^{\circ} 19^{\prime} 20.685^{\prime \prime} \mathrm{W}$ | Windham | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 38.06 | 38.08 | PH-Y-W001 | PFO | N/A | $42^{\circ} 44^{\prime} 58.580^{\prime \prime} \mathrm{N}$ | $71^{\circ} 19^{\prime} 18.340^{\prime \prime} \mathrm{W}$ | Lowell | II |  | 0.00 | 0.12 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 79 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 38.06 | 38.08 | PH-Y-W001 | PSS | N/A | $42^{\circ} 44^{\prime} 58.448{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 19^{\prime 1} 18.234{ }^{\prime \prime} \mathrm{W}$ | Lowell | II |  | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.01 | 0.00 | 31 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 38.11 | 38.12 | PH-Y-W001 | PSS | N/A | $42^{\circ} 44^{\prime} 56.090{ }^{\prime \prime} \mathrm{N}$ | 71 $19^{\prime} 17.511^{\prime \prime} \mathrm{W}$ | Lowell | II |  | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.01 | 0.00 | 24 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 38.18 | 38.23 | PH-X-W005 | PSS | N/A | $42^{\circ} 44^{\prime} 53.133^{\prime \prime} \mathrm{N}$ | $71^{\circ} 19^{\prime} 14.524{ }^{\prime \prime} \mathrm{W}$ | Lowell | II |  | 0.00 | 0.00 | 0.31 | 0.00 | 0.00 | 0.05 | 0.00 | 215 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 38.25 | 38.26 | PH-X-W005 | PEM | N/A | $42^{\circ} 44^{\prime} 49.899{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 19^{\prime} 11.811^{\prime \prime} \mathrm{W}$ | Lowell | II |  | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 8 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 38.25 | 38.33 | PH-X-W005 | PFO | N/A | $42^{\circ} 44^{\prime} 49.834{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 19^{\prime} 12.493{ }^{\prime \prime} \mathrm{W}$ | Lowell | II |  | 0.00 | 0.35 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 85 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 38.54 | 38.57 | WPI-2625 | PSS | N/A | $42^{\circ} 44^{\prime} 36.953{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 19^{\prime} 0.446^{\prime \prime} \mathrm{W}$ | Lowell | N/A |  | 0.00 | 0.00 | 0.12 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 38.63 | 38.67 | WPI-2627 | PSS | Prime | $42^{\circ} 44^{\prime} 33.130{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 18^{\prime} 57.912{ }^{\prime \prime} \mathrm{W}$ | Lowell | II |  | 0.00 | 0.00 | 0.19 | 0.00 | 0.00 | 0.03 | 0.00 | 117 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 38.64 | 38.65 | WPI-2629 | PEM | Prime | $42^{\circ} 44^{\prime} 32.3966^{\prime \prime} \mathrm{N}$ | $71^{\circ} 18^{\prime} 57.321^{\prime \prime} \mathrm{W}$ | Lowell | N/A |  | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 38.65 | 38.72 | WPI-2629 | PEM | Prime | $42^{\circ} 44^{\prime} 31.8588^{\prime \prime} \mathrm{N}$ | $71^{\circ} 18^{\prime} 56.887{ }^{\prime \prime} \mathrm{W}$ | Lowell | II |  | 0.48 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 314 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 38.71 | 38.72 | PH-Y-W008 | PSS | Prime | $42^{\circ} 44^{\prime} 28.819{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 18^{\prime} 55.609{ }^{\text {W }}$ | Lowell | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 38.72 | 38.74 | WPI-2630 | PEM | Prime | $42^{\circ} 44^{\prime} 28.955{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 18^{\prime} 54.549{ }^{\prime \prime} \mathrm{W}$ | Lowell | II |  | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 60 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 38.72 | 38.79 | PH-Y-W008 | PSS | Prime | $42^{\circ} 44^{\prime} 28.575^{\prime \prime} \mathrm{N}$ | $71^{\circ} 18^{\prime} 55.090{ }^{\prime \prime} \mathrm{W}$ | Lowell | II |  | 0.00 | 0.00 | 0.47 | 0.00 | 0.00 | 0.07 | 0.00 | 293 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 38.79 | 38.80 | PH-Y-W008 | PSS | Prime | $42^{\circ} 44^{\prime} 25.928{ }^{\prime \prime} \mathrm{N}$ | 71¹8' $8^{\prime} 52.112^{\prime \prime} \mathrm{W}$ | Lowell | II |  | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.01 | 0.00 | 24 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 39.12 | 39.12 | WPI-2640 | PSS | N/A | $42^{\circ} 44^{\prime} 11.103^{\prime \prime} \mathrm{N}$ | $71^{\circ} 18^{\prime} 39.668^{\prime \prime} \mathrm{W}$ | Lowell | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 39.15 | 39.24 | WPI-2640 | PSS | N/A | $42^{\circ} 44^{\prime} 9.4655^{\prime N}$ | $71^{\circ} 18^{\prime} 38.942^{\prime \prime} \mathrm{W}$ | Lowell | II |  | 0.00 | 0.00 | 0.40 | 0.00 | 0.00 | 0.05 | 0.00 | 205 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 39.18 | 39.19 | WPI-2641 | PEM | N/A | $42^{\circ} 44^{\prime} 8.506{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 18^{\prime} 37.970{ }^{\prime \prime} \mathrm{W}$ | Lowell | N/A |  | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 39.18 | 39.21 | WPI-2642 | PFO | N/A | $42^{\circ} 44^{\prime} 8.214^{\prime \prime} \mathrm{N}$ | $71^{\circ} 18^{\prime} 38.562^{\prime \prime} \mathrm{W}$ | Lowell | II |  | 0.00 | 0.07 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 15 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 39.20 | 39.21 | WPI-2641 | PEM | N/A | $42^{\circ} 44^{\prime} 7.3477^{\prime \prime} \mathrm{N}$ | $71^{\circ} 18^{\prime} 37.183^{\prime \prime} \mathrm{W}$ | Lowell | N/A |  | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 39.42 | 39.43 | WPI-2644 | PFO | N/A | $42^{\circ} 43^{\prime} 57.211^{\prime \prime} \mathrm{N}$ | 719 ${ }^{18} 8^{\prime 2} 2.676^{\prime \prime} \mathrm{W}$ | Lowell | N/A |  | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 39.42 | 39.43 | WPI-2643 | PSS | N/A | $42^{\circ} 43^{\prime} 57.511^{\prime \prime} \mathrm{N}$ | $71^{\circ} 18^{\prime} 29.443^{\prime \prime} \mathrm{W}$ | Lowell | II |  | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.01 | 0.00 | 19 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 39.48 | 39.49 | WPI-2643 | PSS | N/A | $42^{\circ} 43^{\prime} 56.766^{\prime \prime} \mathrm{N}$ | $71^{\circ} 18^{\prime} 25.911^{\prime \prime} \mathrm{W}$ | Lowell | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 39.74 | 39.76 | WPI-2650 | PSS/PEM | N/A | $42^{\circ} 43^{\prime} 45.770^{\prime \prime} \mathrm{N}$ | $71^{\circ} 18^{\prime} 16.398{ }^{\prime \prime} \mathrm{W}$ | Lowell | II |  | 0.00 | 0.00 | 0.11 | 0.00 | 0.00 | 0.02 | 0.00 | 71 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 39.75 | 39.76 | WPI-2651 | PSS | N/A | $42^{\circ} 43^{\prime} 45.269^{\prime \prime} \mathrm{N}$ | $71^{\circ} 18^{\prime} 16.003{ }^{\prime \prime} \mathrm{W}$ | Lowell | N/A |  | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 39.89 | 39.89 | WPI-2655 | PEM | N/A | $42^{\circ} 43^{\prime} 35.992^{\prime \prime} \mathrm{N}$ | $71^{\circ} 18^{17.593 " ~ W ~}$ | Lowell | N/A |  | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 39.89 | 39.89 | WPI-2656 | Other | N/A | $42^{\circ} 43^{\prime} 35.848^{\prime \prime} \mathrm{N}$ | $71^{\circ} 18^{\prime} 17.581{ }^{\prime \prime} \mathrm{W}$ | Lowell | N/A |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 39.97 | 39.98 | WPI-2659 | PSS | N/A | $42^{\circ} 43^{\prime} 35.369^{\prime \prime} \mathrm{N}$ | $71^{\circ} 18^{\prime} 7.873^{\prime \prime} \mathrm{W}$ | Lowell | N/A |  | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |

[^36]Table 3.9 - Wetlands Associated with the Project in New Hampshire (continued)

| Table 3.9 (cont'd) <br> Wetlands Associated with the Project in New Hampshire |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Facility Name | County | Town | Segment ${ }^{1}$ | Milepost ${ }^{2}$ |  | $\underset{\mathbf{I D}^{3,4}}{\text { Wetland }}$ | Wetland Class ${ }^{5}$ | State Wetland Classification ${ }^{6}$ | Latitude | Longitude | Quadrangle | Crossing Method | Comments | Wetland Impact (acres) |  |  |  |  |  |  | $\begin{array}{\|c} \text { Crossing } \\ \text { Length } \\ (\text { feet })^{11} \end{array}$ |
|  |  |  |  |  |  | Construction ${ }^{8}$ |  |  |  |  |  |  |  | Operation ${ }^{9}$ |  |  |  |
|  |  |  |  | Begin | End |  |  |  |  |  |  |  |  | PEM | PFO | PSS | Other ${ }^{10}$ | PFO | PsS | Other ${ }^{10}$ |  |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 40.41 | 40.43 |  | WPI-2669 | PSS | N/A | $42^{\circ} 43^{\prime} 15.942^{\prime \prime} \mathrm{N}$ | 710 $11^{\prime} 56.424{ }^{\prime \prime} \mathrm{W}$ | Lowell | N/A |  | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 40.45 | 40.49 | WPI-2670 | PFO | N/A | $42^{\circ} 43^{\prime} 13.426{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 17^{\prime} 55.642^{\prime \prime} \mathrm{W}$ | Lowell | N/A |  | 0.00 | 0.14 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 40.50 | 40.51 | wPI-2671 | PSS | N/A | $42^{\circ} 43^{\prime} 11.869^{\prime \prime} \mathrm{N}$ | ${711^{\circ} 17^{\prime} 52.669{ }^{\prime \prime} \mathrm{W}}^{\text {d }}$ | Lowell | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 40.58 | 40.62 | WPI-2676 | PSS | N/A | $42^{\circ} 43^{\prime} 8.3311^{\prime N}$ | $71^{\circ} 17^{\prime} 49.407{ }^{\prime \prime} \mathrm{W}$ | Lowell | N/A |  | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 41.26 | 41.28 | WPI-2688 | Other | N/A | $42^{\circ} 42^{\prime} 38.6644^{\prime N}$ | 71¹ $17^{\prime} 23.288{ }^{\prime \prime} \mathrm{W}$ | Lowell | N/A |  | 0.00 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 41.39 | 41.41 | WPI-2690 | PSS | N/A | $42^{\circ} 42^{\prime} 33.583^{\prime \prime} \mathrm{N}$ | $71^{\circ} 17^{\prime} 16.969^{\prime \prime} \mathrm{W}$ | Lowell | N/A |  | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 41.42 | 41.50 | PH-Y-W009 | PFO | N/A | $42^{\circ} 42^{\prime} 31.966{ }^{\prime \prime} \mathrm{N}$ | 71¹ $17^{\prime} 16.733^{\prime \prime} \mathrm{W}$ | Lowell | II |  | 0.00 | 0.55 | 0.00 | 0.00 | 0.19 | 0.00 | 0.00 | 265 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 41.56 | 41.57 | PH-Y-W009 | PFO | N/A | $42^{\circ} 42^{\prime} 25.972{ }^{\prime \prime} \mathrm{N}$ | 71 $17^{\prime} 11.747^{\prime \prime} \mathrm{W}$ | Lowell | II |  | 0.00 | 0.07 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 28 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 41.62 | 41.63 | PH-Y-W009 | PFO | N/A | $42^{\circ} 42^{\prime} 23.0301 \mathrm{~N}$ | 71 ${ }^{\circ} 17^{\prime} 9.198{ }^{\text {W }}$ | Lowell | II |  | 0.00 | 0.02 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 10 |
| Wright to Dracut Pipeline Segment | Hillsborough | Pelham | J | 41.63 | 41.63 | PH-Y-W009 | PSS | N/A | $42^{\circ} 42^{\prime} 23.198{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 17^{\prime} 8.018^{\prime \prime} \mathrm{W}$ | Lowell | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Haverhill Lateral | Rockingham | Salem | P | 6.95 | 6.96 | WPI-3081 | PFO | N/A | $42^{\circ} 44^{\prime} 37.715^{\prime \prime} \mathrm{N}$ | 71 $12^{\prime} 40.811^{\prime \prime} \mathrm{W}$ | Lawrence | II |  | 0.00 | 0.03 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 43 |
| Haverhill Lateral | Rockingham | Salem | P | 7.01 | 7.04 | WPI-3084 | PFO | N/A | $42^{\circ} 44^{\prime} 37.336{ }^{\prime \prime} \mathrm{N}$ | 71® $12^{\prime} 35.455^{\prime \prime} \mathrm{W}$ | Lawrence | N/A |  | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Haverhill Lateral | Rockingham | Salem | P | 7.01 | 7.04 | WPI-3084 | PFO | N/A | $42^{\circ} 44^{\prime} 39.309{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 12^{\prime} 37.472^{\prime \prime} \mathrm{W}$ | Lawrence | II |  | 0.00 | 0.12 | 0.00 | 0.00 | 0.12 | 0.00 | 0.00 | 167 |
| Haverhill Lateral | Rockingham | Salem | P | 7.05 | 7.16 | WPI-3086 | PFO | N/A | $42^{\circ} 44^{\prime} 40.822^{\prime \prime} \mathrm{N}$ | $71^{\circ} 12^{\prime} 35.554^{\prime \prime} \mathrm{W}$ | Lawrence | II |  | 0.00 | 0.40 | 0.00 | 0.00 | 0.40 | 0.00 | 0.00 | 582 |
| Haverhill Lateral | Rockingham | Salem | P | 7.05 | 7.08 | WPI-3086 | PFO | N/A | $42^{\circ} 44^{\prime} 38.726^{\prime \prime} \mathrm{N}$ | 71¹2' ${ }^{\text {' }} 3.103^{\prime \prime} \mathrm{W}$ | Lawrence | N/A |  | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Haverhill Lateral | Rockingham | Salem | P | 7.10 | 7.18 | WPI-3086 | PFO | N/A | $42^{\circ} 44^{\prime} 40.426{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 12^{\prime} 30.547{ }^{\prime \prime} \mathrm{W}$ | Lawrence | N/A |  | 0.00 | 0.14 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Haverhill Lateral | Rockingham | Salem | P | 7.13 | 7.14 | WPI-3088 | Other | N/A | $42^{\circ} 44^{\prime} 43.565{ }^{\prime \prime} \mathrm{N}$ |  | Lawrence | N/A |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0 |
| Haverhill Lateral | Rockingham | Salem | P | 7.16 | 7.20 | WPI-3088 | Other | N/A | $42^{\circ} 44^{\prime} 44.369{ }^{\prime \prime} \mathrm{N}$ | 71¹2' $29.552^{\prime \prime} \mathrm{W}$ | Lawrence | II |  | 0.00 | 0.00 | 0.00 | 0.15 | 0.00 | 0.00 | 0.00 | 227 |
| Haverhill Lateral | Rockingham | Salem | P | 7.20 | 7.21 | WPI-3086 | PFO | N/A | $42^{\circ} 44^{\prime} 45.579{ }^{\prime \prime} \mathrm{N}$ | 71 $12^{\prime} 26.8683^{\prime \prime} \mathrm{W}$ | Lawrence | II |  | 0.00 | 0.04 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 56 |
| Haverhill Lateral | Rockingham | Salem | P | 7.22 | 7.23 | WPI-3095 | PSS | N/A | $42^{\circ} 44^{\prime} 46.168^{\prime \prime} \mathrm{N}$ | 71¹2' ${ }^{\text {2 } 25.866 " ~ W ~}$ | Lawrence | II |  | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.01 | 0.00 | 36 |
| Haverhill Lateral | Rockingham | Salem | P | 7.25 | 7.27 | WPI-3095 | PSS | N/A | $42^{\circ} 44^{\prime} 45.497{ }^{\prime \prime} \mathrm{N}$ | 71 ${ }^{\circ} 12^{\prime} 21.519^{\prime \prime} \mathrm{W}$ | Lawrence | N/A |  | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Haverhill Lateral | Rockingham | Salem | P | 7.27 | 7.38 | WPI-3095 | PSS | N/A | $42^{\circ} 44^{\prime} 48.262^{\prime \prime} \mathrm{N}$ | 71 $12^{\prime} 23.676^{\prime \prime} \mathrm{W}$ | Lawrence | II |  | 0.00 | 0.00 | 0.86 | 0.00 | 0.00 | 0.04 | 0.00 | 606 |
| Haverhill Lateral | Rockingham | Salem | P | 7.34 | 7.38 | WPI-3100 | PFO | N/A | $42^{\circ} 44^{\prime} 50.8022^{\prime \prime} \mathrm{N}$ | $71^{\circ} 12^{\prime} 20.128^{\prime \prime} \mathrm{W}$ | Lawrence | N/A |  | 0.00 | 0.18 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Haverhill Lateral | Rockingham | Salem | P | 7.51 | 7.57 | wPI-3103 | PEM | N/A | $42^{\circ} 44^{\prime} 54.407{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 12^{\prime} 8.096{ }^{\prime \prime} \mathrm{W}$ | Lawrence | II |  | 0.48 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 68 |
| Haverhill Lateral | Rockingham | Salem | P | 7.62 | 7.63 | WPI-3106 | PFO | N/A | $42^{\circ} 44^{\prime} 59.8566^{\prime \prime} \mathrm{N}$ | $71^{\circ} 12^{\prime} 5.729^{\prime \prime} \mathrm{W}$ | Lawrence | N/A |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Haverhill Lateral | Rockingham | Salem | P | 7.62 | 7.66 | wPI-3106 | PFO | N/A | $42^{\circ} 45^{\prime} 0.045^{\prime \prime} \mathrm{N}$ | $71^{\circ} 12^{\prime} 5.612^{\prime \prime} \mathrm{W}$ | Salem Depot | II |  | 0.00 | 0.14 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 35 |
| Haverhill Lateral | Rockingham | Salem | P | 7.67 | 7.70 | WPI-3107 | Other | N/A | $42^{\circ} 45^{\prime} 2.462^{\prime \prime} \mathrm{N}$ | $71^{\circ} 12^{\prime} 4.159^{\prime \prime} \mathrm{W}$ | Salem Depot | N/A |  | 0.00 | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 0 |
| Haverhill Lateral | Rockingham | Salem | P | 8.27 | 8.28 | SA-X-W001 | PSS | N/A | $42^{\circ} 45^{\prime} 28.846{ }^{\prime \prime} \mathrm{N}$ | 71¹1 $11^{\prime} 43.086^{\prime \prime} \mathrm{W}$ | Salem Depot | II |  | 0.00 | 0.00 | 0.11 | 0.00 | 0.00 | 0.00 | 0.00 | 73 |
| Haverhill Lateral | Rockingham | Salem | P | 8.28 | 8.45 | WPI-3118 | PFO | N/A | $42^{\circ} 45^{\prime} 29.534{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 11^{\prime} 43.150^{\prime \prime} \mathrm{W}$ | Salem Depot | II |  | 0.00 | 1.49 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 843 |

[^37]Table 3.9 - Wetlands Associated with the Project in New Hampshire (continued)

| Table 3.9 (cont'd) <br> Wetlands Associated with the Project in New Hampshire |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Facility Name | County | Town | Segment ${ }^{1}$ | Milepost ${ }^{2}$ |  | $\begin{gathered} \text { Wettand } \\ \mathbf{I D}^{3,4} \end{gathered}$ | Wetland Class ${ }^{5}$ | State Wetland Classification ${ }^{6}$ | Latitude | Longitude | Quadrangle | Crossing Method | Comments | Wetland Impact (acres) |  |  |  |  |  |  | $\begin{array}{\|c\|} \text { Crossing } \\ \text { Length } \\ \text { (feet) } \end{array}$ |
|  |  |  |  |  |  | Construction ${ }^{8}$ |  |  |  |  |  |  |  | Operation ${ }^{\text {9 }}$ |  |  |  |
|  |  |  |  | Begin | End |  |  |  |  |  |  |  |  | PEM | PFO | PSS | Other ${ }^{10}$ | PFO | PSS | Other ${ }^{10}$ |  |
| Haverhill Lateral | Rockingham | Salem | P | 8.63 | 8.81 |  | WPI-3124 | PFO | N/A | $42^{\circ} 45^{\prime} 41.839^{\prime \prime} \mathrm{N}$ | 719 $11^{\prime} 24.466{ }^{\text {W }}$ | Salem Depot | II |  | 0.00 | 0.88 | 0.00 | 0.00 | 0.08 | 0.00 | 0.00 | 65 |
| Haverhill Lateral | Rockingham | Salem | P | 8.91 | 8.93 | WPI-3128 | PFO | N/A | $42^{\circ} 45^{\prime} 48.245^{\prime \prime} \mathrm{N}$ | $71^{\circ} 11^{\prime} 6.766^{\prime \prime} \mathrm{W}$ | Salem Depot | N/A |  | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Haverhill Lateral | Rockingham | Salem | P | 8.93 | 8.99 | WPI-3130 | PFO | N/A | $42^{\circ} 45^{\prime} 49.0733^{\prime \prime} \mathrm{N}$ | $71^{\circ} 11^{\prime} 5.301{ }^{\prime \prime} \mathrm{W}$ | Salem Depot | II |  | 0.00 | 0.21 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 263 |
| Haverhill Lateral | Rockingham | Salem | P | 8.94 | 8.99 | WPI-3131 | PEM | N/A | $42^{\circ} 45^{\prime} 49.544^{\prime \prime} \mathrm{N}$ | $71^{\circ} 11^{\prime} 5.012^{\prime \prime} \mathrm{W}$ | Salem Depot | II |  | 0.24 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 8 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 0.30 | 0.33 | WPI-3196 | PFO | N/A | $42^{\circ} 46^{\prime} 13.329{ }^{\prime \prime} \mathrm{N}$ | 71* $44^{\prime} 12.9011^{\prime \prime} \mathrm{W}$ | Milford | II |  | 0.00 | 0.10 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 51 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 0.33 | 0.34 | WPI-3197 | PFO | N/A | $42^{\circ} 46^{\prime} 12.202^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime} 13.116^{\prime \prime} \mathrm{W}$ | Milford | II |  | 0.00 | 0.08 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 38 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 0.35 | 0.36 | WPI-3198 | PFO | N/A | $42^{\circ} 46^{\prime} 10.859{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime} 13.013{ }^{\prime \prime} \mathrm{W}$ | Milford | II |  | 0.00 | 0.02 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 6 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 0.66 | 0.71 | WPI-3199 | PFO | N/A | $42^{\circ} 45^{\prime} 55.116^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime} 17.418{ }^{\prime \prime} \mathrm{W}$ | Milford | II |  | 0.00 | 0.19 | 0.00 | 0.00 | 0.09 | 0.00 | 0.00 | 124 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 0.72 | 0.73 | WPI-3200 | Other | N/A | $42^{\circ} 45^{\prime} 51.953^{\prime \prime} \mathrm{N}$ | 710 ${ }^{\text {4 }}$ '17.996" W | Milford | N/A |  | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 0.87 | 0.90 | WPI-3202 | PFO | N/A | $42^{\circ} 45^{\prime} 44.241{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime} 17.759{ }^{\prime \prime} \mathrm{W}$ | Milford | II |  | 0.00 | 0.18 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 114 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 0.89 | 0.94 | WPI-3203 | PSS | N/A | $42^{\circ} 45^{\prime} 43.483^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{17.847 " ~ W ~}$ | Milford | II |  | 0.00 | 0.00 | 0.14 | 0.00 | 0.00 | 0.02 | 0.00 | 95 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 0.94 | 0.94 | WPI-3204 | Other | N/A | $42^{\circ} 45^{\prime} 40.7744^{\prime \prime}$ | $71^{\circ} 44^{\prime 18.163 " ~ W ~}$ | Milford | N/A |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 1.05 | 1.05 | WPI-3206 | PSS | N/A | $42^{\circ} 45^{\prime} 35.647^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime 21.682 " ~ W ~}$ | Milford | N/A |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 1.10 | 1.12 | WPI-3207 | PFO | N/A | $42^{\circ} 45^{\prime} 33.684^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime 24.452 " ~ W ~}$ | Milford | II |  | 0.00 | 0.19 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 110 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 2.36 | 2.43 | WPI-3210 | PFO | N/A | $42^{\circ} 44^{\prime} 30.9066^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime} 18.967$ " W | Townsend | II |  | 0.00 | 0.39 | 0.00 | 0.00 | 0.13 | 0.00 | 0.00 | 190 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 2.44 | 2.49 | WPI-3210 | PFO | N/A | $42^{\circ} 44^{\prime 2} 26.527^{\prime \prime} \mathrm{N}$ | 71* $44^{\prime} 19.105{ }^{\text {W W }}$ | Townsend | II |  | 0.00 | 0.31 | 0.00 | 0.00 | 0.10 | 0.00 | 0.00 | 154 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 2.57 | 2.59 | WPI-3211 | PFO | N/A | $42^{\circ} 44^{\prime} 19.745^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime 17.541 " ~ W ~}$ | Townsend | II |  | 0.00 | 0.09 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 32 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 2.58 | 2.61 | WPI-3212 | PFO | N/A | $42^{\circ} 44^{\prime} 19.300{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime} 17.504{ }^{\prime \prime} \mathrm{W}$ | Townsend | II |  | 0.00 | 0.16 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 104 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 2.66 | 2.69 | WPI-3213 | PFO | N/A | $42^{\circ} 44^{\prime} 15.145^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime 17.163 " ~ W ~}$ | Townsend | II |  | 0.00 | 0.12 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 63 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 2.67 | 2.70 | WPI-3213 | PFO | N/A | $42^{\circ} 44^{\prime} 14.317^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime} 17.095{ }^{\prime \prime} \mathrm{W}$ | Townsend | II |  | 0.00 | 0.07 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 50 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 2.73 | 2.77 | WPI-3213 | PFO | N/A | $42^{\circ} 44^{\prime \prime} 11.268^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{18.194 " ~ W ~}$ | Townsend | II |  | 0.00 | 0.07 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 37 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 2.75 | 2.82 | WPI-3213 | PFO | N/A | $42^{\circ} 44^{\prime} 10.479^{\prime \prime} \mathrm{N}$ | 71* ${ }^{\circ} 4^{\prime 1} 18.426{ }^{\prime \prime} \mathrm{W}$ | Townsend | II |  | 0.00 | 0.19 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 90 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 2.81 | 2.88 | WPI-3213 | PFO | N/A | $42^{\circ} 44^{\prime} 7.524{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime 18.268 " ~ W ~}$ | Townsend | II |  | 0.00 | 0.38 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 205 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 2.90 | 2.94 | WPI-3213 | PFO | N/A | $42^{\circ} 44^{\prime} 2.926^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime 20.650 " ~ W ~}$ | Townsend | II |  | 0.00 | 0.29 | 0.00 | 0.00 | 0.11 | 0.00 | 0.00 | 158 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 3.38 | 3.43 | NWI-1172 | PFO | N/A | $42^{\circ} 43^{\prime} 40.865^{\prime \prime} \mathrm{N}$ | 71 ${ }^{\circ} 44^{\prime} 31.429{ }^{\prime \prime} \mathrm{W}$ | Townsend | II |  | 0.00 | 0.38 | 0.00 | 0.00 | 0.17 | 0.00 | 0.00 | 237 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 3.43 | 3.48 | WPI-3224 | PFO | N/A | $42^{\circ} 43^{\prime} 39.616^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime} 34.569{ }^{\text {W }}$ | Townsend | II |  | 0.00 | 0.42 | 0.00 | 0.00 | 0.16 | 0.00 | 0.00 | 233 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 3.52 | 3.52 | WPI-3225 | Other | N/A | $42^{\circ} 43^{\prime} 35.907{ }^{\prime \prime} \mathrm{N}$ | 711 ${ }^{\circ} 44^{\prime} 38.485{ }^{\text {" W }}$ | Townsend | N/A |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 3.58 | 3.61 | WPI-3228 | PEM | N/A | $42^{\circ} 43^{\prime} 32.672^{\prime \prime} \mathrm{N}$ | 71 ${ }^{\circ} 44^{\prime} 38.736{ }^{\prime \prime} \mathrm{W}$ | Townsend | N/A |  | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 3.60 | 3.67 | WPI-3229 | PSS | N/A | $42^{\circ} 43^{\prime} 31.569^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime} 38.412{ }^{\prime \prime} \mathrm{W}$ | Townsend | II |  | 0.00 | 0.00 | 0.54 | 0.00 | 0.00 | 0.08 | 0.00 | 348 |

[^38]Table 3.9 - Wetlands Associated with the Project in New Hampshire (continued)

| Facility Name | County | Town | Segment ${ }^{1}$ | Table 3.9 (cont'd) <br> Wetlands Associated with the Project in New Hampshire |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Milepost ${ }^{2}$ |  | $\begin{gathered} \text { Wetland } \\ \mathbf{I D}^{3,4} \end{gathered}$ | Wetland <br> Class ${ }^{5}$ | State Wetland Classification ${ }^{6}$ | Latitude | Longitude | Quadrangle | CrossingMethod | Comments | Wetland Impact (acres) |  |  |  |  |  |  | CrossingLength(feet) ${ }^{11}$ |
|  |  |  |  |  |  | Construction ${ }^{8}$ |  |  |  |  |  |  |  | Operation ${ }^{9}$ |  |  |  |
|  |  |  |  | Begin | End |  |  |  |  |  |  |  |  | PEM | PFO | PSS | Other ${ }^{10}$ | PFO | PSS | Other ${ }^{10}$ |  |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 3.65 | 3.67 |  | wPI-3230 | PSS | N/A | $42^{\circ} 43^{\prime} 28.7444^{\prime \prime} \mathrm{N}$ | 71* ${ }^{\circ} 4^{\prime} 39.129^{\prime \prime} \mathrm{W}$ | Townsend | N/A |  | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 3.67 | 3.73 | wPI-3232 | PFO/PSS | N/A | $42^{\circ} 43^{\prime} 27.927^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime} 38.196{ }^{\prime \prime} \mathrm{W}$ | Townsend | II |  | 0.00 | 0.38 | 0.00 | 0.00 | 0.17 | 0.00 | 0.00 | 242 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 3.69 | 3.70 | wPI-3233 | Other | N/A | $42^{\circ} 43^{\prime} 27.308{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime 3} 39.754^{\prime \prime} \mathrm{W}$ | Townsend | II |  | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 23 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 3.97 | 4.01 | wPI-3234 | PFO | N/A | $42^{\circ} 43^{\prime} 16.537^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime} 52.645^{\prime \prime} \mathrm{W}$ | Townsend | II |  | 0.00 | 0.33 | 0.00 | 0.00 | 0.12 | 0.00 | 0.00 | 180 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 4.01 | 4.12 | WPI-3235 | PFO | N/A | $42^{\circ} 43^{\prime} 14.822^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime} 54.696{ }^{\prime \prime} \mathrm{W}$ | Townsend | II |  | 0.00 | 1.00 | 0.00 | 0.00 | 0.40 | 0.00 | 0.00 | 580 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 4.12 | 4.12 | wPI-3235 | PFO | N/A | $42^{\circ} 43^{\prime} 10.816^{\prime \prime} \mathrm{N}$ | $71^{\circ} 45^{\prime} 0.004{ }^{\prime \prime} \mathrm{W}$ | Ashby | N/A |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 4.51 | 4.51 | WPI-3238 | Other | N/A | $42^{\circ} 42^{\prime} 55.157^{\prime \prime} \mathrm{N}$ | $71^{\circ} 45^{\prime} 16.701{ }^{\prime \prime} \mathrm{W}$ | Ashby | N/A |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 4.66 | 4.70 | wPI-3239 | PFO | N/A | $42^{\circ} 42^{\prime} 48.267^{\prime \prime} \mathrm{N}$ | $71^{\circ} 45^{\prime} 21.703^{\prime \prime} \mathrm{W}$ | Ashby | II |  | 0.00 | 0.32 | 0.00 | 0.00 | 0.13 | 0.00 | 0.00 | 195 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 4.72 | 4.72 | wPI-3240 | Other | N/A | $42^{\circ} 42^{\prime} 46.248{ }^{\prime \prime} \mathrm{N}$ | 71* $5^{\prime}$ '25.071" W | Ashby | N/A |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 4.75 | 4.78 | wPI-3239 | PFO | N/A | $42^{\circ} 42^{\prime} 44.4800^{\prime \prime}$ | $71^{\circ} 45^{\prime} 26.180^{\prime \prime} \mathrm{W}$ | Ashby | II |  | 0.00 | 0.26 | 0.00 | 0.00 | 0.10 | 0.00 | 0.00 | 142 |
| Fitchburg Lateral Extension | Hillsborough | Mason | Q | 4.81 | 4.82 | wPI-3239 | PFO | N/A | $42^{\circ} 42^{\prime} 41.435{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 45^{\prime} 26.033^{\prime \prime} \mathrm{W}$ | Ashby | N/A |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| Pipeline Subtotal |  |  |  |  |  |  |  |  |  |  |  |  |  | 11.88 | 59.35 | 33.09 | 10.53 | 20.62 | 3.95 | 0.00 | 59,546 |
| Aboveground Facilities |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Market Path Mid Station 4 | Hillsborough | New Ipswich | J |  | 5.81 | N-R-W001 | PFO | N/A | $42^{\circ} 47^{\prime} 3.973^{\prime \prime} \mathrm{N}$ | $71^{\circ} 49^{\prime} 47.667^{\prime \prime} \mathrm{W}$ | Greenville | N/A |  | 0.00 | 0.36 | 0.00 | 0.00 | 0.51 | 0.00 | 0.00 | N/A |
| Market Path Mid Station 4 | Hillsborough | New Ipswich | J |  | . 81 | N-R-W001 | PFo | N/A | $42^{\circ} 47^{\prime} 1.893^{\prime \prime} \mathrm{N}$ | $71^{\circ} 49^{\prime} 49.306{ }^{\prime \prime} \mathrm{W}$ | Greenville | N/A |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | N/A |
| Market Path Mid Station 4 | Hillsborough | New Ipswich | J |  | 5.81 | N-V-W004 | PFO | N/A | $42^{\circ} 47^{\prime} 2.710^{\prime \prime} \mathrm{N}$ | $71^{\circ} 50^{\prime} 4.422^{\prime \prime} \mathrm{W}$ | Greenville | N/A |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | N/A |
| Market Path Mid Station 4 | Hillsborough | New Ipswich | J |  | 5.81 | N-V-W004 | PFO | N/A | $42^{\circ} 46^{\prime} 59.655^{\prime \prime} \mathrm{N}$ | $71^{\circ} 49^{\prime} 58.450^{\prime \prime} \mathrm{W}$ | Greenville | N/A |  | 0.00 | 0.02 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | N/A |
| Market Path Mid Station 4 | Hillsborough | New Ipswich | J |  | . 81 | N-V-W004 | PFO | N/A | $42^{\circ} 466^{59.352 " N}$ | $71^{\circ} 49^{\prime} 58.097{ }^{\prime \prime} \mathrm{W}$ | Greenville | N/A |  | 0.00 | 0.02 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | N/A |
| Market Path Mid Station 4 | Hillsborough | New Ipswich | J |  | . 81 | N-V-w004 | PFo | N/A | $42^{\circ} 466^{\prime} 59.642^{\prime \prime} \mathrm{N}$ | $71^{\circ} 49^{\prime 5} 56.922^{\prime \prime} \mathrm{W}$ | Greenville | N/A |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | N/A |
| Market Path Mid Station 4 | Hillsborough | New Ipswich | J |  | 5.81 | N-V-W006 | PFO | N/A | $42^{\circ} 47^{\prime} 8.578^{\prime \prime} \mathrm{N}$ | ${ }^{71}{ }^{\circ} 50^{\prime} 1.926^{\prime \prime} \mathrm{W}$ | Greenville | N/A |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | N/A |
| Aboveground Facilities Subtotal |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.00 | 0.41 | 0.00 | 0.23 | 0.00 | 0.00 | 0.00 | 0 |
| Contractor Yards |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| NED-I-0201 | Cheshire | Keene | I |  | 15.92 | NWI-1285 | PSS | N/A | $42^{\circ} 55^{\prime} 2.084{ }^{\prime \prime} \mathrm{N}$ | 720 $17^{\prime} 33.644^{\prime \prime} \mathrm{W}$ | Keene | v |  | 0.00 | 0.00 | 2.90 | 0.00 | 0.00 | 0.00 | 0.00 | N/A |
| NED-I-0106 | Cheshire | Jaffrey | I |  | . 86 | NWI-1286 | PEM | N/A | $42^{\circ} 49^{\prime} 54.9600^{\prime \prime}$ | $72^{\circ} 6^{\prime} 26.607{ }^{\prime \prime} \mathrm{W}$ | Monadnock Mountain | v |  | 7.72 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | N/A |
| NED-I-0201 | Cheshire | Jaffrey | I |  | 15.92 | NWI-1287 | PSS | N/A | $42^{\circ} 49^{\prime} 55.057^{\prime \prime} \mathrm{N}$ | $72^{\circ} 6^{\prime} 14.845^{\prime \prime} \mathrm{W}$ | Monadnock Mountain | v |  | 0.00 | 0.00 | 1.17 | 0.00 | 0.00 | 0.00 | 0.00 | N/A |
| NED-J-0004 | Hillsborough | New Ipswich | J |  | . 60 | NWI-1288 | PFO | N/A | $42^{\circ} 46^{\prime} 46.4366^{\prime \prime} \mathrm{N}$ | $71^{\circ} 55^{\prime} 14.148^{\prime \prime} \mathrm{W}$ | Peterborough South | v |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | N/A |
| NED-J-0202 | Hillsborough | Milford | J |  | 6.21 | NWI-1290 | Other | N/A | $42^{\circ} 48^{\prime} 38.6766^{\prime \prime}$ | $71^{\circ} 38^{\prime} 41.971{ }^{\prime \prime} \mathrm{W}$ | Milford | v |  | 0.00 | 0.00 | 0.00 | 0.41 | 0.00 | 0.00 | 0.00 | N/A |
| NED-J-0203 | Hillsborough | Amherst | J |  | 9.03 | NWI-1291 | PFO | N/A | $42^{\circ} 48^{\prime} 21.698{ }^{\prime \prime} \mathrm{N}$ | 71 $35^{\prime} 35.801 \mathrm{lW}$ | South Merrimack | v |  | 0.00 | 6.98 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | N/A |
| NED-J-0300 | Hillsborough | Amherst | J |  | 9.63 | NWI-1036 | PSS/EM | N/A | $42^{\circ} 48^{\prime} 16.892^{\prime \prime} \mathrm{N}$ | $71^{\circ} 35^{\prime} 5.122^{\prime \prime} \mathrm{W}$ | South Merrimack | v |  | 0.00 | 0.00 | 3.69 | 0.00 | 0.00 | 0.00 | 0.00 | N/A |

[^39]Table 3.9 - Wetlands Associated with the Project in New Hampshire (continued)

| Table 3.9 (cont'd) <br> Wetlands Associated with the Project in New Hampshire |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Facility Name | County | Town | Segment ${ }^{1}$ | Milepost ${ }^{2}$ | $\underset{\mathbf{I D}^{3,4}}{\text { Wetland }}$ | Wetland Class ${ }^{5}$ | State Wetland Classification ${ }^{6}$ | Latitude | Longitude | Quadrangle | $\begin{aligned} & \text { Crossing } \\ & \text { Method } \end{aligned}$ | Comments | Wetland Impact (acres) |  |  |  |  |  |  | CrossingLength(feet) $)^{1}$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  | Construction ${ }^{8}$ |  |  |  | Operation ${ }^{\text {² }}$ |  |  |  |
|  |  |  |  | Begin ${ }^{\text {End }}$ |  |  |  |  |  |  |  |  | PEM | PFO | PSS | Other ${ }^{10}$ | PFO | PSS | Other ${ }^{10}$ |  |
| NED-J-0400 | Hillsborough | Litchfield | J | 26.46 | NWI-1037 | PEM/SS | N/A | $42^{\circ} 49^{\prime} 55.606{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 28^{\prime} 33.782^{\prime \prime} \mathrm{W}$ | Nashua North | v |  | 0.42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | N/A |
| NED-J-0400 | Hillsborough | Litchfield | J | 26.46 | NWI-1038 | Other | N/A | $42^{\circ} 49^{\prime} 58.935{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 28{ }^{\prime} 25.585{ }^{\prime \prime} \mathrm{W}$ | Nashua North | v |  | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | N/A |
| NED-J-0500 | Hillsborough | Pelham | J | 37.31 | WPI-2605 | PEM | N/A | $42^{\circ} 45^{\prime} 37.165^{\prime \prime} \mathrm{N}$ | $71^{\circ} 19^{\prime} 48.172^{\prime \prime} \mathrm{W}$ | Windham | v |  | 2.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | N/A |
| NED-J-0500 | Hillsborough | Pelham | J | 37.31 | WPI-2608 | PSS | N/A | $42^{\circ} 45^{\prime} 35.183{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 19{ }^{\prime} 43.062^{\prime \prime} \mathrm{W}$ | Windham | v |  | 0.00 | 0.00 | 0.81 | 0.00 | 0.00 | 0.00 | 0.00 | N/A |
| NED-J-0500 | Hillsborough | Pelham | J | 37.31 | WPI-2612 | PSS | N/A | $42^{\circ} 45^{\prime} 30.758^{\prime \prime} \mathrm{N}$ | $71^{\circ} 19{ }^{\prime} 40.996{ }^{\prime \prime} \mathrm{W}$ | Windham | v |  | 0.00 | 0.00 | 1.08 | 0.00 | 0.00 | 0.00 | 0.00 | N/A |
| NED-J-0500 | Hillsborough | Pelham | J | 37.31 | WPI-2613 | PEM | N/A | $42^{\circ} 45^{\prime} 29.237^{\prime \prime} \mathrm{N}$ | $71^{\circ} 19{ }^{\prime} 42.434{ }^{\prime \prime} \mathrm{W}$ | Windham | v |  | 2.48 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | N/A |
| NED-J-0500 | Hillsborough | Pelham | J | 37.31 | WPI-2614 | PEM | N/A | $42^{\circ} 45^{\prime} 26.3332^{\prime \prime} \mathrm{N}$ | $71^{\circ} 19{ }^{\prime} 43.607{ }^{\prime \prime} \mathrm{W}$ | Windham | v |  | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | N/A |
| NED-J-0500 | Hillsborough | Pelham | J | 37.31 | WPI-2612 | PSS | N/A | $42^{\circ} 45^{\prime} 27.726{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 19{ }^{\prime} 37.198{ }^{\prime \prime} \mathrm{W}$ | Windham | v |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | N/A |
| NED-P-0100 | Rockingham | Salem | P | 7.56 | WPI-3103 | PEM | N/A | $42^{\circ} 44^{\prime} 52.973{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 12^{\prime} 7.539^{\prime \prime} \mathrm{W}$ | Lawrence | v |  | 0.60 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | N/A |
| NED-P-0100 | Rockingham | Salem | P | 7.56 | WPI-3103 | PEM | N/A | $42^{\circ} 44^{\prime} 55.792{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 12^{\prime} 8.697{ }^{\prime \prime} \mathrm{W}$ | Lawrence | v |  | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | N/A |
|  |  |  |  |  |  |  |  |  |  | Contractor Yards Subtotal |  |  | 13.42 | 6.99 | 9.66 | 0.45 | 0.00 | 0.00 | 0.00 | 0 |
| Access Roads |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| NED-TAR-H-2101 | Cheshire | Winchester | I | 0.32 | NWI-1400 | PFO | N/A | $42^{\circ} 43^{\prime} 38.726{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 22^{\prime} 13.380^{\prime \prime} \mathrm{W}$ | Mount Grace | v |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| NED-TAR-I-0003 | Cheshire | Winchester | I | 3.30 | wC-X-w004 | PFO | N/A | $42^{\circ} 45^{\prime} 19.410^{\prime \prime} \mathrm{N}$ | $72^{\circ} 20^{\prime} 48.993{ }^{\prime \prime} \mathrm{W}$ | West Swanzey | v |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| NED-TAR-I-0003 | Cheshire | Winchester | I | 3.30 | wc-x-w004 | PFO | N/A | $42^{\circ} 45^{\prime} 21.343{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 20^{\prime} 47.959{ }^{\prime \prime} \mathrm{W}$ | West Swanzey | v |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| NED-TAR-I-0003 | Cheshire | Winchester | I | 3.30 | wC-X-w004 | PFO | N/A | $42^{\circ} 45^{\prime} 21.658^{\prime \prime} \mathrm{N}$ | $72^{\circ} 20^{\prime} 47.718^{\prime \prime} \mathrm{W}$ | West Swanzey | v |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| NED-TAR-I-0003 | Cheshire | Winchester | I | $3.30$ | wC-X-w004 | PFO | N/A | $42^{\circ} 45^{\prime} 21.8344^{\prime \prime} \mathrm{N}$ | $72^{\circ} 20^{\prime} 47.748^{\prime \prime} \mathrm{W}$ | West Swanzey | v |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| NED-TAR-I-0003 | Cheshire | Winchester | I | 3.30 | wC-X-w004 | PFO | N/A | $42^{\circ} 45^{\prime} 22.0311^{\prime N}$ | $72^{\circ} 20^{\prime} 47.101^{\prime \prime} \mathrm{W}$ | West Swanzey | v |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| NED-TAR-I-0500 | Cheshire | Richmond | I | 7.67 | WPI-1689 | PSS/PEM | N/A | $42^{\circ} 46^{\prime} 58.555^{\prime \prime} \mathrm{N}$ | $72^{\circ} 17^{\prime} 39.1266^{\prime \prime} \mathrm{W}$ | West Swanzey | v |  | 0.00 | 0.00 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 130 |
| NED-TAR-I-0500 | Cheshire | Richmond | I | $7.67$ | WPI-1691 | PSS/PEM | N/A | $42^{\circ} 47^{\prime} 6.1533^{\prime \prime} \mathrm{N}$ | $72^{\circ} 16^{\prime} 47.595{ }^{\prime \prime} \mathrm{W}$ | West Swanzey | v |  | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 60 |
| NED-TAR-I-0500 | Cheshire | Richmond | I | 7.67 | WPI-1693 | Other | N/A | $42^{\circ} 47^{\prime} 6.108^{\prime \prime} \mathrm{N}$ | $72^{\circ} 16^{\prime} 47.211^{\prime \prime} \mathrm{W}$ | West Swanzey | v |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0 |
| NED-TAR-I-0600 | Cheshire | Richmond | I | 9.34 | WPI-1702 | Other | N/A | $42^{\circ} 47^{\prime} 23.958^{\prime \prime} \mathrm{N}$ | $72^{\circ} 14^{\prime} 53.344^{\prime \prime} \mathrm{W}$ | Troy | v |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0 |
| NED-TAR-I-0600 | Cheshire | Richmond | I | $9.34$ | wPI-1706 | PSS/PEM | N/A | $42^{\circ} 47^{\prime} 25.6566^{\prime \prime} \mathrm{N}$ | $72^{\circ} 14^{\prime} 40.534^{\prime \prime} \mathrm{W}$ | Troy | v |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 10 |
| NED-TAR-I-0600 | Cheshire | Richmond | I | 9.34 | WPI-1708 | Other | N/A | $42^{\circ} 47^{\prime} 26.544^{\prime \prime} \mathrm{N}$ | $72^{\circ} 14^{\prime} 35.198{ }^{\prime \prime} \mathrm{W}$ | Troy | v |  | 0.00 | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 90 |
| NED-TAR-I-0600 | Cheshire | Richmond | I | 9.34 | WPI-1709 | PSS/PEM | N/A | $42^{\circ} 47^{\prime} 28.9011^{\prime N}$ | $72^{\circ} 14^{\prime} 21.512^{\prime \prime} \mathrm{W}$ | Troy | v |  | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 20 |
| NED-TAR-I-0600 | Cheshire | Richmond | I | 9.34 | WPI-1712 | PSS/PEM | N/A | $42^{\circ} 47^{\prime} 36.966^{\prime \prime} \mathrm{N}$ | $72^{\circ} 13^{\prime} 34.760^{\prime \prime} \mathrm{W}$ | Troy | v |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| NED-TAR-I-0600 | Cheshire | Richmond | I | $9.34$ | WPI-1712 | PSS/PEM | N/A | $42^{\circ} 47^{\prime} 37.026{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 13^{\prime} 34.574^{\prime \prime} \mathrm{W}$ | Troy | v |  | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 65 |
| NED-TAR-I-0600 | Cheshire | Richmond | I | $9.34$ | wPI-1713 | PSS/PEM | N/A | $42^{\circ} 47^{\prime} 37.935^{\prime \prime} \mathrm{N}$ | $72^{\circ} 13^{\prime} 28.865^{\prime \prime} \mathrm{W}$ | Troy | v |  | 0.00 | 0.00 | 0.18 | 0.00 | 0.00 | 0.00 | 0.00 | 250 |
| NED-TAR-I-0600 | Cheshire | Richmond | I | 9.34 | WPI-1714 | Other | N/A | $42^{\circ} 47^{\prime} 38.579^{\prime \prime} \mathrm{N}$ | $72^{\circ} 13^{\prime} 25.617^{\prime \prime} \mathrm{W}$ | Troy | v |  | 0.00 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 0.00 | 120 |

[^40]Table 3.9 - Wetlands Associated with the Project in New Hampshire (continued)

| Table 3.9 (cont'd)Wetlands Associated with the Project in New Hampshire |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Facility Name | County | Town | Segment ${ }^{1}$ | Milepost ${ }^{2}$ | $\begin{gathered} \text { Wetland } \\ \mathbf{I D}^{3,4} \end{gathered}$ | Wetland Class ${ }^{5}$ | State Wetland Classification ${ }^{6}$ | Latitude | Longitude | Quadrangle | CrossingMethod | Comments | Wetland Impact (acres) |  |  |  |  |  |  | $\begin{array}{\|c} \text { Crossing } \\ \text { Length } \\ \text { (feet) }{ }^{11} \end{array}$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  | Construction ${ }^{8}$ |  |  |  | Operation' |  |  |  |
|  |  |  |  | Begin End |  |  |  |  |  |  |  |  | PEM | PFO | PSS | Other ${ }^{10}$ | PFO | PSS | Other ${ }^{10}$ |  |
| NED-TAR-I-0600 | Cheshire | Richmond | I | 9.34 | WPI-1713 | PSS/PEM | N/A | $42^{\circ} 47^{\prime} 38.5266^{\prime \prime}$ | 720 ${ }^{\circ} 13^{\prime} 25.096^{\prime \prime} \mathrm{W}$ | Troy | v |  | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 10 |
| NED-TAR-I-0600 | Cheshire | Troy | I | 9.34 | WPI-1716 | PSS/PEM | N/A | $42^{\circ} 47^{\prime} 39.616^{\prime \prime} \mathrm{N}$ | 720 ${ }^{13^{\prime} 18.548^{\prime \prime} \mathrm{W}}$ | Troy | v |  | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 75 |
| NED-TAR-I-0600 | Cheshire | Troy | I | 9.34 | WPI-1717 | PSS/PEM | N/A | $42^{\circ} 47^{\prime} 40.423^{\prime \prime} \mathrm{N}$ | $72^{\circ} 13^{\prime} 11.162^{\prime \prime} \mathrm{W}$ | Troy | v |  | 0.00 | 0.00 | 0.38 | 0.00 | 0.00 | 0.00 | 0.00 | 580 |
| NED-TAR-I-0600 | Cheshire | Troy | I | 9.34 | WPI-1719 | PSS/PEM | N/A | $42^{\circ} 47^{\prime} 42.554{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 13^{\prime} 3.084^{\prime \prime} \mathrm{W}$ | Troy | v |  | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 115 |
| NED-TAR-I-0600 | Cheshire | Troy | I | 9.34 | WPI-1720 | PSS/PEM | N/A | $42^{\circ} 47^{\prime} 41.975{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 13^{\prime} 1.092^{\prime \prime} \mathrm{W}$ | Troy | v |  | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 60 |
| NED-TAR-I-0600 | Cheshire | Troy | I | 9.34 | WPI-1723 | PSS/PEM | N/A | $42^{\circ} 47^{\prime} 42.595{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 12^{\prime} 56.188^{\prime \prime} \mathrm{W}$ | Troy | v |  | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 25 |
| NED-TAR-I-0600 | Cheshire | Troy | I | 9.34 | WPI-1721 | Other | N/A | $42^{\circ} 47^{\prime} 42.500{ }^{\prime \prime} \mathrm{N}$ | 720 ${ }^{12}{ }^{\prime} 55.845^{\prime \prime} \mathrm{W}$ | Troy | v |  | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 45 |
| NED-TAR-I-0600 | Cheshire | Troy | I | 9.34 | WPI-1723 | PSS/PEM | N/A | $42^{\circ} 47^{\prime} 42.4311^{\prime N}$ | 720 ${ }^{12}{ }^{\prime} 55.262^{\prime \prime} \mathrm{W}$ | Troy | v |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 20 |
| NED-TAR-I-0600 | Cheshire | Troy | I | 9.34 | WPI-1725 | PSS/PEM | N/A | $42^{\circ} 47^{\prime} 42.910^{\prime \prime} \mathrm{N}$ | 720 ${ }^{\circ} 2^{\prime} 52.255{ }^{\prime \prime} \mathrm{W}$ | Troy | v |  | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 105 |
| NED-TAR-I-0600 | Cheshire | Troy | I | $9.34$ | WPI-1726 | PSS/PEM | N/A | $42^{\circ} 47^{\prime} 43.304{ }^{\prime \prime} \mathrm{N}$ | 720 ${ }^{12}{ }^{\prime} 50.135^{\prime \prime} \mathrm{W}$ | Troy | v |  | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 90 |
| NED-TAR-I-0600 | Cheshire | Troy | I | 9.34 | WPI-1727 | PSS/PEM | N/A | $42^{\circ} 47^{\prime} 44.995{ }^{\prime \prime} \mathrm{N}$ | 720 ${ }^{\circ} 12^{\prime} 41.073{ }^{\prime \prime} \mathrm{W}$ | Troy | v |  | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 35 |
| NED-TAR-I-0600 | Cheshire | Troy | I | $9.34$ | WPI-1729 | PSS/PEM | N/A | $42^{\circ} 47^{\prime} 44.978{ }^{\prime \prime} \mathrm{N}$ | 720 $12^{\prime} 40.3201 \mathrm{~W}$ | Troy | v |  | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 50 |
| NED-TAR-I-0600 | Cheshire | Troy | I | $9.34$ | WPI-1731 | PSS/PEM | N/A | $42^{\circ} 47^{\prime} 47.895{ }^{\prime \prime} \mathrm{N}$ | 720 ${ }^{12}{ }^{\prime 2} 26.178^{\prime \prime} \mathrm{W}$ | Troy | v |  | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 100 |
| NED-TAR-I-0600 | Cheshire | Troy | I | $9.34$ | WPI-1732 | PSS/PEM | N/A | $42^{\circ} 47^{\prime} 48.098{ }^{\prime \prime} \mathrm{N}$ | 720 ${ }^{12} 2^{\prime 24.568 " ~ W ~}$ | Troy | v |  | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 60 |
| NED-TAR-I-0600 | Cheshire | Troy | 1 | $9.34$ | WPI-1733 | Other | N/A | $42^{\circ} 47^{\prime} 49.142^{\prime \prime} \mathrm{N}$ | 720 $12^{\prime} 14.504{ }^{\prime \prime} \mathrm{W}$ | Troy | v |  | 0.00 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 0.00 | 115 |
| NED-TAR-I-0600 | Cheshire | Troy | I | $9.34$ | WPI-1735 | PSS/PEM | N/A | $42^{\circ} 47^{\prime} 51.405{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 12^{\prime} 6.643^{\prime \prime} \mathrm{W}$ | Troy | v |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 25 |
| NED-TAR-I-0600 | Cheshire | Troy | I | $9.34$ | WPI-1734 | Other | N/A | $42^{\circ} 47{ }^{\prime} 51.498{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 12^{\prime} 6.480^{\prime \prime} \mathrm{W}$ | Troy | v |  | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 40 |
| NED-TAR-I-0600 | Cheshire | Troy | I | $9.34$ | WPI-1735 | PSS/PEM | N/A | $42^{\circ} 47^{\prime} 51.2877^{\prime \prime} \mathrm{N}$ | $72^{\circ} 12^{\prime} 5.845^{\prime \prime} \mathrm{W}$ | Troy | v |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 20 |
| NED-TAR-I-0600 | Cheshire | Fitzwilliam | I | $9.34$ | WPI-1739 | Other | N/A | $42^{\circ} 47^{\prime} 57.0322^{\prime \prime} \mathrm{N}$ | 720 $11^{\prime} 26.854^{\prime \prime} \mathrm{W}$ | Troy | v |  | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0 |
| NED-TAR-I-0600 | Cheshire | Fitzwilliam | I |  | WPI-1740 | Other | N/A | $42^{\circ} 47^{\prime} 57.291{ }^{\prime \prime} \mathrm{N}$ | 720 $11^{\prime} 26.312{ }^{\prime \prime} \mathrm{W}$ | Troy | v |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0 |
| NED-TAR-I-0600 | Cheshire | Fitzwilliam | I | $9.34$ | TR-X-W002 | PEM | N/A | $42^{\circ} 47^{\prime} 58.928{ }^{\prime \prime} \mathrm{N}$ | 72 ${ }^{\circ} 11^{\prime} 22.034{ }^{\prime \prime} \mathrm{W}$ | Troy | v |  | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| NED-TAR-I-0600 | Cheshire | Fitzwilliam | I | $9.34$ | WPI-1741 | PSS/PEM | N/A | $42^{\circ} 48^{\prime} 1.195{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 11^{\prime} 11.246^{\prime \prime} \mathrm{W}$ | Troy | v |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| NED-TAR-I-0700 | Cheshire | Fitzwilliam | I | $15.27$ | WPI-1759 | PSS | N/A | $42^{\circ} 48^{\prime} 16.885{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ}{ }^{\prime} 5.632^{\prime \prime} \mathrm{W}$ | Troy | v |  | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 60 |
| NED-TAR-I-0700 | Cheshire | Fitzwilliam | 1 | $15.27$ | WPI-1761 | PSS/PEM | N/A | $42^{\circ} 48^{\prime} 16.732^{\prime \prime} \mathrm{N}$ | $72^{\circ}{ }^{\prime}$ 2.688" W | Troy | v |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| NED-TAR-I-0700 | Cheshire | Fitzwilliam | I | $15.27$ | WPI-1760 | PSS | N/A | $42^{\circ} 48^{\prime} 16.783^{\prime \prime} \mathrm{N}$ | $72^{\circ} 9^{\prime} 2.337{ }^{\prime \prime} \mathrm{W}$ | Troy | v |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| NED-TAR-I-1100 | Cheshire | Fitzwilliam | I | $18.90$ | WPI-1812 | PEM | N/A | $42^{\circ} 46^{\prime} 11.344^{\prime \prime} \mathrm{N}$ | $72^{\circ}{ }^{6} 5.855{ }^{\prime \prime} \mathrm{W}$ | Monadnock Mountain | v |  | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| NED-TAR-I-1500 | Cheshire | Rindge | I | $23.15$ | WPI-1887 | PSS/PEM | N/A | $42^{\circ} 44^{\prime} 23.7344^{\prime \prime}$ | $72^{\circ}{ }^{\prime} 5.9911^{\prime \prime} \mathrm{W}$ | Winchendon | v |  | 0.00 | 0.00 | 0.11 | 0.00 | 0.00 | 0.00 | 0.00 | 160 |
| NED-TAR-I-1500 | Cheshire | Rindge | I | $23.15$ | WPI-1888 | PSS/PEM | N/A | $42^{\circ} 44^{\prime} 23.600{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 2^{\prime} 3.356^{\prime \prime} \mathrm{W}$ | Winchendon | v |  | 0.00 | 0.00 | 0.26 | 0.00 | 0.00 | 0.00 | 0.00 | 375 |
| NED-TAR-I-1500 | Cheshire | Rindge | 1 | 23.15 | WPI-1888 | PSS/PEM | N/A | $42^{\circ} 44^{\prime} 23.732^{\prime \prime} \mathrm{N}$ | $72^{\circ} 1^{\prime} 56.156^{\prime \prime} \mathrm{W}$ | Winchendon | v |  | 0.00 | 0.00 | 0.44 | 0.00 | 0.00 | 0.00 | 0.00 | 625 |

[^41]Table 3.9 - Wetlands Associated with the Project in New Hampshire (continued)

| Table 3.9 (cont'd) <br> Wetlands Associated with the Project in New Hampshire |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Facility Name | County | Town | Segment ${ }^{1}$ | Milepost ${ }^{2}$ | $\begin{gathered} \text { Wetland } \\ \mathbf{I D}^{3,4} \end{gathered}$ | Wetland Class ${ }^{5}$ | State Wetland Classification ${ }^{6}$ | Latitude | Longitude | Quadrangle | Crossing <br> Method | Comments | Wetland Impact (acres) |  |  |  |  |  |  | $\begin{array}{\|c\|} \text { Crossing } \\ \text { Length } \\ \text { (feet) } \end{array}$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  | Construction ${ }^{8}$ |  |  |  | Operation ${ }^{\text {² }}$ |  |  |  |
|  |  |  |  | Begin ${ }^{\text {End }}$ |  |  |  |  |  |  |  |  | PEM | PFO | PSS | Other ${ }^{10}$ | PFO | PSS | Other ${ }^{10}$ |  |
| NED-TAR-I-1500 | Cheshire | Rindge | I | 23.15 | WPI-1890 | Other | N/A | $42^{\circ} 44^{\prime} 23.639^{\prime \prime} \mathrm{N}$ | $72^{\circ} 11^{155.990 " ~ W ~}$ | Winchendon | v |  | 0.00 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 140 |
| NED-TAR-I-1500 | Cheshire | Rindge | I | 23.15 | WPI-1893 | PSS/PEM | N/A | $42^{\circ} 44^{\prime} 22.1722^{\prime \prime} \mathrm{N}$ | $72^{\circ} 1^{\prime} 44.343^{\prime \prime} \mathrm{W}$ | Winchendon | v |  | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| NED-TAR-I-1500 | Cheshire | Rindge | I | 23.15 | WPI-1891 | PFO | N/A | $42^{\circ} 44^{\prime} 23.382^{\prime \prime} \mathrm{N}$ | $72^{\circ} 1^{\prime} 43.179^{\prime \prime} \mathrm{W}$ | Winchendon | v |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| NED-TAR-I-1500 | Cheshire | Rindge | I | 23.15 | WPI-1891 | PFO | N/A | $42^{\circ} 44^{\prime} 23.321^{\prime \prime} \mathrm{N}$ | $72^{\circ} 1^{\prime} 41.744^{\prime \prime} \mathrm{W}$ | Winchendon | v |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| NED-TAR-I-1500 | Cheshire | Rindge | I | 23.15 | WPI-1895 | PSS/PEM | N/A | $42^{\circ} 44^{\prime} 23.275^{\prime \prime} \mathrm{N}$ | $72^{\circ} 1^{\prime} 41.513^{\prime \prime} \mathrm{W}$ | Winchendon | v |  | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| NED-TAR-I-1500 | Cheshire | Rindge | I | 23.15 | WPI-1895 | PSS/PEM | N/A | $42^{\circ} 44^{\prime} 22.885^{\prime \prime} \mathrm{N}$ | $72^{\circ} 1^{\prime} 40.518^{\prime \prime} \mathrm{W}$ | Winchendon | v |  | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| NED-TAR-I-1500 | Cheshire | Rindge | I | 23.15 | WPI-1899 | PSS | N/A | $42^{\circ} 44^{\prime} 21.978{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ}{ }^{1} 32.215^{\prime \prime} \mathrm{W}$ | Winchendon | v |  | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 70 |
| NED-TAR-I-1500 | Cheshire | Rindge | I | 23.15 | WPI-1897 | Other | N/A | $42^{\circ} 44^{\prime} 21.721^{\prime \prime} \mathrm{N}$ | $72^{\circ} 1^{1} 32.113^{\prime \prime} \mathrm{W}$ | Winchendon | v |  | 0.00 | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 125 |
| NED-TAR-I-1600 | Cheshire | Rindge | I | 23.79 | WPI-1902 | PSS/PEM | N/A | $42^{\circ} 44^{\prime} 22.0911^{\prime N}$ | $72^{\circ} 1{ }^{1} 23.878^{\prime \prime} \mathrm{W}$ | Winchendon | v |  | 0.00 | 0.00 | 0.16 | 0.00 | 0.00 | 0.00 | 0.00 | 240 |
| NED-TAR-I-1600 | Cheshire | Rindge | I | 23.79 | WPI-1903 | PSS | N/A | $42^{\circ} 44^{\prime} 21.783^{\prime \prime} \mathrm{N}$ | $72^{\circ}{ }^{1}{ }^{120.654 " W}$ | Winchendon | v |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| NED-TAR-I-1600 | Cheshire | Rindge | I | $23.79$ | WPI-1903 | PSS | N/A | $42^{\circ} 44^{\prime} 21.454{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 1^{1} 20.359^{\prime \prime} \mathrm{W}$ | Winchendon | v |  | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 40 |
| NED-TAR-I-1600 | Cheshire | Rindge | I | 23.79 | WPI-1907 | PFO/PSS | N/A | $42^{\circ} 44^{\prime} 21.327^{\prime \prime} \mathrm{N}$ | $72^{\circ} 11^{11.003 " W}$ | Winchendon | v |  | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 35 |
| NED-TAR-I-1600 | Cheshire | Rindge | I | 23.79 | WPI-1905 | PSS | N/A | $42^{\circ} 44^{\prime} 21.330^{\prime \prime} \mathrm{N}$ | $72^{\circ} 1{ }^{1} 11.020^{\prime \prime} \mathrm{W}$ | Winchendon | v |  | 0.00 | 0.00 | 0.15 | 0.00 | 0.00 | 0.00 | 0.00 | 250 |
| NED-TAR-I-1600 | Cheshire | Rindge | I | 23.79 | WPI-1910 | PSS | N/A | $42^{\circ} 44^{\prime} 21.345^{\prime \prime} \mathrm{N}$ | $72^{\circ} 1^{\prime} 7.600{ }^{\prime \prime} \mathrm{W}$ | Winchendon | v |  | 0.00 | 0.00 | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | 150 |
| NED-TAR-I-1700 | Cheshire | Rindge | I | 24.20 | WPI-1912 | PSS | N/A | $42^{\circ} 44^{\prime} 21.004{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 0^{\prime} 44.774^{\prime \prime} \mathrm{W}$ | Winchendon | v |  | 0.00 | 0.00 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 135 |
| NED-TAR-I-1700 | Cheshire | Rindge | I | $24.20$ | WPI-1914 | PSS | N/A | $42^{\circ} 44^{\prime} 20.809{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 0^{\circ} 42.891{ }^{\prime \prime} \mathrm{W}$ | Winchendon | v |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 15 |
| NED-TAR-I-1700 | Cheshire | Rindge | I | $24.20$ | WPI-1918 | PEM | N/A | $42^{\circ} 44^{\prime} 20.445{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 0^{\prime} 37.480^{\prime \prime} \mathrm{W}$ | Winchendon | v |  | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 115 |
| NED-TAR-I-1800 | Cheshire | Rindge | I | 24.62 | WPI-1920 | PSS/PEM | N/A | $42^{\circ} 44^{\prime} 19.654{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 0^{\prime} 24.597{ }^{\prime \prime} \mathrm{W}$ | Winchendon | v |  | 0.00 | 0.00 | 0.14 | 0.00 | 0.00 | 0.00 | 0.00 | 250 |
| NED-TAR-I-1800 | Cheshire | Rindge | I | $24.62$ | WPI-1923 | PSS | N/A | $42^{\circ} 44^{\prime} 19.091{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 0^{\prime} 15.5577^{\prime \prime} \mathrm{W}$ | Winchendon | v |  | 0.00 | 0.00 | 0.13 | 0.00 | 0.00 | 0.00 | 0.00 | 225 |
| NED-TAR-I-1800 | Cheshire | Rindge | I | $24.62$ | WPI-1924 | Other | N/A | $42^{\circ} 44^{\prime} 19.059{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 0^{\prime} 14.222^{\prime \prime} \mathrm{W}$ | Winchendon | v |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 15 |
| NED-TAR-I-1800 | Cheshire | Rindge | I | 24.62 | WPI-1926 | PSS/PEM | N/A | $42^{\circ} 44^{\prime} 19.107{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 0^{\prime} 12.699^{\prime \prime} \mathrm{W}$ | Winchendon | v |  | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 10 |
| NED-TAR-I-1800 | Cheshire | Rindge | I | $24.62$ | WPI-1928 | PSS/PEM | N/A | $42^{\circ} 44^{\prime} 19.100{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 0^{\prime} 12.185^{\prime \prime} \mathrm{W}$ | Winchendon | v |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| NED-TAR-I-1800 | Cheshire | Rindge | I | $24.62$ | WPI-1931 | PSS/PEM | N/A | $42^{\circ} 44^{\prime} 18.958^{\prime \prime} \mathrm{N}$ | $72^{\circ} 0^{\prime} 12.014^{\prime \prime} \mathrm{W}$ | Winchendon | v |  | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 45 |
| NED-TAR-I-1800 | Cheshire | Rindge | I | $24.62$ | WPI-1935 | PSS/PEM | N/A | $42^{\circ} 44^{\prime} 18.793^{\prime \prime} \mathrm{N}$ | $72^{\circ} 0^{\prime} 11.488^{\prime \prime} \mathrm{W}$ | Winchendon | v |  | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 25 |
| NED-TAR-I-1800 | Cheshire | Rindge | I | $24.62$ | WPI-1937 | PSS/PEM | N/A | $42^{\circ} 44^{\prime} 18.789^{\prime \prime} \mathrm{N}$ | $72^{\circ} 0^{\prime} 11.086^{\prime \prime} \mathrm{W}$ | Winchendon | v |  | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 60 |
| NED-TAR-I-1800 | Cheshire | Rindge | I | $24.62$ | WPI-1938 | PEM | N/A | $42^{\circ} 44^{\prime} 18.851^{\prime \prime} \mathrm{N}$ | $72^{\circ} 0^{\prime} 10.143^{\prime \prime} \mathrm{W}$ | Winchendon | v |  | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 60 |
| NED-TAR-I-1800 | Cheshire | Rindge | I | $24.62$ | WPI-1939 | PEM | N/A | $42^{\circ} 44^{\prime} 18.760{ }^{\prime \prime} \mathrm{N}$ | $72^{\circ} 0^{\prime} 9.400{ }^{\prime \prime} \mathrm{W}$ | Winchendon | v |  | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 10 |
| NED-TAR-I-1800 | Cheshire | Rindge | I |  | WPI-1942 | PSS/PEM | N/A | $42^{\circ} 44^{\prime} 18.947^{\prime \prime} \mathrm{N}$ | $72^{\circ} 0^{\prime} 9.2500^{\prime \prime} \mathrm{W}$ | Winchendon | v |  | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 90 |
| NED-TAR-I-1900 | Cheshire | Rindge | I | 25.19 | NWI-1401 | Other | N/A | $42^{\circ} 44^{\prime} 22.288^{\prime \prime} \mathrm{N}$ | $71^{\circ} 59^{\prime} 36.980$ W | Ashburnham | v |  | 0.00 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 0.00 | 110 |

[^42]Table 3.9 - Wetlands Associated with the Project in New Hampshire (continued)

| Table 3.9 (cont'd) <br> Wetlands Associated with the Project in New Hampshire |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Facility Name | County | Town | Segment ${ }^{1}$ | Milepost ${ }^{2}$ | $\underset{\mathbf{I D}^{3,4}}{\text { Wetland }}$ | Wetland Class ${ }^{5}$ | State Wetland Classification ${ }^{6}$ | Latitude | Longitude | Quadrangle | Crossing Method | Comments | Wetland Impact (acres) |  |  |  |  |  |  | Crossing Length (feet) |
|  |  |  |  |  |  |  |  |  |  |  |  |  | Construction ${ }^{8}$ |  |  |  | Operation' |  |  |  |
|  |  |  |  | Begin ${ }^{\text {End }}$ |  |  |  |  |  |  |  |  | PEM | PFO | PSS | Other ${ }^{10}$ | PFO | PSS | Other ${ }^{10}$ |  |
| NED-TAR-I-1900 | Cheshire | Rindge | I | 25.19 | WPI-1946 | PEM | N/A | $42^{\circ} 44^{\prime} 34.116^{\prime \prime} \mathrm{N}$ | 710 $59^{\prime} 15.888{ }^{\text {" W }}$ | Ashburnham | v |  | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| NED-TAR-I-1900 | Cheshire | Rindge | I | 25.19 | WPI-1944 | PSS | N/A | $42^{\circ} 44^{\prime} 34.257^{\prime \prime} \mathrm{N}$ | $71^{\circ} 59^{\prime} 15.820^{\prime \prime} \mathrm{W}$ | Ashburnham | v |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| NED-TAR-I-1900 | Cheshire | Rindge | I | 25.19 | WPI-1946 | PEM | N/A | $42^{\circ} 44^{\prime} 34.586^{\prime \prime} \mathrm{N}$ | $71^{\circ} 59^{\prime} 15.662^{\prime \prime} \mathrm{W}$ | Ashburnham | v |  | 0.22 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 330 |
| NED-TAR-I-1900 | Cheshire | Rindge | I | 25.19 | WPI-1945 | PSS | N/A | $42^{\circ} 44^{\prime} 35.8933^{\prime \prime} \mathrm{N}$ | $71^{\circ} 59^{\prime} 15.344{ }^{\prime \prime} \mathrm{W}$ | Ashburnham | v |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| NED-TAR-I-1900 | Cheshire | Rindge | I | 25.19 | WPI-1947 | PSS | N/A | $42^{\circ} 44^{\prime} 37.814^{\prime \prime} \mathrm{N}$ | $71^{\circ} 59^{\prime 13.707 " ~ W ~}$ | Ashburnham | v |  | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 45 |
| NED-TAR-I-2000 | Cheshire | Rindge | I | 26.03 | WPI-1948 | Other | N/A | $42^{\circ} 44^{\prime} 50.933{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 59^{\prime} 5.393{ }^{\prime \prime} \mathrm{W}$ | Ashburnham | v |  | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0 |
| NED-TAR-I-2000 | Cheshire | Rindge | I | $26.03$ | WPI-1951 | PEM | N/A | $42^{\circ} 45^{\prime} 8.185^{\prime \prime} \mathrm{N}$ | $71^{\circ} 58^{\prime} 53.262^{\prime \prime} \mathrm{W}$ | Peterborough South | v |  | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 105 |
| NED-TAR-I-2100 | Cheshire | Rindge | I | 26.74 | WPI-1953 | PSS | N/A | $42^{\circ} 45^{\prime} 14.898{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 58^{\prime} 41.919{ }^{\prime \prime} \mathrm{W}$ | Peterborough South | v |  | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 75 |
| NED-TAR-I-2100 | Cheshire | Rindge | I | 26.74 | WPI-1957 | PSS | N/A | $42^{\circ} 45^{\prime} 19.345^{\prime \prime} \mathrm{N}$ | $71^{\circ} 58^{\prime} 27.839{ }^{\prime \prime} \mathrm{W}$ | Peterborough South | v |  | 0.00 | 0.00 | 0.18 | 0.00 | 0.00 | 0.00 | 0.00 | 300 |
| NED-TAR-I-2100 | Cheshire | Rindge | I | 26.74 | WPI-1958 | Other | N/A | $42^{\circ} 45^{\prime} 19.917^{\prime \prime} \mathrm{N}$ | $71^{\circ} 58^{\prime} 26.451{ }^{\prime \prime} \mathrm{W}$ | Peterborough South | v |  | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0 |
| NED-TAR-I-2100 | Cheshire | Rindge | I | 26.74 | WPI-1961 | PSS | N/A | $42^{\circ} 45^{\prime} 21.3344^{\prime \prime}$ | $71^{\circ} 58^{\prime} 22.592{ }^{\prime \prime} \mathrm{W}$ | Peterborough South | v |  | 0.00 | 0.00 | 0.19 | 0.00 | 0.00 | 0.00 | 0.00 | 220 |
| NED-TAR-I-2100 | Cheshire | Rindge | I | 26.74 | WPI-1960 | Other | N/A | $42^{\circ} 45^{\prime} 21.358{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 58^{\prime} 22.329^{\prime \prime} \mathrm{W}$ | Peterborough South | v |  | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 110 |
| NED-TAR-I-2100 | Cheshire | Rindge | I | 26.74 | WPI-1965 | PFO | N/A | $42^{\circ} 45^{\prime} 26.3011^{\prime N}$ | $71^{\circ} 588^{\prime} 7.374^{\prime \prime} \mathrm{W}$ | Peterborough South | v |  | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 55 |
| NED-TAR-I-2100 | Cheshire | Rindge | I | 26.74 | WPI-1966 | PSS | N/A | $42^{\circ} 45^{\prime} 26.230^{\prime \prime} \mathrm{N}$ | $71^{\circ} 58^{\prime} 7.318^{\prime \prime} \mathrm{W}$ | Peterborough South | v |  | 0.00 | 0.00 | 0.16 | 0.00 | 0.00 | 0.00 | 0.00 | 245 |
| NED-TAR-J-0100 | Hillsborough | New Ipswich | J | 0.25 | WPI-1992 | PSS | N/A | $42^{\circ} 46^{\prime} 0.845^{\prime \prime} \mathrm{N}$ | $71^{\circ} 56^{\prime} 15.079{ }^{\prime \prime} \mathrm{W}$ | Peterborough South | v |  | 0.00 | 0.00 | 0.12 | 0.00 | 0.00 | 0.00 | 0.00 | 125 |
| NED-TAR-J-0100 | Hillsborough | New Ipswich | J | $0.25$ | WPI-1995 | Other | N/A | $42^{\circ} 46^{\prime} 1.878{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 56^{\prime 13.861 " ~ W ~}$ | Peterborough South | v |  | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 50 |
| NED-TAR-J-0100 | Hillsborough | New Ipswich | J | $0.25$ | WPI-1996 | Other | N/A | $42^{\circ} 46^{\prime} 1.682^{\prime \prime} \mathrm{N}$ | $71^{\circ} 56^{13.687 " ~ W ~}$ | Peterborough South | v |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0 |
| NED-TAR-J-0100 | Hillsborough | New Ipswich | J | $0.25$ | WPI-1997 | Other | N/A | $42^{\circ} 46^{\prime} 2.394{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 56^{\prime} 13.517{ }^{\prime \prime} \mathrm{W}$ | Peterborough South | v |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0 |
| NED-TAR-J-0100 | Hillsborough | New Ipswich | J | $0.25$ | WPI-1992 | PSS | N/A | $42^{\circ} 46^{\prime} 2.922^{\prime \prime} \mathrm{N}$ | $71^{\circ} 56^{\prime} 12.267^{\prime \prime} \mathrm{W}$ | Peterborough South | v |  | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 85 |
| NED-TAR-J-0100 | Hillsborough | New Ipswich | J | $0.25$ | WPI-1998 | Other | N/A | $42^{\circ} 46^{\prime} 2.975^{\prime \prime} \mathrm{N}$ | $71^{\circ} 56^{12.193 " ~ W ~}$ | Peterborough South | v |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 15 |
| NED-TAR-J-0100 | Hillsborough | New Ipswich | J | $0.25$ | WPI-1999 | Other | N/A | $42^{\circ} 46^{\prime} 3.0955^{\prime \prime} \mathrm{N}$ | $71^{\circ} 56^{\prime} 11.833^{\prime \prime} \mathrm{W}$ | Peterborough South | v |  | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 70 |
| NED-TAR-J-0100 | Hillsborough | New Ipswich | J | $0.25$ | WPI-2000 | PSS | N/A | $42^{\circ} 46^{\prime} 6.541^{\prime \prime} \mathrm{N}$ | $71^{\circ} 56^{\prime} 0.835^{\prime \prime} \mathrm{W}$ | Peterborough South | v |  | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 5 |
| NED-TAR-J-0100 | Hillsborough | New Ipswich | J | 0.25 | WPI-2001 | Other | N/A | $42^{\circ} 46^{\prime} 6.7011^{\prime N}$ | $71^{\circ} 56{ }^{\circ} 0.817^{\prime \prime} \mathrm{W}$ | Peterborough South | v |  | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 45 |
| NED-TAR-J-0100 | Hillsborough | New Ipswich | J | $0.25$ | WPI-2000 | PSS | N/A | $42^{\circ} 46^{\prime} 7.555^{\prime \prime} \mathrm{N}$ | $71^{\circ} 55^{\prime} 59.696{ }^{\prime \prime} \mathrm{W}$ | Peterborough South | v |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 70 |
| NED-TAR-J-0100 | Hillsborough | New Ipswich | J | $0.25$ | WPI-2002 | Other | N/A | $42^{\circ} 46^{\prime} 6.852^{\prime \prime} \mathrm{N}$ | $71^{\circ} 55^{\prime} 59.439{ }^{\prime \prime} \mathrm{W}$ | Peterborough South | v |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0 |
| NED-TAR-J-0100 | Hillsborough | New Ipswich | J | $0.25$ | WPI-2005 | Other | N/A | $42^{\circ} 46^{\prime} 7.237^{\prime \prime} \mathrm{N}$ | $71^{\circ} 55^{\prime} 57.557{ }^{\prime \prime} \mathrm{W}$ | Peterborough South | v |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 15 |
| NED-TAR-J-0100 | Hillsborough | New Ipswich | J | $0.25$ | WPI-2004 | Other | N/A | $42^{\circ} 46^{\prime} 6.982{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 55^{\prime} 57.4011^{\prime \prime} \mathrm{W}$ | Peterborough South | v |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0 |
| NED-TAR-J-0100 | Hillsborough | New Ipswich | J | 0.25 | WPI-2006 | Other | N/A | $42^{\circ} 46^{\prime} 6.974{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 55^{\prime} 56.716^{\prime \prime} \mathrm{W}$ | Peterborough South | v |  | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 50 |
| NED-TAR-J-0100 | Hillsborough | New Ipswich | J | 0.25 | WPI-2007 | Other | N/A | $42^{\circ} 46^{\prime} 7.457{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 55^{\prime} 56.041 \mathrm{l}$ W | Peterborough South | v |  | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 40 |

[^43]Table 3.9 - Wetlands Associated with the Project in New Hampshire (continued)

| Table 3.9 (cont'd) <br> Wetlands Associated with the Project in New Hampshire |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Facility Name | County | Town | Segment ${ }^{1}$ | Milepost ${ }^{2}$ |  | $\underset{\mathbf{I D}^{3,4}}{\text { Wetland }}$ | Wetland Class ${ }^{5}$ | State Wetland Classification ${ }^{6}$ | Latitude | Longitude | Quadrangle | Crossing Method | Comments | Wetland Impact (acres) |  |  |  |  |  |  | Crossing Length (feet) |
|  |  |  |  |  |  | Construction ${ }^{8}$ |  |  |  |  |  |  |  | Operation' |  |  |  |
|  |  |  |  | Begin | End |  |  |  |  |  |  |  |  | PEM | PFO | PSS | Other ${ }^{10}$ | PFO | PSS | Other ${ }^{10}$ |  |
| NED-TAR-J-0100 | Hillsborough | New Ipswich | J | 0.25 |  |  | WPI-2012 | PSS | N/A | $42^{\circ} 46^{\prime} 12.937^{\prime \prime} \mathrm{N}$ | 710 55' 40.313 W | Peterborough South | v |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 35 |
| NED-TAR-J-0100 | Hillsborough | New Ipswich | J | 0.25 |  | WPI-2012 | PSS | N/A | $42^{\circ} 46^{\prime} 13.221^{\prime \prime} \mathrm{N}$ | $71^{\circ} 55^{\prime} 39.531 \mathrm{lW}$ | Peterborough South | v |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 45 |
| NED-TAR-J-0100 | Hillsborough | New Ipswich | J | 0.25 |  | WPI-2012 | PSS | N/A | $42^{\circ} 46^{\prime} 13.584^{\prime \prime} \mathrm{N}$ | $71^{\circ} 55^{\prime} 38.530^{\prime \prime} \mathrm{W}$ | Peterborough South | v |  | 0.00 | 0.00 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 5 |
| NED-TAR-J-0100 | Hillsborough | New Ipswich | J | 0.25 |  | WPI-2014 | Other | N/A | $42^{\circ} 46^{\prime} 13.8499^{\prime \prime} \mathrm{N}$ | $71^{\circ} 55^{\prime} 37.978{ }^{\prime \prime} \mathrm{W}$ | Peterborough South | v |  | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 110 |
| NED-TAR-J-0100 | Hillsborough | New Ipswich | J | 0.25 |  | WPI-2015 | PEM | N/A | $42^{\circ} 46^{\prime} 17.299{ }^{\prime \prime} \mathrm{N}$ | 71 $55^{\prime} 25.054{ }^{\prime \prime} \mathrm{W}$ | Peterborough South | v |  | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 15 |
| NED-TAR-J-0100 | Hillsborough | New Ipswich | J | 0.25 |  | WPI-2018 | Other | N/A | $42^{\circ} 46^{\prime} 17.687^{\prime \prime} \mathrm{N}$ | $71^{\circ} 55^{\prime} 24.752^{\prime \prime} \mathrm{W}$ | Peterborough South | v |  | 0.00 | 0.00 | 0.00 | 0.11 | 0.00 | 0.00 | 0.00 | 165 |
| NED-TAR-J-0100 | Hillsborough | New Ipswich | J | 0.25 |  | WPI-2019 | PEM | N/A | $42^{\circ} 46^{\prime} 18.419{ }^{\prime \prime} \mathrm{N}$ | 71${ }^{\circ} 55^{\prime} 22.806{ }^{\prime \prime} \mathrm{W}$ | Peterborough South | v |  | 0.13 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 210 |
| NED-TAR-J-0200 | Hillsborough | New Ipswich | J | 1.22 |  | WPI-2020 | PEM | N/A | $42^{\circ} 46^{\prime} 23.895{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 55^{\prime} 4.242^{\prime \prime} \mathrm{W}$ | Peterborough South | v |  | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 40 |
| NED-TAR-J-0200 | Hillsborough | New Ipswich | J | 1.22 |  | WPI-2024 | PSS | N/A | $42^{\circ} 46^{\prime} 27.192^{\prime \prime} \mathrm{N}$ | $71^{\circ} 54^{\prime} 54.369{ }^{\prime \prime} \mathrm{W}$ | Peterborough South | v |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| NED-TAR-J-0200 | Hillsborough | New Ipswich | J | 1.22 |  | WPI-2022 | PSS | N/A | $42^{\circ} 46^{\prime} 27.505^{\prime \prime} \mathrm{N}$ | $71^{\circ} 54^{\prime} 54.327$ " W | Peterborough South | v |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| NED-TAR-J-0200 | Hillsborough | New Ipswich | J | 1.22 |  | WPI-2023 | Other | N/A | $42^{\circ} 46^{\prime} 27.273{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 54^{\prime} 54.203{ }^{\prime \prime} \mathrm{W}$ | Peterborough South | v |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0 |
| NED-TAR-J-0200 | Hillsborough | New Ipswich | J | $1.22$ |  | WPI-2024 | PSS | N/A | $42^{\circ} 46^{\prime} 27.352^{\prime \prime} \mathrm{N}$ | $71^{\circ} 54^{\prime} 53.817^{\prime \prime} \mathrm{W}$ | Peterborough South | v |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| NED-TAR-J-0200 | Hillsborough | New Ipswich | J | 1.22 |  | WPI-2024 | PSS | N/A | $42^{\circ} 46^{\prime} 27.4311^{\prime \prime}$ | $71^{\circ} 54^{\prime} 53.670^{\prime \prime} \mathrm{W}$ | Peterborough South | v |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| NED-TAR-J-0200 | Hillsborough | New Ipswich | J | 1.22 |  | WPI-2027 | Other | N/A | $42^{\circ} 46^{\prime} 31.455^{\prime \prime} \mathrm{N}$ | $71^{\circ} 54^{\prime} 42.399{ }^{\prime \prime} \mathrm{W}$ | Peterborough South | v |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0 |
| NED-TAR-J-0200 | Hillsborough | New Ipswich | J | $1.22$ |  | WPI-2030 | PEM | N/A | $42^{\circ} 46^{\prime} 31.637^{\prime \prime} \mathrm{N}$ | $71^{\circ} 54^{\prime} 42.103{ }^{\prime \prime} \mathrm{W}$ | Peterborough South | v |  | 0.13 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 75 |
| NED-TAR-J-0200 | Hillsborough | New Ipswich | J | $1.22$ |  | WPI-2030 | PEM | N/A | $42^{\circ} 46^{\prime} 32.2577^{\prime \prime}$ | $71^{\circ} 54^{\prime} 41.529{ }^{\prime \prime} \mathrm{W}$ | Peterborough South | v |  | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 135 |
| NED-TAR-J-0200 | Hillsborough | New Ipswich | J | $1.22$ |  | WPI-2029 | Other | N/A | $42^{\circ} 46^{\prime} 32.074^{\prime \prime} \mathrm{N}$ | $71^{\circ} 54^{\prime} 41.715^{\prime \prime} \mathrm{W}$ | Peterborough South | v |  | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 25 |
| NED-TAR-J-0301 | Hillsborough | New Ipswich | J | $2.31$ |  | WPI-2037 | PSS/PEM | N/A | $42^{\circ} 46^{\prime} 37.722^{\prime \prime} \mathrm{N}$ | $71^{\circ} 54^{\prime} 1.983^{\prime \prime} \mathrm{W}$ | Peterborough South | v |  | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 90 |
| NED-TAR-J-0302 | Hillsborough | New Ipswich | J | $3.00$ |  | WPI-2045 | PSS/PEM | N/A | $42^{\circ} 46^{\prime} 42.0611^{\mathrm{N}}$ | $71^{\circ} 53^{\prime} 5.514^{\prime \prime} \mathrm{W}$ | Peterborough South | v |  | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 85 |
| NED-TAR-J-0500 | Hillsborough | New Ipswich | J | $4.32$ |  | WPI-2082 | PSS/PEM | N/A | $42^{\circ} 46^{\prime} 50.915^{\prime \prime} \mathrm{N}$ | 71${ }^{\circ} 51$ '33.185" W | Greenville | v |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| NED-TAR-J-0500 | Hillsborough | New Ipswich | J | $4.32$ |  | WPI-2081 | PSS | N/A | $42^{\circ} 46^{\prime} 50.843{ }^{\prime \prime} \mathrm{N}$ | 71${ }^{\circ} 51$ '33.154" W | Greenville | v |  | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 20 |
| NED-TAR-J-0500 | Hillsborough | New Ipswich | J | $4.32$ |  | WPI-2084 | Other | N/A | $42^{\circ} 466^{\prime} 50.785^{\prime \prime} \mathrm{N}$ | $71^{\circ} 51^{\prime} 32.920$ W | Greenville | v |  | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 50 |
| NED-TAR-J-0500 | Hillsborough | New Ipswich | J | $4.32$ |  | WPI-2083 | Other | N/A | $42^{\circ} 46^{\prime} 50.918^{\prime \prime} \mathrm{N}$ | 71 ${ }^{\circ} 1^{\prime} 32.900{ }^{\prime \prime} \mathrm{W}$ | Greenville | v |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0 |
| NED-TAR-J-0500 | Hillsborough | New Ipswich | J | $4.32$ |  | WPI-2082 | PSS/PEM | N/A | $42^{\circ} 46^{\prime} 50.874^{\prime \prime} \mathrm{N}$ | $71^{\circ} 511^{\prime} 32.728{ }^{\prime \prime} \mathrm{W}$ | Greenville | v |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| NED-TAR-J-0500 | Hillsborough | New Ipswich | J | 4.32 |  | WPI-2086 | Other | N/A | $42^{\circ} 466^{51.745 " \mathrm{~N}}$ | $71^{\circ} 51^{\prime} 23.695^{\prime \prime} \mathrm{W}$ | Greenville | v |  | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 65 |
| NED-TAR-J-0800 | Hillsborough | Mason | J | $8.07$ |  | WPI-2105 | Other | N/A | $42^{\circ} 47^{\prime} 6.816^{\prime \prime} \mathrm{N}$ | $71^{\circ} 47^{\prime} 8.987^{\prime \prime} \mathrm{W}$ | Greenville | v |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0 |
| NED-TAR-J-0800 | Hillsborough | Mason | J | 8.07 |  | WPI-2120 | PSS | N/A | $42^{\circ} 466^{\prime 5} 4.975^{\prime \prime} \mathrm{N}$ | $71^{\circ} 46^{\prime} 11.575^{\prime \prime} \mathrm{W}$ | Greenville | v |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| NED-TAR-J-0800 | Hillsborough | Mason | J | 8.07 <br> 8.07 |  | WPI-2122 | PSS | N/A | $42^{\circ} 46 \cdot 55.561 " \mathrm{~N}$ | 710 $46^{\prime} 10.199{ }^{\prime \prime} \mathrm{W}$ | Greenville | v |  | 0.00 | 0.00 | 0.29 | 0.00 | 0.00 | 0.00 | 0.00 | 430 |
| NED-TAR-J-0800 | Hillsborough | Mason | J |  |  | WPI-2124 | Other | N/A | $42^{\circ} 46^{\prime} 53.261 " \mathrm{~N}$ | $71^{\circ} 46^{\prime} 2.837^{\prime \prime} \mathrm{W}$ | Greenville | v |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0 |

[^44]Table 3.9 - Wetlands Associated with the Project in New Hampshire (continued)

| Table 3.9 (cont'd)Wetlands Associated with the Project in New Hampshire |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Facility Name | County | Town | Segment ${ }^{1}$ | Milepost ${ }^{2}$ | $\underset{\text { Wetland }^{3,4}}{\substack{\text { Wend }}}$ | Wetland Class ${ }^{5}$ | State Wetland Classification ${ }^{6}$ | Latitude | Longitude | Quadrangle | Crossing Method | Comments | Wetland Impact (acres) |  |  |  |  |  |  | $\begin{array}{\|c} \text { Crossing } \\ \text { Length } \\ \text { (feet) }{ }^{11} \end{array}$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  | Construction ${ }^{8}$ |  |  |  | Operation' |  |  |  |
|  |  |  |  | Begin End |  |  |  |  |  |  |  |  | PEM | PFO | PSS | Other ${ }^{10}$ | PFO | PSS | Other ${ }^{10}$ |  |
| NED-TAR-J-0800 | Hillsborough | Mason | J | 8.07 | WPI-2124 | Other | N/A | $42^{\circ} 46^{\prime} 53.208{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 46^{2} 2.589^{\prime \prime} \mathrm{W}$ | Greenville | v |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0 |
| NED-TAR-J-0801 | Hillsborough | Mason | J | 0.25 | WPI-2166 | PFO | N/A | $42^{\circ} 46^{\prime} 30.082^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime 2} 22.235{ }^{\prime \prime} \mathrm{W}$ | Milford | v |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| NED-TAR-J-0900 | Hillsborough | Mason | J | 10.86 | WPI-3195 | PSS | N/A | $42^{\circ} 46^{\prime} 30.841^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime} 9.810^{\prime \prime} \mathrm{W}$ | Milford | v |  | 0.00 | 0.00 | 0.28 | 0.00 | 0.00 | 0.00 | 0.00 | 400 |
| NED-TAR-J-0900 | Hillsborough | Mason | J | 10.86 | WPI-2168 | PFO | N/A | $42^{\circ} 46^{\prime} 29.373{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime} 4.048^{\prime \prime} \mathrm{W}$ | Milford | v |  | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| NED-TAR-J-0900 | Hillsborough | Mason | J | 10.86 | WPI-2169 | PSS | N/A | $42^{\circ} 46^{\prime} 30.799{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 44^{\prime} 3.242^{\prime \prime} \mathrm{W}$ | Milford | v |  | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 85 |
| NED-TAR-J-0900 | Hillsborough | Mason | J | 10.86 | WPI-2170 | PEM | N/A | $42^{\circ} 46^{\prime} 31.115^{\prime \prime} \mathrm{N}$ | $71^{\circ} 43^{\prime} 56.211^{\prime \prime} \mathrm{W}$ | Milford | v |  | 0.11 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 170 |
| NED-TAR-J-0900 | Hillsborough | Mason | J | $10.86$ | WPI-2173 | PSS | N/A | $42^{\circ} 46^{\prime} 33.089{ }^{\prime \prime} \mathrm{N}$ | 71* ${ }^{\circ} 3^{\prime} 44.970$ W | Milford | v |  | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 60 |
| NED-TAR-J-0900 | Hillsborough | Mason | J | 10.86 | WPI-2174 | PSS | N/A | $42^{\circ} 46^{\prime} 33.757^{\prime \prime} \mathrm{N}$ | 71 ${ }^{\circ} 3^{\prime} 31.406{ }^{\prime \prime} \mathrm{W}$ | Milford | v |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| NED-TAR-J-0900 | Hillsborough | Mason | J | 10.86 | WPI-2175 | Other | N/A | $42^{\circ} 46^{\prime} 33.3311^{\prime N}$ | 710 ${ }^{\circ} 3^{\prime} 31.038{ }^{\prime \prime} \mathrm{W}$ | Milford | v |  | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 40 |
| NED-TAR-J-0900 | Hillsborough | Mason | J | $10.86$ | WPI-2178 | PSS | N/A | $42^{\circ} 46^{\prime} 36.054{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 43^{\prime} 9.650^{\prime \prime} \mathrm{W}$ | Milford | v |  | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 60 |
| NED-TAR-J-1000 | Hillsborough | Milford | J | 12.03 | WPI-2182 | PFO | N/A | $42^{\circ} 46^{\prime} 33.512^{\prime \prime} \mathrm{N}$ | 71* $42^{\prime} 53.318{ }^{\prime \prime} \mathrm{W}$ | Milford | v |  | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 65 |
| NED-TAR-J-1000 | Hillsborough | Milford | J | $12.03$ | WPI-2189 | PSS/PEM | N/A | $42^{\circ} 46^{\prime} 37.245^{\prime \prime} \mathrm{N}$ | 710 $42^{\prime} 46.401{ }^{\text {W }}$ | Milford | v |  | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 65 |
| NED-TAR-J-1000 | Hillsborough | Milford | J | $12.03$ | wPI-2192 | Other | N/A | $42^{\circ} 46^{\prime} 37.5377^{\prime \prime} \mathrm{N}$ | $71^{\circ} 42^{\prime} 39.972{ }^{\prime \prime} \mathrm{W}$ | Milford | v |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0 |
| NED-TAR-J-1000 | Hillsborough | Milford | J | $12.03$ | WPI-2194 | PSS/PEM | N/A | $42^{\circ} 46^{\prime} 37.283{ }^{\prime \prime} \mathrm{N}$ | 71* $42^{\prime} 38.739^{\prime \prime} \mathrm{W}$ | Milford | v |  | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 40 |
| NED-TAR-J-1000 | Hillsborough | Milford | J | $12.03$ | WPI-2193 | Other | N/A | $42^{\circ} 46^{\prime} 37.597{ }^{\prime \prime} \mathrm{N}$ |  | Milford | v |  | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 60 |
| NED-TAR-J-1000 | Hillsborough | Milford | J | $12.03$ | WPI-2199 | PSS | N/A | $42^{\circ} 46^{\prime} 39.167^{\prime \prime} \mathrm{N}$ | $71^{\circ} 42^{\prime} 14.294{ }^{\prime \prime} \mathrm{W}$ | Milford | v |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| NED-TAR-J-1000 | Hillsborough | Brookline | J | $12.03$ | WPI-2220 | PSS/PEM | N/A | $42^{\circ} 47^{\prime} 5.084^{\prime \prime} \mathrm{N}$ | $71^{\circ} 40^{\prime} 47.242$ W | Milford | v |  | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 45 |
| NED-TAR-J-1205 | Hillsborough | Merrimack | J | $21.53$ | NWI-1306 | PEM | N/A | $42^{\circ} 48^{\prime} 17.913^{\prime \prime} \mathrm{N}$ | $71^{\circ} 32^{\prime} 53.827{ }^{\prime \prime} \mathrm{W}$ | South Merrimack | v |  | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 75 |
| NED-TAR-J-2200 | Hillsborough | Litchfield | J | $26.45$ | WPI-2363 | Other | N/A | $42^{\circ} 49^{\prime} 49.705^{\prime \prime} \mathrm{N}$ | $71^{\circ} 28^{\prime} 33.178{ }^{\prime \prime} \mathrm{W}$ | Nashua North | v |  | 0.00 | 0.00 | 0.00 | 0.08 | 0.00 | 0.00 | 0.00 | 110 |
| NED-TAR-J-2200 | Hillsborough | Litchfield | J | $26.45$ | WPI-2365 | PSS/PEM | N/A | $42^{\circ} 49^{\prime} 50.158{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 28^{\prime} 31.710^{\prime \prime} \mathrm{W}$ | Nashua North | v |  | 0.00 | 0.00 | 0.38 | 0.00 | 0.00 | 0.00 | 0.00 | 550 |
| NED-TAR-J-2200 | Hillsborough | Litchfield | J | $26.45$ | WPI-2365 | PSS/PEM | N/A | $42^{\circ} 49^{\prime} 51.025^{\prime \prime} \mathrm{N}$ | $71^{\circ} 28^{\prime 2} 22.727^{\prime \prime} \mathrm{W}$ | Nashua North | v |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 20 |
| NED-TAR-J-2200 | Hillsborough | Litchfield | J | $26.45$ | WPI-2368 | Other | N/A | $42^{\circ} 49^{\prime} 51.055^{\prime \prime} \mathrm{N}$ | $71^{\circ} 28^{\prime} 22.024{ }^{\prime \prime} \mathrm{W}$ | Nashua North | v |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0 |
| NED-TAR-J-2300 | Rockingham | Londonderry | J | $29.16$ | LD-L-W002 | PEM | N/A | $42^{\circ} 50^{\prime} 36.127^{\prime \prime} \mathrm{N}$ | $71^{\circ} 25^{\prime} 19.093{ }^{\prime \prime} \mathrm{W}$ | Nashua North | v |  | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| NED-TAR-J-2500 | Hillsborough | Hudson | J | $31.00$ | WPI-2450 | PEM | N/A | $42^{\circ} 49^{\prime} 28.223^{\prime \prime} \mathrm{N}$ | $71^{\circ} 23^{\prime} 45.954{ }^{\prime \prime} \mathrm{W}$ | Nashua North | v |  | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 150 |
| NED-TAR-J-2500 | Hillsborough | Hudson | J | 31.00 | WPI-2448 | Other | N/A | $42^{\circ} 49^{\prime} 28.447{ }^{\prime \prime} \mathrm{N}$ | 71 ${ }^{\circ} 23^{\prime} 45.677^{\prime \prime} \mathrm{W}$ | Nashua North | v |  | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 35 |
| NED-TAR-J-2500 | Hillsborough | Hudson | J | $31.00$ | WPI-2456 | PSS | N/A | $42^{\circ} 49^{\prime} 14.7044^{\prime \prime}$ | 71${ }^{\circ} 23^{\prime} 30.914{ }^{\prime \prime} \mathrm{W}$ | Nashua North | v |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| NED-TAR-J-2500 | Hillsborough | Hudson | J | $31.00$ | WPI-2456 | PSS | N/A | $42^{\circ} 49^{\prime} 14.566{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 23^{\prime} 30.716^{\prime \prime} \mathrm{W}$ | Nashua North | v |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| NED-TAR-J-2500 | Hillsborough | Hudson | J | 31.00 | WPI-2457 | PSS | N/A | $42^{\circ} 49^{\prime} 14.088{ }^{\prime \prime} \mathrm{N}$ | $71^{\circ} 23^{\prime} 29.609{ }^{\prime \prime} \mathrm{W}$ | Nashua North | v |  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |

[^45]Table 3.9 - Wetlands Associated with the Project in New Hampshire (continued)


erpeted aerial coverage. The publicly available data is from the USFWS - NWI (2014).
Each segment is associated with its own set of MPs beginning at MP 0.00 .
MPs for Contractor Yards and Access Roads are given as nearest MP, which indicates the point at which the Access Road or Contractor Yard connects with the pipeline construction ROW, or closest MP to the construction ROW if there is no direct connection.
Wetland ID in the form of NWI-XXX are USFWS-NWI wellands and wetland ID in the form WPI-XXX are photo interpreted wetlands. All other welland ID's are surveyed wetland.
Wetlands identified as "Unnamed" are wetlands delineated by AECOM that have yet to be assigned a unique Wetland ID.
Wetland classification is in accordance with Cowardin et al 1979: PEM = Palustrine Emergent Wetland; PSS = Palustrine Scrub-Shrub; PFO = Palustrine Forested Wetland; PUB = Palustrine Unconsolidated Bottom; Other = accommodates all other wetland class type
Prime wetlands are defined under RSA 482-A: 15
Crossing methods for wetlands are described in Section $2.3 .6 ;$; $=$ standard crossing; $I I=$ conventional crossing; III $=$ push/pull crossing; IV $=$ Horizontal Directional Drill; $\mathrm{V}=$ Timber mats will be used to cross wetlands for Contractor Yards and Accesss Roads; $\mathrm{N} / \mathrm{A}=$ wetland not crossed by pipeline.

 ype from PFO to PSS a nd PEM or PSS to PEM; the
are not included in the operational wetland impacts.
${ }^{10}$ Other = Wetland type not classified by NWI as PEM, PSS, or PFO
${ }^{11}$ Crossing length of 0 feet indicates that a wetland is impacted by only workspace (not the pipeline centerline).
${ }^{12}$ The totals shown in this table may not equal the sum of addends due to rounding.
Source: Northeast Energy Direct Project, Attachment A, Section 3 - Attachment 2 NE USACE 404, Table 2.3-8

# Attachment C- List of Abutters within the Project Area of New Hampshire 

Attachment A, New England Section of the U.S. Army Corps of Engineers Section 404 Permit Application

Section 4, Appendix 7

Tennessee Gas Pipeline
Company, L.L.C.
a Kinder Morgan company

Clean Water Act Section 401 Water Quality Certification
Northeast Energy Direct Project
Section 3, Attachment D
Waiver Request

## Attachment D- Waiver Request

This page intentionally left blank

November 25, 2015

Ms. Kelsey Vaughn
New Hampshire Department of Environmental Services
NHDES Drinking Water and Groundwater Bureau
29 Hazen Drive; PO Box 95
Concord, NH 03302-0095

## Subject: Env-Wq 2101 Exemption Request for Water Conservation Plan for 401 Water Quality Certificate Tennessee Gas Pipeline Company, L.L.C. Northeast Energy Direct Project

Dear Ms. Vaughn:
In accordance with Env-Wq 2101.23, Waivers, the purpose of this letter is to provide a written request for a waiver of relevant sections of Env-Wq 2100 for the Northeast Direct Project ("NED Project" or "Project") proposed by Tennessee Gas Pipeline Company, L.L.C. ("Tennessee" or "TGP") for water withdrawals associated with hydrostatic testing of the pipeline and slurry production for horizontal directional drilling ("HDD"). The reason for this request is that there are no alternatives to achieve pipeline testing standards other than NED Project requirements.
(1) The name, mailing address, and location of the conservation system or water user to which the waiver request relates.

Michael Letson
Project Manager, Kinder Morgan
1001 Louisiana Street
Houston, TX 77002
(2) The name, daytime telephone number and, if available, fax number and e-mail address of the individual who is knowledgeable about the request and who can answer questions on behalf of the requestor; NEW HAMPSHIRE CODE OF ADMINISTRATIVE RULES 15 Env-Wq 2101.

Michael Letson
Kinder Morgan
Office phone: (713) 420-5360
Michael_letson@kindermorgan.com
(3) A description of the conservation system or water user to which the waiver request relates, including the population served by the water system, if applicable.

Tennessee has filed an application seeking the issuance of a certificate of public convenience and necessity from the Federal Energy Regulatory Commission ("Commission" or "FERC") for the construction and operation of the proposed NED Project. Tennessee proposes to expand and modify its existing pipeline system in Pennsylvania, New York, Massachusetts, New Hampshire, and

Connecticut. The NED Project is being developed to meet the increased demand in the Northeast United States ("U.S.") for transportation capacity of natural gas.

In New Hampshire, the Project will include the construction and operation of the following facilities:
Pipeline Facilities: The proposed Project mainline pipeline facilities in New Hampshire consist of approximately 70 miles of 30 -inch diameter pipeline, beginning at the Massachusetts/New Hampshire border in Winchester, New Hampshire and extending east to the Massachusetts/New Hampshire border in Pelham, New Hampshire (as part of the Wright to Dracut Pipeline Segment). Approximately 57 miles of this new proposed mainline pipeline will be generally colocated with an existing utility corridor to the extent practicable, feasible, and in compliance with existing law. The proposed Project pipeline facilities in New Hampshire also include approximately 5.08 miles of the 13.97 -mile Fitchburg Lateral Extension in Mason (12-inch diameter pipeline) and approximately 2.04 miles of the 9.27 -mile Haverhill Lateral (20-inch diameter pipeline) in Salem.

Aboveground Facilities: Proposed facilities include one natural gas-powered compressor station that will be constructed and operated in New Ipswich, New Hampshire, one meter station in Merrimack, New Hampshire, and one meter station in Windham, New Hampshire.

Detailed information on the entire Project is available on the FERC website (www.ferc.gov) and specifically for environmental resources in the NED Project Docket No. PF14-22-000, (http://elibrary.ferc.gov/idmws/file list.asp?accession_num=20150724-5061). Water resources are discussed in detail in Resource Report 2 of the Environmental Report.

## (4) A reference to the specific section of the rules for which a waiver is sought.

A waiver is sought from Env-Wq 2101.24, Water Conservation Plan required. Specifically, Env-Wq 2101.24 (5) states: "For a new withdrawal from a surface water associated with a project requiring a 401 Water Quality Certification, the water conservation plan shall be submitted prior to or in conjunction with the application for a 401 Water Quality Certification pursuant to Section 401 of the federal Clean Water Act."
(5) A full explanation of why a waiver is necessary, including an explanation of the economic and operational consequences of complying with the rule as written.

There are no alternatives to the proposed water withdrawals that will enable the Project to further conserve water. Additionally, water withdrawals will only temporarily occur over short durations during Project construction. Two types of water withdrawals are proposed: (1) water withdrawals (and discharges) from various streams and ponds associated with the hydrostatic testing of the pipeline, and (2) water withdrawals from the Merrimack River for the purposes of drilling operations associated with pipeline installation by HDD under the Merrimack River. During drilling, water will be mixed with bentonite and pumped through holes in the cutting heads to facilitate the removal of cuttings, stabilize the bore hole, cool the cutting head, and lubricate the passage of the pipe. The fluid will be recycled throughout the drilling process and disposed of once the HDD is complete.

Details of these withdrawals are summarized in the Project 401 Water Quality Certificate Application. In both cases, the temporary water withdrawal volumes are calculated based on Project size, length and drilling needs. Because the withdrawals are minimal and will occur temporarily during construction activities, the development of a water conservation plan is unnecessary and would be unproductive.
(6) A full explanation with supporting data of the alternative(s), if any, proposed to be implemented or used in lieu of the section's requirements.

There are no alternatives to the proposed withdrawals. Water withdrawals will be temporary and minimal. Hydrostatic testing is required in accordance with US Department of Transportation ("USDOT") regulations and requires a fixed volume of water for each segment of pipe and is necessary for Project completion. Similarly, the volume of water required for drilling operations is dependent on factors such as drill distance, subsurface conditions and Project completion time and is necessary for Project construction. Therefore, there is no alternative to further conserve water.

## (7) A discussion of the length of time the waiver will be needed.

The estimated time for total Project construction is approximately two years. For hydrostatic testing, it is. anticipated that each withdrawal will only be required for one or two days for each stream or pond, depending on the rate of withdrawal. For the HDD site, water will be required intermittently over seven months throughout the duration of HDD activities.
(8) A full explanation of how the proposed alternative(s), if any, meets the criteria specified in (f), below.

As described above, there are no proposed alternatives that will conserve additional water.
Thank you in advance for your timely review of this submission. If you have any questions, please do not hesitate to contact Michael Letson at 713-420-5360 or at Michael_letson@kindermorgan.com.


Project Manager, Kinder Morgan
1001 Louisiana Street
Houston, TX 77002
Office Phone: (713) 420-5360

cc: Mr. Kevin Kotelly, USACE New England District<br>Mr.Tom Burack, NHDES Office of the Commissioner<br>Ms. Kelsey Vaughn, NHDES Drinking Water and Groundwater Bureau<br>Mr. Mitchell Locker, NHDES Groundwater Discharge Program<br>Mr. Barry Duff, Tennessee Gas Pipeline Company, L.L.C<br>Mr. Austin Malone, Tennessee Gas Pipeline Company, L.L.C

Tennessee Gas Pipeline
Company, L.L.C.
a Kinder Morgan company

Ms. Danni Martin, Tennessee Gas Pipeline Company, L.L.C
ENCLOSURES Water Withdrawal and Discharge Site Information
$\qquad$

Table 1
Potential Sources and Discharge Sites of Hydrostatic Pressure Test Water for the Project in New Hampshire

| Potential <br> Water Source | Segment <br> $\mathbf{2}$ | Approx. <br> MP | Manifold/ <br> Discharge <br> Location | Water <br> Quantity <br> (gallons) | Estimated <br> Discharge <br> Rate <br> (gallons <br> per <br> minute) | Estimated <br> Discharge <br> Time <br> (hours) | Estimated <br> Discharge <br> (gallons <br> per day) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sandy Pond | I | 8.10 | 8.10 | 368,714 | TBD | TBD | TBD |
| South Ashuelot <br> River | I | 13.20 | 13.20 | 191,004 | TBD | TBD | TBD |
| Bowker Pond | I | 14.50 | 14.50 | 444,131 | TBD | TBD | TBD |
| Unnamed Water <br> Source | I | 26.40 | 26.40 | 744,287 | TBD | TBD | TBD |
| Unamed Water <br> Source | J | 5.20 | 5.20 | $2,982,347$ | TBD | TBD | TBD |
| Souhegan River ${ }^{3}$ | J | 7.40 | 7.40 | 958,185 | TBD | TBD | TBD |
| Merrimack <br> River | J | 26.40 | 26.40 | $5,152,530$ | TBD | TBD | TBD |
| Chase Brook | J | 31.40 | 31.40 | 100,000 | TBD | TBD | TBD |

${ }^{1}$ Fire hydrants may be utilized as a potential water source and are located adjacent to the project pipeline in the following Towns:

- Winchester, Cheshire County, NH
- Litchfield, Hillsborough County, NH
- Fitzwilliam, Cheshire County, NH
- Windham, Hillsborough County, NH
- Amherst, Hillsborough County, NH
- Salem, Rockingham County, NH
- Merrimack, Hillsborough County, NH
${ }^{2}$ Each segment is associated with its own set of MPs beginning at MP 0.00 .
${ }^{3}$ Segment Q to be tested using the Souhegan River water source on Segment J-MP. 7.40
${ }^{4}$ Segments $K, L$, and $P$ will be tested using the Merrimack River water source on Segment J-MP. 26.40
TBD = To Be Determined and included in the Temporary Surface Water Discharge
Permit.
Source: Northeast Energy Direct Project, Attachment A, Environmental Construction Plan for New Hampshire, Table 5.291.

Table 2
Approximate Horizontal Directional Drill Water Usage

| HDD ID ${ }^{\mathbf{1}}$ | Potential Water Source | Segment $^{\mathbf{y}}$ | Approximate <br> Milepost | Water Quantity <br> (gallons) |
| :---: | :---: | :---: | :---: | :---: |
| New Hampshire |  |  |  |  |
| HDD-12 | Merrimack River | J | 26.19 | $1,150,000$ |
| New Hampshire Subtotal |  |  |  |  |

${ }^{1}$ HDD IDs are identified on the Horizontal Directional Drill Site Specific drawings.
${ }^{2}$ Each segment is associated with its own set of mileposts beginning at MP 0.00 .
${ }^{3}$ Water Quantity is the approximate water required for executing the drill (pilot bore, reaming, swab, and pull back operations) and for buoyancy control during construction. The water quantities are conservative estimates and may vary based on site specific conditions.
Source: Northeast Energy Direct Project, FERC PF14-22-000, Environmental Report, Vol I, Resource Report 2, Table 2.2-10


[^0]:    Each segment is associated with its own set of MPs beginning at MP 0.00 .

[^1]:    ${ }^{1}$ This column indicates the associated pipeline on which the compressor station will be located.

[^2]:    Source: Northeast Energy Direct Project, Attachment A, Environmental Construction Plan for New Hampshire, Table 2.1-2.

[^3]:    ${ }^{1}$ Fire hydrants may be utilized as a potential water source and are located adjacent to the Project pipeline in the following locations: Winchester, Cheshire County, NH; Fitzwilliam,
     Rockingham County, NH
    ${ }^{2}$ Each segment is associated with its own set of mileposts (MP) beginning at MP 0.00 .
    ${ }^{3}$ Segment Q to be tested using the Souhegan River water source on Segment J-MP. 7.40
    ${ }^{4}$ Segments K, L, and P will be tested using the Merrimack River water source on Segment J-MP. 26.40

[^4]:    ${ }^{-1 / 3}$ Footnote and source information can be found at the end of the table.

[^5]:    ${ }^{13}$ Footnote and source information can be found at the end of the table.

[^6]:    ${ }^{3}$ Footnote and source information can be found at the end of the table.

[^7]:    ${ }^{13}$ Footnote and source information can be found at the end of the table.

[^8]:    ${ }^{-13}$ Footnote and source information can be found at the end of the table.

[^9]:    ${ }^{13}$ Footnote and source information can be found at the end of the table.

[^10]:    ${ }^{1-1 / 3}$ Footnote and source information can be found at the end of the table.

[^11]:    ${ }^{-12}$ Footnote and source information can be found at the end of the table.

[^12]:    ${ }^{1 / 2}$ Footnote ad sound at and the end of the table.

[^13]:    12 Fornd

[^14]:    ${ }^{12}$ F

[^15]:    Wer

[^16]:    ${ }^{112}$ Footnote and source information can be found at the end of the table.

[^17]:    ${ }^{12}$ Footnote and source information can be found at the end of the table.

[^18]:    ${ }^{12}$ Footnote and source information can be found at the end of the table.

[^19]:    ${ }^{12}$ Footne

[^20]:    ${ }_{112}$ Foonet

[^21]:    ${ }^{12}$ Footer

[^22]:    ${ }^{12}$ P ootne

[^23]:    ${ }^{12}$ Footno and source information can be found at the end of the tabe.

[^24]:    12 Foonte

[^25]:    ${ }_{112}$ Foonet

[^26]:    Wh

[^27]:    ${ }^{12}$ Footne and source information can be found at the end of the table.

[^28]:    22 Footneand

[^29]:    ${ }^{12}$ Footno and soure information can be found at the end of the tabe.

[^30]:    ${ }^{12}$ For

[^31]:    

[^32]:    ${ }^{12}$ Foote and souce information can be found at the end of the tale.

[^33]:    ${ }^{12}$ Fornter

[^34]:    22 Footneand

[^35]:    ${ }^{12}$ Foanteand saice inforan can be foun athe

[^36]:    We rean

[^37]:    ${ }^{1-12}$ Footmote and source information can be found at the end of the table.

[^38]:    ${ }^{12}$ Footne and source information can be found at the end of the

[^39]:    ${ }^{112}$ Footre and sowe intomation can be foud at the end of te

[^40]:    ${ }^{1-12}$ Footnote and source information can be found at the end of the table.

[^41]:    ${ }^{1-122}$ Footnote and source information can be found at the end of the table.

[^42]:    ${ }^{1-12}$ Footnote and source information can be found at the end of the table.

[^43]:    ${ }^{1-12}$ Footnote and source information can be found at the end of the table.

[^44]:    ${ }^{1-12}$ Footnote and source information can be found at the end of the table.

[^45]:    ${ }^{-12}$ Footnote and source information can be found at the end of the table.

